
Altova UModel 2024 Enterprise Edition

User & Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the
publisher.

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or
alleged to have been caused directly or indirectly by this document.

Published: 2024

© 2018-2024 Altova GmbH

Altova UModel 2024 Enterprise Edition
User & Reference Manual

3Altova UModel 2024 Enterprise Edition

Table of Contents

1 Introduction 12

.. 131.1 Support Notes

.. 161.2 Database Support

2 UModel Tutorial 17

.. 182.1 Getting Started

.. 212.2 Use Cases

.. 302.3 Class Diagrams

.. 392.3.1 Creating Derived Classes

.. 452.4 Object Diagrams

.. 522.5 Component Diagrams

.. 582.6 Deployment Diagrams

.. 632.7 Forward Engineering (from Model to Code)

.. 722.8 Reverse Engineering (from Code to Model)

3 UModel Graphical User Interface 80

.. 823.1 Model Tree Window

.. 863.2 Diagram Tree Window

.. 873.3 Favorites Window

.. 883.4 Properties Window

.. 893.5 Styles Window

.. 903.6 Hierarchy Window

.. 923.7 Overview Window

.. 933.8 Documentation Window

.. 943.9 Layer Window

.. 953.10 Messages Window

.. 973.11 Diagram Window

.. 983.12 Diagram Pane

Altova UModel 2024 Enterprise Edition4

4 UModel Command Line Interface 100

.. 1054.1 Creating, Loading, and Saving Projects in Batch Mode

5 How to Model... 107

.. 1085.1 Elements

.. 1085.1.1 Creating Elements

.. 1095.1.2 Inserting Elements from the Model into a Diagram

.. 1115.1.3 Renaming, Moving, and Copying Elements

.. 1125.1.4 Deleting Elements

.. 1135.1.5 Converting Elements

.. 1135.1.6 Finding and Replacing Text

.. 1155.1.7 Checking Where and If Elements Are Used

.. 1165.1.8 Constraining Elements

.. 1175.1.9 Hyperlinking Elements

.. 1205.1.10 Documenting Elements

.. 1215.1.11 Changing the Style of Elements

.. 1235.2 Diagrams

.. 1235.2.1 Creating Diagrams

.. 1245.2.2 Generating Diagrams

.. 1265.2.3 Opening Diagrams

.. 1275.2.4 Deleting Diagrams

.. 1275.2.5 Changing the Style of Diagrams

.. 1295.2.6 Aligning and Resizing Modeling Elements

.. 1315.2.7 Adding Layers to Diagrams

.. 1335.2.8 Type Autocompletion in Classes

.. 1345.2.9 Zooming into/out of Diagrams

.. 1355.3 Relationships

.. 1355.3.1 Creating Relationships

.. 1365.3.2 Changing the Style of Lines and Relationships

.. 1385.3.3 Viewing Element Relationships

.. 1385.3.4 Associations

.. 1415.3.5 Collection Associations

5Altova UModel 2024 Enterprise Edition

.. 1445.3.6 Containment

.. 1455.4 Stereotypes and Tagged Values

.. 1465.4.1 Tagged Values

.. 1475.4.2 Applying Stereotypes

.. 1495.4.3 Showing or Hiding Tagged Values

6 Projects and Code Engineering 152

.. 1536.1 Managing UModel Projects

.. 1536.1.1 Creating, Opening, and Saving Projects

.. 1546.1.2 Opening Projects from a URL

.. 1586.1.3 Moving Projects to a New Directory

.. 1596.1.4 Applying UModel Profiles

.. 1606.1.5 Splitting UModel Projects

.. 1636.1.6 Including Subprojects

.. 1656.1.7 Sharing Packages and Diagrams

.. 1686.1.8 Tips for Enhancing Performance

.. 1696.2 Generating Program Code

.. 1696.2.1 Setting a Package as Namespace Root

.. 1706.2.2 Adding a Code Engineering Component

.. 1726.2.3 Checking Project Syntax

.. 1746.2.4 Code Generation Options

.. 1766.2.5 Example: Generate C# Code

.. 1816.2.6 Example: Generate Java Code

.. 1906.2.7 Example: Generate C++ Code

.. 1956.2.8 SPL Templates

.. 1966.3 Importing Source Code

.. 1986.3.1 Reverse Engineering C++ Code

.. 1996.3.2 Code Import Options

.. 2056.3.3 Example: Import a C# Project

.. 2126.4 Importing Java, C# and VB.NET Binaries

.. 2136.4.1 Adding Custom Java Runtimes

.. 2136.4.2 Import Binary Options

.. 2176.4.3 Example: Import .NET Assemblies

.. 2196.4.4 Example: Import Java .class Files

Altova UModel 2024 Enterprise Edition6

.. 2256.5 Synchronizing the Model and Source Code

.. 2266.5.1 Synchronization Tips

.. 2286.5.2 Refactoring Code and Synchronization

.. 2296.5.3 Code Synchronization Settings

.. 2326.6 UModel Element Mappings

.. 2326.6.1 C++ Mappings

.. 2386.6.2 C# Mappings

.. 2586.6.3 VB.NET Mappings

.. 2726.6.4 Java Mappings

.. 2786.6.5 XML Schema Mappings

.. 2876.6.6 Database Mappings

.. 2916.7 Merging UModel Projects

.. 2916.7.1 3-Way Project Merge

.. 2936.7.2 Example: Manual 3-Way Project Merge

.. 2966.8 UML Templates

.. 2976.8.1 Template Signatures

.. 2986.8.2 Template Binding

.. 2986.8.3 Template Usage in Operations and Properties

7 Transforming UML Models 300

.. 3037.1 Transformation Settings Reference

.. 3057.2 Example: Transform Java to C++

.. 3127.3 Example: Transform C# to Java

.. 3187.4 Example: Transform Access Database to SQLite

8 Generating UML Documentation 328

.. 3328.1 Documentation Generation Options

.. 3378.2 Customizing Output with StyleVision

9 UML Diagrams 339

.. 3409.1 Behavioral Diagrams

.. 3409.1.1 Activity Diagram

.. 3579.1.2 State Machine Diagram

7Altova UModel 2024 Enterprise Edition

.. 3809.1.3 Protocol State Machine

.. 3859.1.4 Use Case Diagram

.. 3859.1.5 Communication Diagram

.. 3899.1.6 Interaction Overview Diagram

.. 3949.1.7 Sequence Diagram

.. 4219.1.8 Timing Diagram

.. 4309.2 Structural Diagrams

.. 4309.2.1 Class Diagram

.. 4449.2.2 Composite Structure Diagram

.. 4479.2.3 Component Diagram

.. 4479.2.4 Deployment Diagram

.. 4489.2.5 Object Diagram

.. 4489.2.6 Package Diagram

.. 4549.2.7 Profile Diagram

.. 4679.3 Additional Diagrams

.. 4679.3.1 XML Schema Diagrams

.. 4849.3.2 Business Process Modeling Notation 1.0 / 2.0

.. 5119.3.3 SysML Diagrams

10 UModel and Databases 529

.. 53010.1 Modeling Databases in UModel

.. 53110.1.1 Importing SQL Databases into UModel

.. 53810.1.2 Designing Database Objects

.. 54310.1.3 Configuring Round-Trip Engineering for Databases

.. 54410.1.4 Example: Update a Database from the Model

.. 55010.2 Connecting to a Data Source

.. 55110.2.1 Start Database Connection Wizard

.. 55310.2.2 Database Drivers Overview

.. 55610.2.3 ADO Connection

.. 56110.2.4 ADO.NET Connection

.. 56810.2.5 ODBC Connection

.. 57110.2.6 JDBC Connection

.. 57510.2.7 SQLite Connection

.. 57610.2.8 Native Connection

Altova UModel 2024 Enterprise Edition8

.. 57710.2.9 Database Connection Examples

11 XMI - XML Metadata Interchange 631

12 UModel Plug-in for Visual Studio 633

.. 63512.1 Installing the UModel Plug-in for Visual Studio

.. 63612.2 Adding UModel Support to Visual Studio Projects

.. 64012.3 Loading/Unloading UModel Projects

.. 64112.4 Synchronizing the Model and Code

13 UModel Plug-in for Eclipse 644

.. 64713.1 Installing the UModel Plug-in for Eclipse

.. 64913.2 The UModel Perspective

.. 65213.3 Adding UModel Support to Eclipse Projects

.. 65413.4 Importing Existing UModel Projects

.. 65613.5 Loading/Unloading UModel Projects

.. 65713.6 How Automatic Synchronization Works

.. 65813.7 Example: Setting up Automatic Synchronization

14 Source Control 670

.. 67214.1 Setting Up Source Control

.. 67314.2 Supported Source Control Systems

.. 67514.3 Source Control Commands

.. 67514.3.1 Open from Source Control

.. 67814.3.2 Enable Source Control

.. 67914.3.3 Get Latest Version

.. 67914.3.4 Get

.. 68014.3.5 Get Folder(s)

.. 68114.3.6 Check Out

.. 68314.3.7 Check In

.. 68314.3.8 Undo Check Out...

.. 68514.3.9 Add to Source Control

9Altova UModel 2024 Enterprise Edition

.. 68714.3.10 Remove from Source Control

.. 68814.3.11 Share from Source Control

.. 68914.3.12 Show History

.. 69114.3.13 Show Differences

.. 69214.3.14 Show Properties

.. 69314.3.15 Refresh Status

.. 69314.3.16 Source Control Manager

.. 69314.3.17 Change Source Control

.. 69514.4 Source Control with Git

.. 69614.4.1 Enabling Git Source Control with GIT SCC Plug-in

.. 69614.4.2 Adding a Project to Git Source Control

.. 69814.4.3 Cloning a Project from Git Source Control

15 UModel Diagram icons 700

.. 70115.1 Activity Diagram

.. 70315.2 Class Diagram

.. 70415.3 Communication diagram

.. 70515.4 Composite Structure Diagram

.. 70615.5 Component Diagram

.. 70715.6 Deployment Diagram

.. 70815.7 Interaction Overview diagram

.. 70915.8 Object Diagram

.. 71015.9 Package diagram

.. 71115.10 Profile Diagram

.. 71215.11 Protocol State Machine

.. 71315.12 Sequence Diagram

.. 71415.13 State Machine Diagram

.. 71515.14 Timing Diagram

.. 71615.15 Use Case diagram

.. 71715.16 XML Schema diagram

.. 71815.17 Business Process Modeling Notation

.. 72015.18 Business Process Modeling Notation 2.0

.. 72115.19 Database Modeling

Altova UModel 2024 Enterprise Edition10

16 Menu Reference 722

.. 72316.1 File

.. 72516.2 Edit

.. 72716.3 Project

.. 73016.4 Layout

.. 73116.5 View

.. 73216.6 Tools

.. 73216.6.1 Spelling

.. 73616.6.2 Spelling Options

.. 73816.6.3 Scripting Editor

.. 73816.6.4 Macros

.. 73816.6.5 User-defined Tools

.. 73816.6.6 Customize

.. 74816.6.7 Restore Toolbars and Windows

.. 74816.6.8 Options

.. 76116.7 Window

.. 76316.8 Help

17 UModel Programmer's Reference 768

.. 77017.1 Scripting Editor

.. 77117.1.1 Creating a Scripting Project

.. 78317.1.2 Built-in Commands

.. 79317.1.3 Enabling Scripts and Macros

.. 79617.2 UModel IDE Plug-Ins

.. 79617.2.1 How to Create a UModel IDE Plug-In

.. 80517.2.2 Deployment of UModel IDE Plug-Ins

.. 80717.2.3 Configuration XML

.. 81017.2.4 Plug-Ins as ActiveX Controls

.. 81117.2.5 IUModelPlugIn Interface

.. 81517.3 The UModel API

.. 81517.3.1 Accessing the API

.. 81617.3.2 Object Model

11Altova UModel 2024 Enterprise Edition

.. 82217.3.3 How to...

.. 83417.3.4 C# API Examples

.. 86017.3.5 Java API Example

.. 86217.3.6 JScript Examples

.. 87717.4 UModel API Reference

.. 87717.4.1 UModel Plug-Ins

.. 87917.4.2 UModel API Interfaces

.. 96617.4.3 UMLData Interfaces

18 SPL Reference 1333

.. 133418.1 Basic SPL structure

.. 133518.2 Variables

.. 134418.3 Operators

.. 134518.4 Conditions

.. 134618.5 Collections and foreach

.. 134818.6 Subroutines

.. 134818.6.1 Subroutine declaration

.. 134918.6.2 Subroutine invocation

19 License Information 1350

.. 135119.1 Electronic Software Distribution

.. 135219.2 Software Activation and License Metering

.. 135419.3 Altova End-User License Agreement

Index 1355

12 Introduction

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

1 Introduction

Altova UModel 2024 Enterprise Edition is a UML modeling application with a rich visual interface and superior
usability features to help level the UML learning curve. UModel includes many high-end functions to empower
users with the most practical aspects of the UML 2.5 specification. UModel is a 32/64-bit Windows application
that runs on Windows 10, Windows 11, and Windows Server 2016 or newer. 64-bit support is available for the
Enterprise and Professional editions. For an overview of UModel capabilities, see Support Notes .

UML®, OMG™, Object Management Group™, and Unified Modeling Language™ are either registered
trademarks or trademarks of Object Management Group, Inc. in the United States and/or other countries.

Last updated: 8 April 2024

Altova website: UML tool

13

https://www.altova.com/umodel
https://www.altova.com/umodel

© 2018-2024 Altova GmbH

Support Notes 13Introduction

Altova UModel 2024 Enterprise Edition

1.1 Support Notes

UModel is a 32/64-bit Windows application that runs on the following operating systems:

· Windows Server 2016 or newer
· Windows 10, Windows 11

64-bit support is available for the Enterprise and Professional editions.

UML diagrams
UModel supports all fourteen diagrams of the UML 2.5.1 specification, and additional specialized diagram
types.

Structural Behavioral Additional

Class Diagrams Activity Diagram XML Schema Diagrams

Component Diagram Communication Diagram BPMN (Business Process
Modeling Notation) 1.0 / 2.0
Diagrams (UModel Enterprise and
Professional editions)

Composite Structure Diagram Interaction Overview Diagram SysML 1.2, 1.3, 1.4, 1.5, 1.6
Diagrams (UModel Enterprise and
Professional editions)

Deployment Diagram Sequence Diagram Database Diagrams (UModel
Enterprise and Professional
editions)

Object Diagram State Diagrams (State Machine
and Protocol State Machine)

Package Diagram Timing Diagram

Profile Diagram Use Case Diagram

UModel has been designed to allow complete flexibility during the modeling process:

· UModel diagrams can be created in any order, and at any time; there is no need to follow a prescribed
sequence during modeling.

· The syntax coloring in diagrams is customizable. For example, you can customize modeling elements
and their properties (font, color, borders, etc.) in a hierarchical fashion at the project, node/line,
element family and element level, see Changing the Style of Elements .

· The unlimited levels of Undo/Redo track not only content changes, but also all style changes made to
any model element.

· Modeling elements support hyperlinks, see Hyperlinking Elements .
· You can create multiple layers in the same UML diagram, see Adding Layers to Diagrams .

121

117

131

14 Introduction Support Notes

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Code engineering and import of binaries
UModel supports code generation and reverse engineering of program code written in the following languages:

Language Code engineering Import of binaries

C# 1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 7.1, 7.2,

7.3, 8.0, 9.01, 10

Same language versions as for code

engineering2

C++ (UModel Enterprise
Edition)

C++98, C++11 and C++14, C++17, C+
+20

Only partial support for C++20:
modules are not supported.

Not applicable

Java 1.4, 5.0 (1.5), 6 (1.6), 7 (1.7), 8 (1.8), 9
(1.9), 10, 11, 12, 13, 14, 15, 16, 17, 18,
19

Same language versions as for code

engineering3

Visual Basic .NET 7.1 or newer Same language versions as for code
engineering

XML Schemas4 1.0 Not applicable

Databases5 (UModel
Enterprise and
Professional editions)

For more information about supported
databases, see Database Support .

Not applicable

Table footnotes:

1. If you import binary files compiled from C# 9.0 code, note that any records will be imported as classes.
This limitation is due to the fact that records are marked as classes in the assembly, which makes it
impossible to distinguish them from classes.

2. C# code engineering and import of binaries include support for .NET Framework, .NET Core, .NET 5,
and .NET 6. Note that .NET Framework, .NET Core, .NET 5 or .NET 6 must be installed, as applicable.
Binaries of other .NET implementations which are not mentioned are likely to be imported as well. See
also Importing Java, C# and VB.NET Binaries .

3. It is also possible to import binaries targeting Java Virtual Machines other than Oracle JDK, such as
OpenJDK, SapMachine, Liberica JDK, and others, see Adding Custom Java Runtimes .

4. In the case of XML Schemas, code engineering means that you can import a schema (or multiple
schemas from a directory) into UModel, view or modify the model, and write the changes back to the
schema file. When you synchronize data from the model to a schema file, the schema file is always
overwritten by the model. See also XML Schema Diagrams .

5. In the case of databases, code engineering means that you can (i) model a database in UModel with
the option to update the database through a script generated from the model, or (ii) import an existing
database structure into a model, make changes to it, and then deploy a script generated from the
model to the database. Some database object types are not supported for modeling. For details, see
UModel and Databases .

General notes:

16

212

213

467

529

© 2018-2024 Altova GmbH

Support Notes 15Introduction

Altova UModel 2024 Enterprise Edition

· You can synchronize the code and model at the project, package, or even class level. UModel does
not require that pseudo-code, or comments in the generated code be present, in order to accomplish
round-trip engineering.

· A single project can support Java, C#, C++, or VB.NET code simultaneously.
· UModel supports the use of UML templates and their mapping to or from Java, C# and Visual Basic

generics.
· UModel includes support for the Model Driven Architecture (MDA) which allows you to change the

programming language of your models (for example, from Java to C#, or vice versa), see Transforming
UML Models .

· While importing source code, you can optionally generate Class and Package diagrams. Once
the source code is imported into the model, you can also generate Sequence diagrams.

· You can generate program code from Sequence diagrams and from State Machine diagrams
· UModel projects can be split up into multiple sub-projects allowing several developers to

simultaneously edit different parts of a single project. You can then reintegrate the changes back into a
common model. You can also merge UModel projects, as a 2-way or as a 3-way merge, see Merging
UModel Projects .

· Code generation in UModel is based on Spy Programming Language (SPL) templates and is
customizable.

UML documentation generation
You can generate documentation from UModel projects in HTML, RTF, Microsoft Word 2000 or later formats.
Various options are available that let you configure the level of detail of generated documentation, the look and
feel, and other preferences. Generating documentation in PDF format and deep customization of document
generation templates is possible with Altova StyleVision (https://www.altova.com/stylevision). For more
information, see Generating UML Documentation .

IDE Integration
UModel is optionally available as a plug-in to the following integrated development environments:

· Visual Studio 2012/2013/2015/2017/2019/2022, see UModel Plug-in for Visual Studio
· Eclipse 2024-03 (4.31), 2023-12 (4.30), 2023-09 (4.29), 2023-06 (4.28), see UModel Plug-in for

Eclipse

UModel provides a COM-based API and also allows integration of custom IDE Plug-Ins (DLL libraries)
into its graphical user interface. The Scripting Editor allows for development of custom VBScript or JScript
scripts and macros to automate various tasks.

Microsoft Office integration
By virtue of its database modeling support, UModel can import Access databases into a model, and generate
SQL scripts for Access databases. For more information, see UModel and Databases .

Interoperability
UModel also provides support for importing or exporting projects to or from XML Metadata Interchange (XMI)
format, see XMI - XML Metadata Interchange .

300

442 451

409

415 369

291

328

633

644

815 796

770

529

631

https://www.altova.com/stylevision

16 Introduction Database Support

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

1.2 Database Support

The table below lists all the supported databases. If your Altova application is a 64-bit version, ensure that you
have access to the 64-bit database drivers needed for the specific database you are connecting to.

Database Notes

Firebird 2.x, 3.x, 4.x

IBM DB2 8.x, 9.x, 10.x, 11.x

IBM Db2 for i 6.x, 7.4, 7.5 Logical files are supported and shown as views.

IBM Informix 11.70 and later

MariaDB 10 and later MariaDB supports native connections. No separate drivers are
required.

Microsoft Access 2003 and later At the time of writing (early September 2019), there is no
Microsoft Access Runtime available for Access 2019. You can
connect to an Access 2019 database from Altova products only
if Microsoft Access 2016 Runtime is installed and only if the
database does not use the "Large Number" data type.

Microsoft Azure SQL Database SQL Server 2016 codebase

Microsoft SQL Server 2005 and later
Microsoft SQL Server on Linux

MySQL 5 and later MySQL 5.7 and later supports native connections. No separate
drivers are required.

Oracle 9i and later

PostgreSQL 8 and later PostgreSQL connections are supported both as native
connections and driver-based connections through interfaces
(drivers) such as ODBC or JDBC. Native connections do not
require any drivers.

Progress OpenEdge 11.6

SQLite 3.x SQLite connections are supported as native, direct connections
to the SQLite database file. No separate drivers are required.

Sybase ASE 15, 16

Teradata 16

© 2018-2024 Altova GmbH

 17UModel Tutorial

Altova UModel 2024 Enterprise Edition

2 UModel Tutorial

This tutorial shows you how to create various UML diagrams with UModel, while acquainting you with the
graphical user interface. You will also learn how to generate code from a UML model (forward engineering) as
well as how to import existing code into a UML model (reverse engineering). With respect to code engineering,
you will also learn how to perform full round-trip engineering (either model->code->model or code->model-
>code). This tutorial assumes basic knowledge of the UML.

The tutorial is organized into sections as shown below. In the initial sections of this tutorial you will be working
with a sample project pre-installed with UModel. If you would like to quickly create a new modelling project from
scratch with UModel, you can skip directly to Forward Engineering (from Model to Code) .

· Getting Started
· Use Cases
· Class Diagrams
· Creating Derived Classes
· Object Diagrams
· Component Diagrams
· Deployment Diagrams
· Forward Engineering (from Model to Code)
· Reverse Engineering (from Code to Model)

This tutorial makes use of the following sample UModel project files available in the directory C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Tutorial:

BankView-start.ump This is the UModel project file that constitutes the initial state of the tutorial
sample. Several model diagrams as well as classes, objects, and other model
elements exist in this project. By working through the tutorial, you will be adding
new elements or diagrams, or editing existing ones, using UModel.

Note: This project is deliberately incomplete, so validation errors and warnings
will be shown if you check the project syntax using the Project | Check Project
Syntax menu command. The tutorial shows you how to resolve these issues.

BankView-finish.ump This is the UModel project file that constitutes final state of the tutorial sample.

Note: All UModel example files are initially available in the directory C:\ProgramData\Altova\UModel2024.
When any user starts the application for the first time, the example files are copied to C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples. Therefore, do not move,
edit, or delete the example files in the initial directory.

63

18

21

30

39

45

52

58

63

72

18 UModel Tutorial Getting Started

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2.1 Getting Started

When you start UModel for the first time after installation, it opens a default empty project "NewProject1". On
subsequent runs, UModel will open the last project that was loaded. To create, open, and save UModel projects
(.ump files), use the standard Windows commands available in the File menu or in the toolbar.

UModel Graphical User Interface

Note the major parts of the user interface: multiple helper windows on the left hand side and the main diagram
window to the right. Two default packages are visible in the Model Tree window, "Root" and "Component View".
These two packages cannot be deleted or renamed in a project.

The helper windows in the upper-left area are as follows:

· The Model Tree window contains and displays all modeling elements of your UModel project.
Elements can be directly manipulated in this window using the standard editing keys as well as drag
and drop.

· The Diagram Tree window allows your quick access to the modeling diagrams of you project wherever
they may be in the project structure. Diagrams are grouped according to their diagram type.

· The Favorites window is a user-definable repository of modeling elements. Any type of modeling
element can be placed in this window using the "Add to Favorites" command of the context menu.

© 2018-2024 Altova GmbH

Getting Started 19UModel Tutorial

Altova UModel 2024 Enterprise Edition

The helper windows in the middle-left area are as follows:

· The Properties window displays the properties of the currently selected element in the Model Tree
window or in the Diagram window. Element properties can defined or updated in this window.

· The Styles window displays attributes of diagrams, or elements that are displayed in the Diagram view.
These style attributes fall into two general groups: Formatting and display settings.

· The Hierarchy window displays all relations of the currently selected modeling item, in two different
views. The modeling element can be selected in a modeling diagram, the Model Tree, or in the
Favorites window.

The helper windows in the lower-left area are as follows:

· The Overview window which displays an outline view of the currently active diagram.
· The Documentation window which allows you to document your classes on a per-class basis.
· The Layer window allows you to define multiple layers for any UModel diagram. Single, as well as

multiple, layers can be shown, locked and hidden. Layers allow you to make logical groupings of
modeling elements on a diagram.

In this tutorial, you will be working mostly within the Model Tree and Diagram Tree windows, as well as the
main diagram window. For further information about the graphical user interface elements, see UModel User
Interface .

To open the tutorial project:

1. Select the menu option File | Open and navigate to the ...\UModelExamples\Tutorial folder of
UModel. Note that you can also open a *.ump file through a URL, please see Switch to URL for
more information.

2. Open the BankView-start.ump project file. The project file is now loaded into UModel. Several
predefined packages are now visible under the Root package. Note that the main window is empty at
the moment.

80

723

20 UModel Tutorial Getting Started

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

BankView-start.ump project

© 2018-2024 Altova GmbH

Use Cases 21UModel Tutorial

Altova UModel 2024 Enterprise Edition

2.2 Use Cases

This tutorial section shows you how to create a Use Case diagram, while acquainting you with the basics of the
UModel graphical user interface. Specifically, it illustrates the following tasks:

· Add a new package to the project
· Add a new use case diagram to the project
· Add use case elements to the diagram, and define the dependencies amongst them
· Align and adjust the size of elements in the diagram
· Change the style of all diagrams in a UModel project.

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Project).

Adding a new package to a project
As you already know from UML, a package is a container for organizing classes and other UML elements,
including use cases. Let's begin by creating a package that will store a new use case diagram. Note that
UModel does not require that a specific diagram must reside in a specific package; however, you might want to
organize diagrams into packages for better organization and consistency.

1. Right-click the Root package in the Model Tree window, and select New Element | Package.
2. Enter the name of the new package (in this example, "Use Case View"), and press Enter.

Adding a Use Case diagram to a package
1. Right-click the previously created "Use Case View" package.
2. Select New Diagram | UseCase Diagram.

18

22 UModel Tutorial Use Cases

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

A Use Case diagram has now been added to the package in the Model Tree window, and a new
Diagram window has been created as well. A default name has been provided automatically.

3. Double-click the diagram name in the Model Tree window, change it to "Overview Account Balance",
and press Enter to confirm.

Adding Use Case elements to the Use Case diagram
1. Right-click in the newly created diagram and select New | Actor. The actor element is inserted at the

click position.

© 2018-2024 Altova GmbH

Use Cases 23UModel Tutorial

Altova UModel 2024 Enterprise Edition

2. Click the Use Case toolbar button and then click inside the diagram window to insert the
element. A "UseCase1" element is inserted. Note that the element, and its name, are currently
selected, and that its properties are visible in the Properties window.

3. Change the title to "get account balance", press Enter to confirm. Double-click the title if it is
deselected. Note that the use case is automatically resized to adjust to the text length.

Note: To create a multi-line use case name, press Enter while holding the Ctrl key pressed.

Manipulating UModel elements: handles and compartments
When selected, model elements in a diagram display various connection handles and other items used to
manipulate them. Handles can be used to create relationships between elements, or show or hide certain
compartments from the element, as shown below.

1. Double-click the "Actor1" text of the Actor element, change the name to "Standard User" and press
Enter to confirm.

2. Place the mouse cursor over the handle to the right of the actor. A tooltip containing "Association"
appears.

24 UModel Tutorial Use Cases

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Click the handle, drag the Association line to the right, and drop it on the "get account balance" use
case. An association has now been created between the actor and the use case. The association
properties are also visible in the Properties window. The new association has been added to Model
Tree under the Relations item of the Use Case View package.

4. Click the use case and drag it to the right to reposition it. The association properties are visible on the
association object.

5. Click the use case to select it, then click the collapse icon on the left edge of the ellipse.

The "extension points" compartment is now hidden.

© 2018-2024 Altova GmbH

Use Cases 25UModel Tutorial

Altova UModel 2024 Enterprise Edition

A blue dot next to an element in the Model Tree window signifies that the element is visible in the
current diagram. For example, in the image below, three elements are currently visible in the diagram
and thus have a blue dot in the Model Tree:

Resizing the actor adjusts the text field, which can also be multi-line. To insert a line break into the
text, press Enter while holding the Ctrl key pressed.

To finish up the Use Case diagram:

1. Click the Use Case toolbar button and simultaneously hold down the Ctrl key.
2. Click at two different vertical positions in the diagram to add two more use cases, then release the Ctrl

key.
3. Name the first use case "get account balance sum" and the second, "generate monthly revenue

report".
4. Click the collapse icon of each use case to hide the extensions compartment.
5. Click the actor and use the association handle to create an association between "Standard User" and

"get account balance sum".

26 UModel Tutorial Use Cases

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To create an "Include" dependency between use cases (creating a subcase):

· Click the Include handle of the "get account balance sum" use case, at the bottom of the ellipse, and
drop the dependency on "get account balance". An "include" dependency is created, and the include
stereotype is displayed on the dotted arrow.

© 2018-2024 Altova GmbH

Use Cases 27UModel Tutorial

Altova UModel 2024 Enterprise Edition

Inserting user-defined (customized) actors
The actor in the "generate monthly revenue report" use case is not a person, but an automated batch job run by
a bank computer. The instructions below show to add a new actor to the diagram, and also use a custom
image for it.

1. Click the Actor toolbar button to insert an actor in the diagram.
2. Rename the actor to "Bank".

3. In the Properties window, click Browse next to "icon file name" entry, and browse for the Bank-
PC.bmp file available in the same folder as the project.

4. Clear the Absolute Path check box to make the path relative. Select Preview to display a preview of
the selected file in the dialog box.

5. Click OK to confirm the settings and insert the new actor. Move the new "Bank" actor to the right of the
lowest use case.

6. Click the Association toolbar button and drag from the "Bank" actor to the "generate monthly
revenue report" use case. This is an alternative method of creating an association.

Note: The background color used to make the bitmap transparent has the RGB values 82.82.82.

28 UModel Tutorial Use Cases

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Aligning and adjusting the size of diagram elements
When dragging components in a diagram, guide lines appear allowing you to align an element to any other
element in the diagram. You can enable or disable this option as follows:

1. On the Tools menu, click Options.
2. Click the View tab.
3. In the Alignment group, select the Enable snap lines check box.

You can also align and adjust the size of multiple elements, as follows:

1. Create a selection marquee by dragging on the diagram background, making sure that you encompass
all three use cases starting from the top. Alternatively, to select multiple elements, click elements
while holding the Ctrl key pressed. Note that the last use case to be marked, is shown in a dashed
outline in the diagram, as well as in the Overview window.

All use cases are selected, with the lowest being the basis for the following adjustments.

2. Click the Make same size toolbar button.

3. To line up all the ovals, click the Center Horizontally toolbar button.

© 2018-2024 Altova GmbH

Use Cases 29UModel Tutorial

Altova UModel 2024 Enterprise Edition

Change the style of diagrams in a project
By default, all diagrams of the tutorial project have a gradient background color, and a background grid is also
visible. The appearance of diagrams in a project is configurable. For example, to change the background color
of all diagrams, do the following:

1. In the Properties window, click Styles.
2. Under Project Styles, identify the setting Diag. Background Color.

3. Change the value from "gradient" to a color of your choice.

To enable or disable the diagram background grid:

· Change the setting Diag. Show Grid from "true" to "false". (Alternatively, if a diagram is currently

open, click the Show Grid toolbar button.)

30 UModel Tutorial Class Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2.3 Class Diagrams

This tutorial section illustrates the following tasks:

· Add an abstract class to an existing class diagram
· Add class properties and operations, and define parameters as well as their direction and type
· Add a return type to an operation
· Change icons to UML conformant symbols
· Delete and hide class properties and operations
· Create a composite association between two classes.

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Project
).

Adding an abstract class
The diagram to which the abstract class will be added is called "BankView Main" and can be opened as
follows:

1. In the Diagram Tree window, expand the "Class Diagrams" package to display all class diagrams
contained in the project.

2. Do one of the following:

· Double-click the "BankView Main" diagram icon.
· Right-click the diagram, and select Open diagram from the context menu.

18

© 2018-2024 Altova GmbH

Class Diagrams 31UModel Tutorial

Altova UModel 2024 Enterprise Edition

Note: It is also possible to open the diagram from the Model Tree window. First, locate the diagram under
the package "Root | Design-phase | BankView | com | altova | bankview", and then use either of the
methods above to open it.

Two concrete classes with a composite association between them are visible in the class diagram.

"BankView Main" diagram

The new abstract class can be added as follows:

1. Click the Class toolbar button, and then click to the right of the Bank class to insert the new
class.

2. Double-click the name of the new class and change it to Account.

3. In the Properties window, select the abstract check box to make the class abstract. The class title is
now displayed in italic, which is the identifying characteristic of abstract classes.

32 UModel Tutorial Class Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

4. In the code file name text box, enter "Account.java" to define the Java class.

Adding properties to a class
1. Right-click the "Account" class and select New | Property, or press F7. A default property Property1

is inserted with stereotype identifiers << >>.

2. Change the property name to balance, and then enter a colon (:) character. A drop-down list
containing all valid types is displayed.

3. Type "f", and press Enter to insert the return type "float". Note that drop-down lists are case sensitive.

© 2018-2024 Altova GmbH

Class Diagrams 33UModel Tutorial

Altova UModel 2024 Enterprise Edition

4. Continue on the same line by appending "=0" to define the default value.
5. Using the same method as above, create a new property id of type String.

Adding operations to a class
1. Right-click the Account class and select New | Operation, or press F8.
2. Enter "Account()" as operation name. Notice that the stereotype has changed to <<constructor>>,

since the operation name is the same as the class name.

3. Using the same method as above, add two more operations, namely, getBalance():float and
getId():String.

34 UModel Tutorial Class Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Let's now add a new operation which takes a parameter. We will also specify the parameter direction and type.

1. Press F8 to create another operation, collectAccountInfo().
2. Place the mouse cursor within the brackets and start typing "i". A drop-down list opens, allowing you

to select the parameter direction: in, inout, or out.

3. Select "in" from the drop-down list, enter a space, and continue editing on the same line.
4. Enter "bankAPI" as parameter name and then a colon (:). A drop-down list opens, allowing you to

select the parameter type.

© 2018-2024 Altova GmbH

Class Diagrams 35UModel Tutorial

Altova UModel 2024 Enterprise Edition

5. Select IBankAPI from the drop-down list.

Adding a return type to an operation
So far, the operation parameter has been added, but it does not have a return type yet. To add a return type:

1. Place the mouse cursor after the close parenthesis character ")" and enter a colon (:). A drop-down
list opens, allowing you to select a return type.

2. Press the "b" key and select boolean as data type.

36 UModel Tutorial Class Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To specify an operation's visibility (for example, "private", "protected", "public"), click the icon preceding the
operation name, and select the required value, for example:

The visibility "package" is applicable for Java. In C#, use "package" to specify visibility as "internal". For
information about how UModel elements map to constructs in each language, see UModel Element
Mappings .

Changing icons to UML conformant symbols
The visibility icons can be changed to UML conformant symbols if necessary, as follows:

1. In the Styles window, select Project Styles from the top drop-down list.
2. Scroll down to the Show Visibility setting, and select UML Style.

Deleting and hiding class properties and operations from a Class diagram
Press F8 to add a dummy operation Operation1 to the Account class.

To delete the dummy operation, select it and then press Delete. (Alternatively, right-click it and select Delete
from the context menu). A message box appears asking if you want to delete the element from the project.
Click Yes to delete Operation1 from the class diagram as well as from the project.

To delete the operation from the class in the diagram, but not from the project, press the Ctrl+Delete. This
hides the operation from the diagram, although it continues to exist in the project. Classes with hidden
members are displayed with an ellipsis (...) character, as shown below:

232

© 2018-2024 Altova GmbH

Class Diagrams 37UModel Tutorial

Altova UModel 2024 Enterprise Edition

A class with hidden operations

To unhide the operation, double-click the ellipsis at the bottom of the class. A dialog box appears where you
can choose the elements that should be visible on the diagram, for example:

"Visible elements" dialog box

It is possible to configure UModel not to display a message box when you attempt to delete an object from the
diagram, as follows:

1. On the Tools menu, click Options.
2. Click the Editing tab.
3. Under Ask before deleting from project, clear the in diagrams check box.

38 UModel Tutorial Class Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Creating a composition association between the Bank and Account classes

1. Click the Composition toolbar button, and then drag from the Bank class to the Account class.
The class is highlighted when the association can be made. A new property (Property1:Account) is
created in the Bank class, and a composite association arrow joins the two classes.

2. Double click the new Property1 property in the Bank class and change it to "accounts", being sure
not to delete the Account type definition (displayed in teal/green).

3. Press the End keyboard key to place the text cursor at the end of the line.
4. Enter the open square bracket character ([) and select asterisk (*) from the dropdown list. This

defines the multiplicity, namely, the fact that a bank can have many accounts.

Notice that the multiplicity range previously added to the diagram is also visible in the Properties
window:

© 2018-2024 Altova GmbH

Class Diagrams 39UModel Tutorial

Altova UModel 2024 Enterprise Edition

2.3.1 Creating Derived Classes

This tutorial section illustrates the following tasks:

· Add a new class diagram to the project
· Add existing classes to a diagram
· Add a new class to a diagram
· Create derived classes from an abstract class, using generalizations.

Note: It is assumed you have already followed the previous tutorial section, Class Diagrams , to create the
abstract class Account.

Creating a new Class Diagram
1. In the Model Tree window, right-click the bankview package (under Root | Design-phase |

BankView | com | altova), and select New Diagram | Class Diagram.
2. Double-click the new "ClassDiagram1" entry, rename it to "Account Hierarchy", and press Enter to

confirm. The new "Account Hierarchy" diagram is now visible in the working area.

Adding existing classes to a diagram
1. In the Model Tree window, click the Account class in the bankview package (under com | altova |

bankview), and drag it into the diagram.

30

40 UModel Tutorial Class Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2. Click the CheckingAccount class (of the same package) and drag it into the diagram. Place the class
below and to the left of the Account class.

3. Use the same method to insert the CreditCardAccount class. Place it to the right of the
CheckingAccount class.

© 2018-2024 Altova GmbH

Class Diagrams 41UModel Tutorial

Altova UModel 2024 Enterprise Edition

Adding a new class
The third derived class, SavingsAccount, will be added manually to the diagram.

1. Right-click the diagram and select New | Class. A new class is automatically added to the correct
package (bankview) which contains the current class diagram "Account Hierarchy".

2. Double-click the class name and change it to SavingsAccount.
3. Create the class structure as illustrated below. To add properties and operations, use the methods

illustrated in the previous tutorial section, Class Diagrams .

3. In the Properties window, in the "code file name" text box, enter "SavingsAccount.java" to define the
Java code class.

30

42 UModel Tutorial Class Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Properties and operations can be directly copied or moved from one class to another:

· Within a class in the current diagram
· Between different classes of the same diagram
· In the Model Tree window
· Between different UML diagrams, by dropping the copied data onto a different diagram.

This can be achieved using drag and drop, as well as the standard Copy/Paste keyboard shortcuts (Ctrl + C,
Ctrl + V), see also Renaming, Moving, and Copying Elements . For the scope of this example, you can
quickly copy the collectAccountInfo() operation from the Account class to the new SavingsAccount class,
as follows:

1. In the Model Tree window, expand the Account class.
2. Right-click the collectAccountInfo operation and select Copy.
3. Right-click the SavingsAccount class and select Paste.

The operation is copied into the SavingsAccount class, which is automatically expanded to display the new
operation.

111

© 2018-2024 Altova GmbH

Class Diagrams 43UModel Tutorial

Altova UModel 2024 Enterprise Edition

The new operation is now also visible in the SavingsAccount class in the class diagram.

Creating derived classes using generalization/specialization
At this point, the class diagram contains the abstract class, Account, as well as three specific classes.

44 UModel Tutorial Class Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

We will now create a generalization/specialization relationship between Account and the specific classes (that
is, create three derived concrete classes).

1. Click the Generalization toolbar button and hold down the Ctrl key.
2. Drag from CreditCardAccount class and drop on the Account class.
3. Drag from the CheckingAccount class and drop on the arrowhead of the previously created

generalization.
4. Drag from the SavingsAccount class and drop on the arrowhead of the previously created

generalization: release the Ctrl key at this point.

Generalization arrows are created between the three subclasses and the Account superclass.

© 2018-2024 Altova GmbH

Object Diagrams 45UModel Tutorial

Altova UModel 2024 Enterprise Edition

2.4 Object Diagrams

This tutorial section illustrates the following tasks:

· Combine class and object diagrams into one diagram
· Create objects/instances and define the relationships between them
· Format association/links
· Enter real-life data into objects/instances

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Project).
The project includes a predefined object diagram "Sample Accounts", which will be used to illustrate the tasks
above.

Combining objects and classes into one diagram
In the Model Tree window, navigate to the following path: Root | Design-phase | BankView | com | altova |
bankview. Then double-click the icon next to the "Sample Accounts" diagram.

"Sample Accounts" diagram

18

46 UModel Tutorial Object Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

This object diagram combines both classes and instances of them (objects). Specifically, AltovaBank:Bank is
the object/instance of the Bank class, while John's checking: CheckingAccount is an instance of the class
CheckingAccount class (not yet added to the diagram).

Let's now add the missing Account class to the diagram, by dragging it from the Model Tree into the diagram.
Notice that the composite association between Bank and Account is displayed automatically (this association
was defined in one of the previous tutorial sections, see Class Diagrams).

Adding a new object/instance (Approach 1)
Let's now add a new object to the diagram, called John's Credit. This object will instantiate the
CreditCardAccount class.

1. Click the InstanceSpecification toolbar button, and then click inside the diagram, below the
object John's Checking: Checking Account.

2. Change the name of the new instance to John's Credit, and press Enter.

3. Select the new instance to display its properties in the Properties window.
4. In the Properties window, next to "classifier", select CreditCardAccount from the drop-down list.

30

© 2018-2024 Altova GmbH

Object Diagrams 47UModel Tutorial

Altova UModel 2024 Enterprise Edition

The instance has now changed appearance to display all properties of the class. Double-click any
property to enter a value, for example:

To show or hide specific nodes, right-click the instance and select Show/hide node content (Ctrl+Shift+H)
from the context menu.

Adding a new object/instance (Approach 2)
We will now add a new instance of the class SavingsAccount, this time using a different approach:

1. In the Model Tree window, right-click the bankview package, and select New element |
InstanceSpecification.

2. Rename the new instance to John's Saving, and press Enter to confirm. The new object is added to
the package and sorted accordingly.

48 UModel Tutorial Object Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. While the object is still selected in the Model Tree window, select SavingsAccount next to
"classifier" in the Properties window.

4. Drag the object John's Saving from the Model Tree window into the diagram, placing it below the
object John's Credit.

© 2018-2024 Altova GmbH

Object Diagrams 49UModel Tutorial

Altova UModel 2024 Enterprise Edition

Creating links between objects
Links are the instances of class associations, and describe the relationships between objects/instances at a
fixed moment in time.

1. Click the existing link (association) between the object AltovaBank: Bank and the object John's
Checking: CheckingAccount.

2. In the Properties window, next to "classifier", select the entry Account - Bank. The link now changes
to a composite association, in accordance with the class definitions.

3. Click the InstanceSpecification toolbar button, and position the cursor over the object John's
Credit: CreditAccount. The cursor now appears as a + sign.

4. Drag from the object John's Credit: CreditAccount to AltovaBank: Bank to create a link between
the two.

5. In the Properties window, next to "classifier", select the entry Account - Bank.
6. Finally, using the methods outlined above, create a link between the object AltovaBank: Bank and the

object John's Saving: SavingsAccount.

Note that changes made to the association type in any class diagram are automatically updated in the object
diagram.

50 UModel Tutorial Object Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Formatting association/link lines in a diagram
To format links between objects, place the cursor on the line and drag to the desired position. To reposition the
line both horizontally and vertically, drag the corner waypoint, as illustrated below.

Links in an object diagram

Entering sample data into objects
The instance value of an attribute/property in an object is called a slot. To describe the state of an object,
double-click the slots and enter sample instance data after the "=" character, for example:

© 2018-2024 Altova GmbH

Object Diagrams 51UModel Tutorial

Altova UModel 2024 Enterprise Edition

Object slots can also be filled from the Properties window, by selecting the object and entering the appropriate
text next to "value", for example:

52 UModel Tutorial Component Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2.5 Component Diagrams

This tutorial section illustrates the following tasks:

· Create realization dependencies between classes and components
· Change the appearance of lines used in the diagram
· Add usage dependencies to an interface
· Use "ball-and-socket" interface notation

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Project).
The project includes several predefined object diagrams which will be used to illustrate the tasks above. It is
assumed you have already followed the tutorial section Creating Derived Classes to create the class
SavingsAccount.

Creating realization dependencies between classes and components
In the Diagram Tree window, expand "Component Diagrams", and double-click the "BankView realization"
diagram icon. This diagram already contains the BankView component and several classes connected to it with
dependencies of type "ComponentRealization". The text "from bankview" inside each class indicates the name
of the package where the class belongs.

"BankView realization" diagram

Let's now add a new class to the diagram and also create a realization dependency between the new class and
the BankView component.

18

39

© 2018-2024 Altova GmbH

Component Diagrams 53UModel Tutorial

Altova UModel 2024 Enterprise Edition

1. In the Model Tree window, locate the SavingsAccount class in the bankview package. If this class is
missing, follow the tutorial section Creating Derived Classes to create it first.

2. Drag the SavingsAccount class from the Model Tree into the diagram.

By default, the class is displayed with all compartments expanded. Click the collapse/expand icons to the left
of the class to show or hide properties and operations.

To create a realization dependency between the class and the component, do one of the following:

· Click the Realization toolbar button and drag from the SavingsAccount class to the BankView
component.

· Move the cursor over the "ComponentRealization" handle of the class and drag to the BankView
component.

The realization dependency between SavingsAccount and BankView has now been created.

39

54 UModel Tutorial Component Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To give a name to the new dependency line (for example, "Realization5"), first select the line, and then start
typing its name directly. Alternatively, select the line, and then edit the Name property in the Properties
window.

Changing the appearance of diagram lines
Let's now change the line appearance from "curved" to "direct line", as follows:

1. Select the line created previously (that is, the one between SavingsAccount and BankView).

2. Click the Direct Line toolbar button.

Adding usage dependencies to an interface
1. In the Model Tree window, navigate to Root | Design-phase and double-click the icon next to the

"Overview" diagram. The "Overview" component diagram is opened and displays the currently defined
system dependencies between components and interfaces.

© 2018-2024 Altova GmbH

Component Diagrams 55UModel Tutorial

Altova UModel 2024 Enterprise Edition

2. In the Model Tree window, navigate to Root | Component View | BankView and drag the BankView
GUI package into the diagram.

3. Also drag the BankView package into the diagram.

4. Click the Usage toolbar button and drag from the BankView GUI package to the IBankAPI
Interface.

5. Repeat the previous step for the package BankView.

56 UModel Tutorial Component Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

As illustrated below, both packages now have a usage dependency to the interface. Namely, the IBankAPI
interface is required by the packages BankView and BankView GUI. As for the package Bank API Client, it
provides the interface.

Using "ball-and-socket" notation
Optionally, it is possible to convert the current diagram notation to "ball-and-socket" style notation, as follows:

· Select the interface, and then click the Toggle Interface Notation button in its lower-right corner.

© 2018-2024 Altova GmbH

Component Diagrams 57UModel Tutorial

Altova UModel 2024 Enterprise Edition

The diagram has now changed to "ball-and-socket" notation.

To switch back to the previous notation style, select the interface, and then click the Toggle interface
notation button again.

58 UModel Tutorial Deployment Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2.6 Deployment Diagrams

This tutorial section illustrates the following tasks:

· Add a dependency between two artifacts in a Deployment diagram
· Add elements to a Deployment diagram
· Embed artifacts into a node in a Deployment diagram
· Creating artifact elements (for example, properties, operations, nested artifacts)

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Project
).

Adding a dependency between two artifacts in a Deployment diagram
In the Diagram Tree window, under "Deployment Diagrams", double-click the icon next to the "Artifacts"
diagram to open it. As illustrated below, this diagram shows the manifestation of the Bank API client and the
BankView components, to their respective compiled Java .jar files.

"Artifacts" diagram

These manifestations were created using a technique similar to other relationships previously illustrated in this
tutorial, as follows:

1. Click the Manifestation toolbar button.
2. Move the mouse cursor over the artifact and drag into the component.

Using the same technique, let's also add a dependency between the two .jar files, as follows:

1. Click the Dependency toolbar button.
2. Move the cursor over the BankView.jar artifact and drag into the BankAPI.jar artifact.
3. Select the dependency line and type "Dependency2".

18

© 2018-2024 Altova GmbH

Deployment Diagrams 59UModel Tutorial

Altova UModel 2024 Enterprise Edition

Adding elements to a Deployment diagram
In the Diagram Tree window, under "Deployment Diagrams", double-click the icon next to the "Deployment"
diagram to open it. This diagram is deliberately incomplete and consists of a single node, which represents a
home PC. In the following steps, we will be adding more elements to this diagram.

"Deployment" diagram

Assuming that the goal is to illustrate a TCP/IP connection between the home PC and a bank, let's add the
required elements:

1. Click the Node toolbar button, and click right of the Home PC node to insert it.
2. Rename the node to "Bank", and drag one of its edges to enlarge it.

60 UModel Tutorial Deployment Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Click the Dependency toolbar button, and then drag from the "Home PC" node to the "Bank"
node. This creates a dependency between the two nodes.

4. Select the dependency line and enter "TCP/IP" as name of the new dependency. (Alternatively, edit the
Name property in the Properties window).

Embedding artifacts
In the Model Tree window, expand the "Deployment View" package, and then drag all of the following artifacts
into the diagram: BankAddresses.ini, BankAPI.jar, and BankView.jar. The project is preconfigured to
include deploy dependencies between these artifacts and the "Home PC" node, so all these dependencies are
now visible in the diagram:

© 2018-2024 Altova GmbH

Deployment Diagrams 61UModel Tutorial

Altova UModel 2024 Enterprise Edition

You can also embed the artifacts into the "Home PC" node, by dragging each of the artifacts into it. Notice that
the deploy dependencies are no longer visible on the diagram, although they continue to exist logically.

Artifacts embedded into the node can also have dependencies between them. To illustrate this:

1. Click the Dependency toolbar button and, holding the Ctrl key pressed, drag from the
"BankView.jar" artifact into the "BankAddresses.ini".

2. While holding the Ctrl key pressed, drag from the "BankView.jar" artifact into the "BankAPI.jar"
artifact.

62 UModel Tutorial Deployment Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Note: Dragging an artifact out of a node onto the diagram always creates a deployment dependency
automatically.

Creating artifact elements (properties, operations, nested artifacts)
In UML, artifacts can be composed of properties, operations, and other elements, including nested artifacts. To
create such nested elements, right-click the artifact in the Model Tree window and select the appropriate
action from the context menu (for example, New Element | Operation, or New Element | Property). The new
element will appear nested below the selected artifact in the Model Tree window.

© 2018-2024 Altova GmbH

Forward Engineering (from Model to Code) 63UModel Tutorial

Altova UModel 2024 Enterprise Edition

2.7 Forward Engineering (from Model to Code)

This example illustrates how to create a new UModel project and generate program code from it (a process
known as "forward engineering"). For the sake of simplicity, the project will be very simple, consisting of only
one class. You will also learn how to prepare the project for code generation and check that the project uses
the correct syntax. After generating program code, you will modify it outside UModel, by adding a new method
to the class. Finally, you will learn how to merge the code changes back into the original UModel project (a
process known as "reverse engineering").

The code generation language used in this tutorial is Java; however, similar instructions are applicable for other
code generation languages.

Creating a new UModel project
You can create a new UModel project as follows:

· On the File menu, click New. (Alternatively, press Ctrl+N, or click the New toolbar button.)

At this stage, the project contains only the default "Root" and "Component View" packages. These two
packages cannot be deleted or renamed. "Root" is the top grouping level for all other packages and elements in
the project. "Component View" is required for code engineering; it typically stores one or more UML
components that will be realized by the classes or interfaces of your project; however, we didn't create any
classes yet. Therefore, let's first design the structure of our program, as follows:

1. Right-click the "Root" package in the Model Tree window and select New Element | Package from
the context menu. Rename the new package to "src".

2. Right-click "src" and select New Element | Package from the context menu. Rename the new
package to "com"

3. Right-click "com" and select New Element | Package from the context menu. Rename the new
package to "nanonull".

4. Right-click "nanonull" and select New Element | Class from the context menu. Rename the new class
to "MyClass".

Preparing the project for code generation
To generate code from a UModel model, the following requirements must be met:

64 UModel Tutorial Forward Engineering (from Model to Code)

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· A Java, C#, or VB.NET namespace root package must be defined.
· A component must exist which is realized by all classes or interfaces for which code must be

generated.
· The component must have a physical location (directory) assigned to it. Code will be generated in this

directory.
· The component must have the property use for code engineering enabled.

All of these requirements are explained in more detail below. Note that you can always check if the project
meets all code generation requirements, by validating it:

· On the Project menu, click Check Project Syntax. (Alternatively, press F11.)

If you validate the project at this stage, the Messages window displays a validation error ("No Namespace Root
found! Please use the context menu in the Model Tree to define a Package as Namespace Root"). To resolve
this, let's assign the package "src" to be the namespace root:

· Right-click the "src" package and select Code Engineering | Set As Java Namespace Root from
the context menu.

· When prompted that the UModel Java Profile will be included, click OK.

Notice the package icon has now changed to , which signifies that this package is a Java namespace root.
Additionally, a Java Profile has been added to the project.

The actual namespace can be defined as follows:

1. Select the package "com" in the Model Tree window.

© 2018-2024 Altova GmbH

Forward Engineering (from Model to Code) 65UModel Tutorial

Altova UModel 2024 Enterprise Edition

2. In the Properties window, enable the <<namespace>> property.

3. Repeat the step above for the "nanonull" package.

Notice that the icon of both "com" and "nanonull" packages has now changed to , which indicates these are
now namespaces.

Another requirement for code generation is that a component must be realized by at least a class or an
interface. In UML, a component is a piece of the system. In UModel, the component lets you specify the code
generation directory and other settings; otherwise, code generation would not be possible. If you validate the
project at this stage, a warning message is displayed in the Messages window: "MyClass has no
ComponentRealization to a Component - no code will be generated". To solve this, a component must be
added to the project, as follows:

1. Right-click "Component View" in the Model Tree window, and select New Element | Component from
the context menu.

2. Rename the new Component to "nanonull".

3. In the Properties window, change the directory property to a directory where code should be
generated (in this example, "src\com\nanonull"). Notice that the property use for code engineering
is enabled, which is another prerequisite for code generation.

66 UModel Tutorial Forward Engineering (from Model to Code)

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

4. Save the UModel project to a directory and give it a descriptive name (in this example, C:
\UModelDemo\Tutorial.ump).

Note: The code generation path can be absolute or relative to the .ump project. If it is relative as in this
example, a path such as src\com\nanonull would create all the directories in the same directory
where the UModel project was saved.

We have deliberately chosen to generate code to a path which includes the namespace name; otherwise,
warnings would occur. By default, UModel displays project validation warnings if the component is configured to
generate Java code to a directory which does not have the same name as the namespace name. In this
example, the component "nanonull" has the path "C:\UModelDemo\src\com\nanonull", so no validation
warnings will occur. If you want to enforce a similar check for C# or VB.NET, or if you want to disable the
namespace validation check for Java, do the following:

1. On the Tools menu, click Options.
2. Click the Code Engineering tab.
3. Select the relevant check box under Use namespace for code file path.

The component realization relationship can be created as follows:

· In the Model Tree window, drag from the MyClass created previously and drop onto component
nanonull.

© 2018-2024 Altova GmbH

Forward Engineering (from Model to Code) 67UModel Tutorial

Altova UModel 2024 Enterprise Edition

The component is now realized by the project's only class MyClass. Note that the approach above is just one of
the ways to create the component realization. Another way is to create it from a component diagram, as
illustrated in the tutorial section Component Diagrams .

Next, it is recommended that the classes or interfaces which take part in code generation have a file name.
Otherwise, UModel will generate the corresponding file with a default file name and the Messages window will
display a warning ("code file name not set - a default name will be generated"). To remove this warning:

1. Select the class MyClass in the Model Tree window.
2. In the Properties window, change the property code file name to the desired file name (in this

example, MyClass.java).

Including the JDK types
Although this step is optional, it is recommended that you include the Java Development Kit (JDK) language
types, as a subproject of your current UModel project. Otherwise, the JDK types will not be available when you

52

68 UModel Tutorial Forward Engineering (from Model to Code)

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

create the classes or interfaces. This can be done as follows (the instructions are similar for C#, C++, and
VB.NET):

1. On the Project menu, click Include Subproject.
2. Click the Java tab and select the Java JDK 9 (types only) project.

3. When prompted to include by reference or as a copy, select Include by reference.

© 2018-2024 Altova GmbH

Forward Engineering (from Model to Code) 69UModel Tutorial

Altova UModel 2024 Enterprise Edition

Generating code
Now that all prerequisites have been met, code can be generated as follows:

1. On the Project menu, click Merge Program Code from UModel Project. (Alternatively, press F12.)
Note that this command will be called Overwrite Program Code from UModel Project if the
Overwrite Code according to Model option was selected previously on the "Synchronization
Settings" dialog box illustrated below.

2. Leave the default synchronization settings as is, and click OK. A project syntax check takes place
automatically, and the Messages window informs you of the result:

Modifying code outside of UModel
Generating program code is just the first step to developing your software application or system. In a real life
scenario, the code would go through many modifications before it becomes a full-featured program. For the
scope of this example, open the generated file MyClass.java in a text editor and add a new method to the

70 UModel Tutorial Forward Engineering (from Model to Code)

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

class, as shown below. The MyClass.java file should look as follows:

package com.nanonull;

public class MyClass{

 public float sum(float num1, float num2){

 return num1 + num2;

 }
}

MyClass.java

Merging code changes back into the model
You can now merge the code changes back into the model, as follows:

1. On the Project menu, click Merge UModel Project from Program Code (Alternatively, press Ctrl +
F12).

2. Leave the default synchronization settings as is, and click OK. A code syntax check takes place
automatically, and the Messages window informs you of the result:

© 2018-2024 Altova GmbH

Forward Engineering (from Model to Code) 71UModel Tutorial

Altova UModel 2024 Enterprise Edition

The operation sum (which has been reverse engineered from code) is now visible in the Model Tree window.

72 UModel Tutorial Reverse Engineering (from Code to Model)

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2.8 Reverse Engineering (from Code to Model)

This tutorial section illustrates how to import existing program code from a directory into a new UModel project
(reverse engineering). You will also add a new class into the model, prepare it for code generation, and then
merge changes back into the Java code (forward engineering). Although this tutorial illustrates importing Java
code, the process is similar if you would like to import existing C# or VB.NET code.

Note: The sample Java code used in this tutorial is available as a ZIP archive at the following path: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\OrgChart.zip. Please
unzip the archive to the same directory before starting the tutorial.

Importing existing code from a directory
1. On the File menu, click New.
2. On the Project menu, click Import Source Directory.
3. Select the language of the source code (in this example, Java).

4. Click the Browse button , select the OrgChart directory unzipped previously, and click Next. Notice
the Enable diagram generation check box is selected, which instructs UModel to generate Class
Diagrams and Package Diagrams from the source code.

5. Select the Generate diagram per package option. This instructs UModel to create a new diagram
for each package. The diagram styling options can be changed later if necessary.

430 448

© 2018-2024 Altova GmbH

Reverse Engineering (from Code to Model) 73UModel Tutorial

Altova UModel 2024 Enterprise Edition

6. Click Next to continue. This dialog box allows you to define the package dependency generation
settings.

74 UModel Tutorial Reverse Engineering (from Code to Model)

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

7. Click Finish. When prompted, save the new model to a directory on your system. The data is parsed,
and a new package called "OrgChart" is created.

8. Expand the new package and keep expanding the sub packages until you get to the OrgChart
package (com | OrgChart). Double-click the "Content of OrgChart" diagram icon:

© 2018-2024 Altova GmbH

Reverse Engineering (from Code to Model) 75UModel Tutorial

Altova UModel 2024 Enterprise Edition

The "Content of OrgChart" diagram is now displayed in the main pane.

76 UModel Tutorial Reverse Engineering (from Code to Model)

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Adding a new class to the OrgChart diagram
At this stage, you have fully reverse engineered some existing Java code and created a model out of it, which
also includes several automatically generated diagrams. We will now go one step further, and extend the model
to include a new class.

1. Right-click inside the "Content of OrgChart" diagram, and then select New | Class from the context
menu.

2. Click the header of the new class, and enter CompanyType as the name of the new class.

© 2018-2024 Altova GmbH

Reverse Engineering (from Code to Model) 77UModel Tutorial

Altova UModel 2024 Enterprise Edition

3. Add new operations to the class using the F8 shortcut key. For the purpose of this example, add the
following operations: CompanyType(), getCompanyType():String, setCompanyType():String.

Note: Since the class name is CompanyType, the operation CompanyType() is automatically assigned the
<<constructor>> stereotype.

Making the new class available for code generation
Now that the model has been extended with a new class, you will most likely want to update the underlying
code accordingly, in order to keep both in sync. However, if you press F11 to check the project syntax at this
stage, a warning is displayed in the Messages window: 'CompanyType' has no Component Realization to a
Component - ComponentRealization to Component 'OrgChart' will be generated. The reason is that the new
class requires realization to a component before code can be generated from it, as explained in Round-Trip
Engineering (Model-Code-Model) . In some cases (including this example), UModel can generate the
required realization automatically; however, you can also define the realization dependency manually, as
follows:

1. While the CompanyType class is selected in the diagram, locate the property "code file name" in the
Properties window and enter "CompanyType.java" as file name.

2. Click the new CompanyType class in the Model Tree, drag upwards and drop onto the OrgChart
component below the Component View package. A notification appears when the mouse pointer is over
a component.

63

78 UModel Tutorial Reverse Engineering (from Code to Model)

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

This method creates a relation of type "ComponentRealization" between a class and a component. An
alternative way to do this is to draw the relation in a component diagram, see Component Diagrams
. Expand the Relations item below OrgChart to see the newly created relation.

Merging program code from a package
In UModel, you can generate code at package level, component level, or for the entire project, see also
Synchronizing the Model and Source Code . In this example, we will generate code at component level, as
follows:

52

225

© 2018-2024 Altova GmbH

Reverse Engineering (from Code to Model) 79UModel Tutorial

Altova UModel 2024 Enterprise Edition

1. In the Model Tree window, locate the OrgChart component in the "Component View".
2. Right-click the OrgChart component, and select Code Engineering | Merge Program code from

UModel Component from the context menu.

 The messages window displays the syntax checks being performed and status of the synchronization
process.

 When the process completes, the new CompanyType.java class has been added to the folder ...
\OrgChart\com\OrgChart\.

All method bodies and changes to the code will either be commented out or deleted depending on
the setting in the "When deleting code" group, in the Synchronization settings dialog box.

You have now completed a full round-trip code engineering cycle with UModel.

80 UModel Graphical User Interface

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3 UModel Graphical User Interface

The UModel graphical user interface consists of the main diagram pane, as well as several smaller helper
windows where you can enter or view data. The diagram pane serves as a parent container for any diagram
windows that are open. To cycle through all open diagram windows, press Ctrl+Tab.

UModel graphical user interface

By default, the helper windows on the left side are docked in groups of three, and the Messages window
appears below the diagram pane. You can, however, move and dock or undock any window as necessary. All
windows can be searched using the Find combo box in the Main toolbar, or by pressing Ctrl+F. See also
Finding and Replacing Text .

To dock or undock a window:

· Right-click its title bar, and select Docking (or Floating, respectively) from the context menu.

113

© 2018-2024 Altova GmbH

 81UModel Graphical User Interface

Altova UModel 2024 Enterprise Edition

To move a window:

1. Click the window's title bar and drag to a new position. Several docking helpers appear.

2. Drag the window over a top, right, left, or bottom handle to dock it to the new position.

To reset all toolbars and windows to their default state:

· On the Tools menu, click Restore toolbars and Windows.

This chapter provides reference information about the parts that make up the UModel graphical user interface,
as follows:

· Model Tree Window
· Diagram Tree Window
· Favorites Window
· Properties Window
· Styles Window
· Hierarchy Window
· Overview Window
· Documentation Window
· Layer Window
· Messages Window
· Diagram Window
· Diagram Pane

82

86

87

88

89

90

92

93

94

95

97

98

82 UModel Graphical User Interface Model Tree Window

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3.1 Model Tree Window

The Model Tree window enables you to view and manipulate all items (packages, classes, diagrams,
relationships, and so on) in the UModel project.

Model Tree window

When you create a new UModel project, two packages are available by default, the "Root" and "Component
View" packages. These two packages are the only ones that cannot be renamed or deleted. The "Root"
package serves as starting point for modeling all other elements, while the "Component View" package is
required for code engineering.

You can create additional packages, classes, diagrams, and their hierarchy either from this window or directly
from a diagram, see Creating Elements . For additional operations that you can take against items in the
Model Tree, see the How to Model... chapter.

Note: UModel includes several example projects that you can explore in order to learn the modeling basics
and the graphical user interface. These can be found at the following path: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples.

Showing, hiding, and sorting items in the Model Tree
To configure what should be displayed in the Model Tree window, as well as the sorting options, right-click
inside the window, and then select the required menu option. To view all actions that can be taken against
items displayed in the Model Tree window, right-click the item and observe the context menu options.

Collapsing and expanding items in the Model Tree
To expand items (for example, packages) in the Model Tree window:

· Press the * (asterisk) key to expand the current item and all child items
· Press the + (plus) key to expand the current item only.

To collapse the packages, press the - (dash) keyboard key. To collapse all items, click the "Root" package
and press - (dash). Note that you can use both the standard keyboard keys and the numeric keypad keys to
achieve this.

108

107

© 2018-2024 Altova GmbH

Model Tree Window 83UModel Graphical User Interface

Altova UModel 2024 Enterprise Edition

Identifying active diagram items
When a diagram is open in the Diagram pane, the Model Tree window shows some items with a light-blue dot
at their base. These are items that are displayed in the active diagram (like "BankView" and "Java Profile" in
the example below):

Icon reference
The Model Tree window may display a large number of icons which correspond to elements and diagrams in
your project, the code engineering packages, as well as the imported profiles or subprojects. Specifically, it
may display the following package types:

Icon Description

Standard UML Package

Java namespace root package. Used to generate or reverse engineer Java code

C# namespace root package. Used to generate or reverse engineer C# code

C++ namespace root package. Used to reverse engineer C++ code.

Visual Basic namespace root package. Used to generate or reverse engineer VB.NET code

XML Schema namespace root package. Used to generate XML schemas from the model, or import
them into the model, see XML Schema Diagrams .467

84 UModel Graphical User Interface Model Tree Window

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Icon Description

Database namespace root package. Used to import databases into the model, and change their
structure from the model, see UModel and Databases .

A namespace package (a package with the <<namespace>> stereotype applied to it)

A UML profile

The diagrams that can appear in the Model Tree window are listed below.

Icon Description

Activity Diagram

BPMN 1 (Business Process Modeling Notation) Business Process Diagram

BPMN 2 Business Process Diagram

BPMN 2 Choreography Diagram

BPMN 2 Collaboration Diagram

Class Diagram

Communication Diagram

Component Diagram

Composite Structure Diagram

Database Diagram

Deployment Diagram

Interaction Overview Diagram

Object Diagram

Package Diagram

Profile Diagram

Protocol State Machine Diagram

Sequence Diagram

State Machine Diagram

SysML diagrams (9 diagram types)

Timing Diagram

Use Case Diagram

529

© 2018-2024 Altova GmbH

Model Tree Window 85UModel Graphical User Interface

Altova UModel 2024 Enterprise Edition

Icon Description

XML Schema Diagram

Below are some examples of UML modeling elements that can appear in the Model Tree window. For more
information about UML elements and the diagram types where they occur, see the UML Diagrams chapter.

Icon Description

Class

Property

Operation

Parameter

Actor

Use Case

Component

Node

Artifact

Interface

Class Instance (Object)

Class instance slot

Relations

Constraints

339

86 UModel Graphical User Interface Diagram Tree Window

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3.2 Diagram Tree Window

The Diagram Tree window displays any diagrams contained in the current UModel project.

Diagram Tree window

Diagrams in this window can be shown either as an alphabetical list, or grouped by type. To change the display
option, right-click in the window, and select or clear the Group by Diagram type option.

For instructions about creating, opening, and generating diagrams, including how to model their content, refer
to the How to Model... chapter. For specific information about each diagram type, refer to the UML
Diagrams chapter.

107

339

© 2018-2024 Altova GmbH

Favorites Window 87UModel Graphical User Interface

Altova UModel 2024 Enterprise Edition

3.3 Favorites Window

The Favorites window displays any modeling elements or diagrams that you have added as favorites.
"Favorites" represent a personal, custom-picked list of modeling elements or diagrams that you can use for
quick access, for example.

Favorites window

By default, the contents of the Favorites window are automatically saved when you save the project. You can
change this option from the Tools | Options menu, File tab. The relevant option name is Load and save with
project file | Favorites.

Items in the Favorites window are not copies or clones; they represent the actual elements or diagrams. Most
actions that you take in the Model Tree window are also applicable in the Favorites window, including adding or
deleting elements. For more information, see the How to Model... chapter.107

88 UModel Graphical User Interface Properties Window

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3.4 Properties Window

The Properties window shows information about an item that is currently selected (in focus). The "in focus"
element can be an element selected in the Model Tree window (or other windows), an element selected on the
diagram, or even a diagram itself.

The Properties window also enables you to change the properties of the currently selected element or
relationship. The available properties depend on the kind of the element that is selected. There are properties
which are read-only and grayed out (such as "element kind") and properties that you can modify (for example,
"name").

If an operation or property takes a parameter, you can quickly jump to the respective parameter type in the
Model Tree window, directly from the Properties window. To do this, right-click the "type" property of the
parameter in the Properties window and select Select in Model Tree from the context menu. The same is
applicable for return parameters.

Properties window

Changing a property of an element from the Properties window is immediately reflected in the diagram.
Likewise, making a change in the diagram (for example, changing the visibility of an operation from public to
private) affects the applicable property in the Properties window.

Properties that are enclosed within guillemets represent stereotypes (for example, «final»). You can add
custom stereotypes to the project, in which case they would appear as properties in the Properties window, in
addition to the default ones. For more information, see Example: Creating and Applying Stereotypes .459

© 2018-2024 Altova GmbH

Styles Window 89UModel Graphical User Interface

Altova UModel 2024 Enterprise Edition

3.5 Styles Window

The Styles window enables you to view or change the visual appearance of diagrams or elements that are
currently selected (in focus). The style attributes fall into two general groups:

· Formatting settings (for example, font size, weight, color, etc)
· Display settings (for example, show background color, grid, visibility settings, etc).

Styles window

Changing a property from the Styles window is immediately reflected in the user interface. Likewise, making a

style change in another place (for example, setting the visibility of the diagram grid using the Show Grid
 toolbar button) affects the applicable property in the Styles window.

The Styles window has a dropdown list in the upper part, which enables you to select the level at which the
style change is to be applied (for example, at individual element level, or at project level). For more information,
see:

· Changing the Style of Elements
· Changing the Style of Diagrams
· Changing the Style of Lines and Relationships

121

127

136

90 UModel Graphical User Interface Hierarchy Window

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3.6 Hierarchy Window

The Hierarchy window displays all relations of the currently selected modeling item, in two different views. The
modeling element can be selected in a diagram, in the Model Tree window, or in the Favorites window.

Items in the Hierarchy window can be displayed in two views:

· Tree view
· Graph view

To switch between views, click the Show tree view or Show graph view buttons in the upper-left
corner of the window.

The tree view shows multiple relations of the currently selected element, as a tree. Click the buttons at the top

of the window to select types of relations that are to be shown. In the image below, only generalizations

 and associations are selected to be shown.

Hierarchy window (tree view)

The graph view shows a single set of relations in a hierarchical overview, as a diagram. In this view, only one of

the relation buttons can be active at any one time. In the image below, the Show Generalizations button
is currently active.

© 2018-2024 Altova GmbH

Hierarchy Window 91UModel Graphical User Interface

Altova UModel 2024 Enterprise Edition

Hierarchy window (graph view)

In the graph view, you can generate diagrams that include the elements visible in the window. To do this, right-
click inside the window, and select Create diagram as this graph from the context menu.

Settings pertaining to Hierarchy window can be changed using the menu option Tools | Options | View, in the
Hierarchy group in the lower section of the dialog box.

The Hierarchy window is navigable: double-click one of the element icons, inside the window, to display the
relations of that element. This applies both in the tree view and in the graph view.

92 UModel Graphical User Interface Overview Window

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3.7 Overview Window

The Overview window displays an outline view of the currently active diagram. This is especially handy when
you need to scroll very large diagrams. To scroll the diagram, click and drag the red rectangle.

Overview window

See also Zooming into/out of Diagrams .134

© 2018-2024 Altova GmbH

Documentation Window 93UModel Graphical User Interface

Altova UModel 2024 Enterprise Edition

3.8 Documentation Window

The Documentation window enables you to document any of the UML elements available in the Model Tree
window. To add documentation to an element, first click the element, and then enter text in the Documentation
window. This window supports the standard editing shortcuts, including Select All (Ctrl+A), Cut (Ctrl+X),
Copy (Ctrl+C) and Paste (Ctrl+V).

Documentation window

Text inside the Documentation window can be spell-checked. To do this, right-click inside the window, and
select Documentation Spelling from the context menu.

Documentation text can also be exported as comments in the generated source code, or imported from source
code comments during reverse engineering. For more information, see Documenting Elements .120

94 UModel Graphical User Interface Layer Window

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3.9 Layer Window

The Layer window enables you to define multiple layers for any UModel diagram. Layers allow you to make
logical groupings of modeling elements on a diagram. For example, you can create, in addition to the default
layer, some extra layers that would store notes with some internal information, or unfinished classes.

Layer window

For more information, see Adding Layers to Diagrams .131

© 2018-2024 Altova GmbH

Messages Window 95UModel Graphical User Interface

Altova UModel 2024 Enterprise Edition

3.10 Messages Window

The Messages window displays any of the following message types: information messages, warnings, and
errors. Such messages may occur when you check the project syntax (see Checking Project Syntax), or
when you perform code engineering tasks. For more information about code engineering, see Generating
Program Code and Importing Source Code .

Messages window

The table below lists possible message types and their icons.

Icon Description

none Indicates an information message.

Indicates a warning message. Warnings are less critical than errors, but they may still
prevent code from being imported or generated.

Indicates an error message. When an error occurs, code generation or import fails.

The buttons available at the top of the Messages window enable you to take the following actions:

Icon Description

Filter messages by severity: information messages, and warnings. Select Check All to
include all severity levels (this is the default behavior). Select Uncheck All to remove all
severity levels from the filter.

Jump to the next error.

Jump to the previous error.

Jump to the next warning.

172

169 196

96 UModel Graphical User Interface Messages Window

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Icon Description

Jump to the previous warning.

Jump to the next line.

Jump to the previous line.

Copy the selected line to the clipboard.

Copy the selected line to the clipboard, including any lines nested under it.

Copy the full contents of the Messages window to the clipboard.

Clear the Messages window.

When UModel runs as a Visual Studio or Eclipse plug-in, and parsing errors occur, you can quickly jump to the
source code file where the error originates directly from the Messages window. To do this, click the parsing
error in the Messages window. For more information, see UModel Plug-in for Visual Studio and UModel
Plug-in for Eclipse .

633

644

© 2018-2024 Altova GmbH

Diagram Window 97UModel Graphical User Interface

Altova UModel 2024 Enterprise Edition

3.11 Diagram Window

Whenever you create a new diagram, or open an existing one, a new Diagram window is loaded in the Diagram
Pane . The diagram window provides the canvas (drawing area) where you design UML diagrams. Various
modeling commands are available when you right-click either the diagram canvas itself, or any element on it.

Importantly, the toolbar buttons and the context menu commands in UModel change based on the type of
diagram that is currently active (in focus). For example, if you click inside a Class diagram, the toolbar buttons
will include only elements applicable to class diagrams. To view the diagram type, click inside an empty area in
the diagram, and observe the "element kind" property displayed in the Properties window . The diagram type
can also be distinguished by the icon accompanying the diagram, see Creating Diagrams .

Diagram window

For information about creating new diagrams, opening existing ones, and manipulating elements inside the
diagram, see the How to Model... chapter.

98

88

123

107

98 UModel Graphical User Interface Diagram Pane

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3.12 Diagram Pane

The diagram pane hosts all diagram windows that are currently open. For information about creating new
diagrams, opening existing ones, and manipulating elements inside the diagram, see the How to Model...
chapter.

The image below illustrates the diagram pane with four diagram windows open and positioned using the
Window | Cascade menu command.

Diagram pane

Several commands applicable to the current diagram window are available when you right-click the
corresponding window tab at the lower area of the diagram pane.

To apply miscellaneous commands to windows inside the diagram pane, use the commands available in the
Window menu. Several window manipulation commands are also available on the Window dialog box (to open
this dialog box, select the menu command Window | Windows).

107

© 2018-2024 Altova GmbH

Diagram Pane 99UModel Graphical User Interface

Altova UModel 2024 Enterprise Edition

Windows dialog box

To select multiple windows on the dialog box above, hold down the Ctrl key pressed and click the
corresponding entries.

To cycle through all open diagram windows, press Ctrl+Tab.

100 UModel Command Line Interface

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

4 UModel Command Line Interface

In addition to the graphical user interface, UModel also has a command line interface. To open the command
line interface, run the UModelBatch.exe file available in the C:\Program Files\Altova\UModel2024 directory.
If you run UModel 32-bit on a 64-bit operating system, the path is C:\Program Files (x86)
\Altova\UModel2024.

The command line parameter syntax is shown below, and can be displayed in the command prompt window by
entering: umodelbatch /?

Note: If the path or file name contains spaces, enclose it in quotes, for example: "C:\Program Files\...
\MyProject.ump".

usage: UModelBatch.exe [project] [options]

/? or /help ... display this help information

project ... project file (*.ump)
/new[=file] ... create/save/save as new project, see Creating, Loading, and Saving
Projects in Batch Mode
/set ... set options permanent
/gui ... display UModel user interface

commands (executed in given order):
/chk ... check project syntax
/isd=path ... import source directory
/isp=file ... import source project file
 (*.project,*.xml,*.jpx,*.csproj,*.csdproj,*.vcxproj,*.vbproj,*.vbdproj
,*.sln,*.bdsproj)
/ibt=list ... import binary types (specify binary[typenames] list)
 (';'=separator, '*'=all types, '#' before assembly names)
/ixd=path ... import XML schema directory
/ixs=file ... import XML schema file (*.xsd)
/m2c ... update program code from model (export/forward engineer)
/c2m ... update model from program code (import/reverse engineer)
/ixf=file ... import XMI file
/exf=file ... export to XMI file
/inc=file ... include file
/mrg=file ... merge file
/doc=file ... write documentation to specified file
/lue[=cpri] ... list all elements not used on any diagram (i.e. unused)
/ldg ... list all diagrams
/lcl ... list all classes
/lsp ... list all shared packages
/lip ... list all included packages

options for save as new project:
/npad=opt ... adjust relative file paths (Yes | No | MakeAbsolute)

options for import commands:
/iclg=lang ... code language (Java1.4 | Java5.0 | Java6.0 | Java7.0 | Java8.0 |
Java9.0 |

105

© 2018-2024 Altova GmbH

 101UModel Command Line Interface

Altova UModel 2024 Enterprise Edition

 Java10.0 | Java11.0 | Java12.0 | Java13.0 | Java14.0 |
Java15.0 |
 C#1.2 | C#2.0 | C#3.0 | C#4.0 | C#5.0 | C#6.0 | C#7.0 |
C#7.1 | C#7.2 | C#7.3 | C#8.0 | C#9.0 |
 VB7.1 | VB8.0 | VB9.0 |
 C++98 | C++11 | C++14 | C++17)
/ipsd[=0|1] ... process sub directories (recursive)
/irpf[=0|1] ... import relative to UModel project file
/ijdc[=0|1] ... JavaDocs as Java comments
/icdc[=0|1] ... DocComments as C# comments
/icds[=lst] ... C# defined symbols
/ivdc[=0|1] ... DocComments as VB comments
/ivds[=lst] ... VB defined symbols (custom constants)
/icppdm[=lst] ... C++ defined macros
/icpphi[=0|1] ... read only C++ header files
/icpphc[=0|1] ... treat .h files a .cpp files
/icppms[=0|1] ... enable C++ Microsoft Compiler compatibility
/icppmv[=ver] ... MSVC version to use (1900 | 1800 | 1700 | 1600 | 1500 | 1400 | 1310
| 1300 | 1200)
/icppsy[=0|1] ... auto detect C++ system include files
/icppid[=lst] ... list of C++ include directories to use
/icppsd[=lst] ... list of C++ system include directories to use
/icppag[=arg] ... Additional C++ arguments for the compiler
/imrg[=0|1] ... synchronize merged
/iudf[=0|1] ... use directory filter
/iflt[=lst] ... directory filter (presets /iudf)

options for import binary types (after /iclg):
/ibrt=vers ... runtime version
/ibpv=path ... override of PATH variable for searching native code libraries
/ibro[=0|1] ... use reflection context only
/ibua[=0|1] ... use add referenced types with package filter
/ibar[=flt] ... add referenced types package filter (presets /ibua)
/ibot[=0|1] ... import only types
/ibuv[=0|1] ... use minimum visibility filter
/ibmv[=key] ... keyword of required minimum visibility (presets /ibuv)
/ibsa[=0|1] ... suppress attribute sections / annotation modifiers
/iboa[=0|1] ... create only one attribute per attribute section
/ibss[=0|1] ... suppress 'Attribute' suffix on attribute type names

options for diagram generation:
/dgen[=0|1] ... generate diagrams
/dopn[=0|1] ... open generated diagrams
/dsac[=0|1] ... show attributes compartment
/dsoc[=0|1] ... show operations compartment
/dscc[=0|1] ... show nested classifiers compartment
/dstv[=0|1] ... show tagged values
/dudp[=0|1] ... use .NET property compartment
/dspd[=0|1] ... show .NET property compartment

options for export commands:
/ejdc[=0|1] ... Java comments as JavaDocs
/ecdc[=0|1] ... C# comments as DocComments
/evdc[=0|1] ... VB comments as DocComments
/espl[=0|1] ... use user defined SPL templates

102 UModel Command Line Interface

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

/ecod[=0|1] ... comment out deleted
/emrg[=0|1] ... synchronize merged
/egfn[=0|1] ... generate missing file names
/eusc[=0|1] ... use syntax check

options for XMI export:
/exid[=0|1] ... export UUIDs
/exex[=0|1] ... export UModel specific extensions
/exdg[=0|1] ... export diagrams (presets /exex)

 /exuv[=ver] ... UML version (UML2.0 | UML2.1.2 | UML2.2 | UML2.3 | UML2.4 | UML2.5 |
UML2.5.1)

options for merge file:
/mcan=file ... common ancestor file

options for documentation generation:
/doof=fmt ... output format (HTML | RTF | MSWORD | PDF)
/dsps=file ... SPS design file

Example 1: Import Java source code and preserve settings
The following command imports source code and creates a new project file. Notice that the project path
contains spaces and is enclosed in quotes.

"C:\Program Files\Altova\UModel2024\UModelBatch.exe" /new="C:\My
Projects\Fred.ump" /isd="X:TestCases\UModel\Fred" /set /gui /iclg=Java8.0 /ipsd=1 /ijdc=1
/dgen=1 /dopn=1 /dmax=5 /chk

The meaning of all options is as follows:

/new Specifies that the newly-created project file should be called "Fred.ump" in C:\My Projects

/isd Specifies that the source directory should be X:\TestCases\UModel\Fred

/set Specifies that any options used in the command line tool will be saved in the registry
(When subsequently starting UModel, these settings become the default settings).

/gui Display the UModel graphical user interface during batch processing.

/iclg UModel will import the code as Java 8.0.

/ipsd=1 Recursively process all subdirectories of the root directory specified in the /isd parameter.

/ijdc=1 Create JavaDoc from comments where appropriate.

/dgen=1 Generate diagrams.

/dopn=1 Open generated diagrams.

/chk Perform a syntax check.

© 2018-2024 Altova GmbH

 103UModel Command Line Interface

Altova UModel 2024 Enterprise Edition

Example 2: Synchronize code from the model
The following command updates code from an existing project file ("C:\UModel\Fred.ump").

"C:\Program Files\Altova\UModel2024\UModelBatch.exe" "C:
\UModel\Fred.ump" /m2c /ejdc=1 /ecod=1 /emrg=1 /egfn=1 /eusc=1

The meaning of all options is the same as in the previous examples, plus:

/m2c Update the code from the model.

/ejdc Comments in the project model should be generated as JavaDoc.

/ecod=1 Comment out any deleted code.

/emrg=1 Synchronize the merged code.

/egfn=1 Generate any missing file names in the project.

/eusc=1 Use the syntax check.

Example 3: Import Java binaries into the model
Let's assume that some Java binary .class files exist in the C:\JavaProject\bin directory, and you want to
import these binaries into UModel. To do this, run the following command:

"<C:\Program Files\Altova\UModel2024\UModelBatch.exe>" /new="C:
\JavaProject\Result.ump" /ibt=*C:
\JavaProject\bin /iclg=Java8.0 /ibrt=JDK1.8.0_144 /dgen=1 /chk

The options used are as follows:

/new Creates a new UModel project at the specified path.

/ibt Instructs UModel to import binary types. The asterisk before the path indicates that all
binary types at that path must be imported.

/iclg Specifies the code generation language ("Java8.0", in this example).

/ibrt Specifies the runtime environment ("JDK1.8.0_144" in this example). This is the same value
that appears on the "Import Binary Types" dialog box in the "Runtime" drop-down list, see
Importing Java, C# and VB.NET Binaries . You can also use a value like "jdk-10.0.1" as
set in the JAVA_HOME environment variable.

For C#, you can use the value /ibrt:any or otherwise values as they appear in the GUI in
the "Runtime" drop-down list, making sure to omit any spaces. Examples:

/ibrt:any
/ibrt:.NET5
/ibrt:.NETFramework4.8(v4.8.3752)

212

104 UModel Command Line Interface

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The option "any" is the same as selecting "any (use disassembler)" from the "Runtime"
drop-down list and is the recommended option.

/dgen=1 Generate diagrams.

/chk Perform a syntax check after import.

© 2018-2024 Altova GmbH

Creating, Loading, and Saving Projects in Batch Mode 105UModel Command Line Interface

Altova UModel 2024 Enterprise Edition

4.1 Creating, Loading, and Saving Projects in Batch Mode

When you run UModelBatch.exe with a command like UModelBatch MyProject.ump, you can use the
following parameters:

/new This parameter defines the path and file name of the new UModel project file (*.ump) to create.
It can also be used to load an existing project and save it under a different name, for example:

UmodelBatch.exe MyFile.ump /new=MyBackupFile.ump

/set This parameter overwrites the current default settings in the registry with the options you
specify.

/gui This parameter displays the UModel graphical user interface (GUI) during the batch process.

The examples below illustrate how to create, load, or save projects in full batch mode (in other words, the /gui
parameter is not set).

new
UModelBatch /new=xxx.ump (options)
creates a new project, executes options, xxx.ump is always saved (regardless of options)

auto save
UModelBatch xxx.ump (options)
loads project xxx.ump, executes options, xxx.ump is saved only if document has changed (like /ibt)

save
UModelBatch xxx.ump (options) /new
loads project xxx.ump, executes options, xxx.ump is always saved (regardless of options)

save as
UModelBatch xxx.ump (options) /new=yyy.ump
loads project xxx.ump, executes options, always saves xxx.ump as yyy.ump (regardless of options)

The examples below illustrate how to create, load, or save projects in batch mode with UModel user interface
visible (the /gui parameter is set).

new
UModelBatch /gui /new (options)
creates a new project, executes options, nothing saved, the GUI is left open

save new
UModelBatch /gui /new=xxx.ump (options)
creates a new project, executes options, xxx.ump saved, the GUI is left open

user mode
UModelBatch /gui xxx.ump (options)
loads project xxx.ump, executes options, nothing saved, the GUI is left open

save

106 UModel Command Line Interface Creating, Loading, and Saving Projects in Batch Mode

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UModelBatch /gui xxx.ump (options) /new
loads project xxx.ump, executes options, xxx.ump is saved, the GUI is left open

save as
UModelBatch /gui xxx.ump (options) /new=yyy.ump
loads project xxx.ump, executes options, xxx.ump is saved as yyy.ump, the GUI is left open

 The project will be saved successfully provided that no critical errors occur while executing the options.

© 2018-2024 Altova GmbH

 107How to Model...

Altova UModel 2024 Enterprise Edition

5 How to Model...

Altova website: UML modeling

This chapter provides instructions for creating and manipulating UML elements, diagrams, and relationships
from the UModel graphical user interface. It is intended as a "how to" guide to modeling with UModel. The
enclosed instructions are generic across UModel and not specific to a particular element or diagram type,
unless explicitly mentioned. For information applicable to (and grouped by) each diagram type, refer to the UML
Diagrams chapter.

The information in this chapter is organized into the following categories: Elements, Diagrams, Relationships,
and Stereotypes.

Elements Diagrams Relationships Stereotypes

Creating Elements Creating Diagrams Creating
Relationships

Stereotypes and Tagged
Values

Inserting Elements from
the Model into a
Diagram

Generating Diagrams Changing the Style of
Lines and
Relationships

Tagged Values

Renaming, Moving, and
Copying Elements

Opening Diagrams Viewing Element
Relationships

Applying Stereotypes

Deleting Elements Deleting Diagrams Associations Showing or Hiding
Tagged Values

Converting Elements Changing the Style of
Diagrams

Collection
Associations

Finding and Replacing
Text

Aligning and Resizing
Modeling Elements

Containment

Checking Where and If
Elements Are Used

Type Autocompletion in
Classes

Constraining
Elements

Zooming into/out of
Diagrams

Hyperlinking
Elements

Adding Layers to
Diagrams

Documenting
Elements

Changing the Style of
Elements

Note: UModel includes several example projects that you can explore in order to learn the modeling basics
and the graphical user interface. These can be found at the following path: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples.

339

108 123

135 145

109

124

136

146

111

126

138

147

112 127 138

149

113

127 141

113 129

144

115 133

116 134

117 131

120

121

https://www.altova.com/umodel

108 How to Model... Elements

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

5.1 Elements

5.1.1 Creating Elements

With UModel, new elements can be created as follows:

· From the Model Tree window. With this approach, elements are added to the model only, and you
can insert them later into diagrams if necessary.

· From any diagram window. Any elements added to a diagram are also automatically added to the
model as well. Should you need to delete an element later, you can choose whether it should be
removed from the diagram only, or deleted from the model as well.

To add elements from the Model Tree window:

· In the Model Tree window (or Favorites window), right-click the element (for example, package)
under which you want the new element to appear, and select New Element | <Element Name> from
the context menu. For example, to add a new package under the "Root" package, right-click the
"Root" package, and select New Element | Package.

To add elements from the Diagram window:

1. Create a new diagram (see Creating Diagrams) or open an existing one (see Opening Diagrams
).

2. Do one of the following:
a. Right-click inside the diagram and select New | <Element Name> from the context menu.
b. Click the toolbar button of the element you wish to add, and then click inside the diagram. To

insert multiple elements of the same type, hold down the Ctrl key before clicking inside the
diagram.

Packages
As you model elements, you will likely need to work with packages more often than with other elements. Each

entry marked with a folder symbol in the Model Tree window represents a UML package. Packages in
UModel serve as containers for all other UML modeling elements (including diagrams, classes, and so on) and
have the following behavior:

· They can be created at any position in the Model Tree.
· They can be moved or copied to other packages (as well as into valid model diagrams), see Renaming,

Moving, and Copying Elements .
· They can be used as source or target elements when code is generated or synchronized with the

model, see Forward Engineering (from Model to Code) and Reverse Engineering (from Code to
Model) .

When you create a new UModel project, two packages are available by default, the "Root" and "Component
View" packages. These two packages are the only ones that cannot be renamed or deleted. The "Root"
package serves as starting point for modeling all other elements, while the "Component View" package is
required for code engineering.

82

82 87

123 126

111

63

72

© 2018-2024 Altova GmbH

Elements 109How to Model...

Altova UModel 2024 Enterprise Edition

Default UModel packages

5.1.2 Inserting Elements from the Model into a Diagram

Elements present in the model can be inserted into a diagram either individually or as a group. To select
multiple elements from the Model Tree window, hold down the Ctrl key while clicking each item. There are two
ways to insert elements into a diagram: drag left, and drag right.

· Drag left (holding down the left mouse button and releasing it in the diagram) inserts elements
immediately at the cursor position. In this case, any associations, dependencies etc. that exist
between the currently inserted elements and the new one, are automatically displayed.

· Drag right (holding down the right mouse button and releasing it in the diagram) opens a context
menu from which you can select the specific associations, generalizations you want to display.

For example, let's suppose that you want to create a new class diagram from a class that already exists in the
model. To illustrate this scenario, open the sample project Bank_MultiLanguage.ump available at the
following path: C:\Users\<username>\Documents\Altova\UModel2024\UModelExamples. Assuming that
you want to replicate the "Account Hierarchy" diagram in a new class diagram, do the following:

1. Right-click the bankview package and select New Diagram | Class Diagram.
2. Locate the abstract Account class in the model tree, and use drag right to place it in the new

diagram. For this example, we would like to display the class together with its derived classes. To
achieve this, select Insert with Generalization Hierarchy (specific) from the context menu.

110 How to Model... Elements

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Select or clear the check boxes for specific items you want to appear in the diagram.

4. Click OK. The Account class, together with its three subclasses, is inserted into the diagram. The
Generalization arrows are also automatically displayed. To automatically arrange the classes inside
the diagram, run the menu command Layout | Autolayout All | Hierarchic.

If you had selected the Insert command instead of Insert with Generalization Hierarchy (specific), the
class would have been added to the diagram without any derived classes. Note that you can still display the
generalization hierarchy later, as follows:

· Right-click the Account class in the diagram and select Show | Generalization hierarchy from the
context menu. As a result, the derived classes are inserted into the diagram as well.

© 2018-2024 Altova GmbH

Elements 111How to Model...

Altova UModel 2024 Enterprise Edition

5.1.3 Renaming, Moving, and Copying Elements

You can cut, copy, rename and move elements in the Model Tree window and inside diagrams of the same
type. These actions may also be possible across diagrams of different type if applicable. You can also copy or
move elements from the Model Tree window into a diagram, provided that the diagram is allowed to contain the
corresponding element according to the UML specification.

To rename an element:

· Double-click the element name and edit it.
· Alternatively, click the element and press F2.

The procedures above apply regardless of the window in which the element is displayed, including the Model
Tree window, Properties window, and the Diagram window.

The "Root" and "Component View" packages are displayed at all times in the Model Tree window and
cannot be renamed or deleted.

To copy or move elements:

· Use the standard Windows commands Cut, Copy, or Paste. These commands can be triggered from
keyboard shortcuts (Ctrl+X, Ctrl+C, Ctrl+V, respectively), from the corresponding toolbar buttons, as
well as from the Edit menu.

· Alternatively, drag an element to a destination package (or element). Dragging an element moves it.
Holding down the Ctrl key and dragging an element creates a copy of it.

For example, in a diagram, you can move a class member to another class by dragging it from the source
class to the destination class. To copy the class member rather than moving it, first select it, and then drag it
to the destination class while holding down the Ctrl key.

If you paste a class into the same package, the new class is created with a sequential number appended to
the end, for example, "MyClass1". Likewise, if you paste a property inside the same class, the new property is
created with a sequential number appended to the end, for example, "MyProperty1". The same applies for other
class members, such as operations and enumerations. The same logic is also applicable when you paste
elements in the same diagram, provided that the diagram belongs to the same package as the elements that
are being pasted.

If you paste a class into a different package, the new class will have the same name as the original class. The
same logic applies when you copy class members (such as properties, operations, and so on) to a different
class.

By default, any element that is pasted into a diagram is automatically added to the model as well (and thus is
visible in the Model Tree window). However, you can also copy and paste an element into the current diagram
only, without adding it to the model. To do this, first copy the element, right-click on the diagram, and then
select Paste in Diagram only from the context menu. The Paste in Diagram only command also appears
when you drag an existing item into the same diagram while holding the Ctrl key pressed.

82

112 How to Model... Elements

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

In the example above, Paste will create the new class in the diagram and add it to the model as well, while
Paste in Diagram only will only display a second view of it on the diagram. Note that copies created using the
second approach are merely additional views of the original element and link to it; they are not standalone
copies. (For example, renaming a property in the duplicated class will automatically apply the same change to
the original class.)

5.1.4 Deleting Elements

Elements can be deleted in one of the following ways:

· From the Model Tree window. Use this approach if the element should be deleted from the project as
well as any diagrams where it is present.

· Directly from diagrams where they occur. In this case, you can choose whether the element should be
removed from the diagram only, or deleted from the model (project) as well.

To delete elements from the project and all related diagrams (approach 1):

1. In the Model Tree window, click the element you want to delete. Hold the Ctrl key down to select
multiple elements.

2. Press Delete.

To delete elements from the project and all related diagrams (approach 2):

1. Open a diagram and click the element you want to delete. Hold the Ctrl key down to select multiple
elements.

2. Press Delete. A dialog box appears asking to confirm that you want to delete the element both from
the project and the diagram.

3. Click Yes. The element is deleted both from the diagram and the project.

To delete elements from the diagram but not from the project:

1. Open a diagram and click the element(s) you want to remove. Hold the Ctrl key down to select
multiple elements.

2. Hold down the Ctrl key and press Delete. The elements are deleted from the diagram but still kept in
the project.

Before you delete elements from a project, you may want to check if they are used in any diagrams.

© 2018-2024 Altova GmbH

Elements 113How to Model...

Altova UModel 2024 Enterprise Edition

· Right-click an element in the Model Tree, and then select Show element in all diagrams from the
context menu.

Likewise, when a diagram is open, you can quickly select an element in the Model Tree, as follows:

· Right-click the element on the diagram, and select Select in Model Tree from the context menu.
· Alternatively, click the element on the diagram and press F4.

5.1.5 Converting Elements

Some of the elements support quick conversion to some other element kind. This action may be useful, for
example, if you started designing a class but would like to change it later to an interface, or vice versa. More
specifically, the following kinds of elements support conversion to any other item in the list:

· Class
· Interface
· Enumeration
· PrimitiveType
· DataType

You can convert the element kinds listed above either from the Diagram window or from the Model Tree .

To convert elements:

1. Open a diagram that includes classes, interfaces, enumerations, primitive types or data types (for
example, a class diagram). Alternatively, locate any of these element kinds in the Model Tree.

2. Right-click the element of interest (for example, a class) and select Convert To | <element kind>
from the context menu.

After conversion, the name of the element is preserved. If possible, the data associated with the element is also
preserved. For example, a conversion from interface to class or from class to interface preserves data such as
properties or operations. However, a conversion from a class or interface to an enumeration will result in data
loss. In such cases, if necessary, you can restore the previous state of the element by running the Undo
(Ctrl+Z) command.

5.1.6 Finding and Replacing Text

You can search for modeling elements, diagrams, text, and so on, inside any of following windows:

· Diagram window
· Model Tree window
· Diagram Tree window
· Favorites window
· Documentation window
· Messages window

The search scope is applicable to the window where the cursor is currently placed. Therefore, if you want to
search for text inside a diagram, for example, click inside the diagram first. Likewise, if you want to search for
an item in the UModel project, click inside the Model Tree window first.

86 82

114 How to Model... Elements

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To search for text or elements:

1. Click inside the window where you want to find text.
2. Do one of the following:

a. Type the search text in the text box of the main toolbar, and then click Find Next or press F3.
To go to the previous occurrence, press Shift+F3.

b. On Edit menu, click Find (or press Ctrl+F).

Find and replace
You can also find and replace text (for example, in order to quickly rename modeling elements). When the
element is found, it is highlighted in the diagram as well as in the Model Tree. Search and replace works in the
following windows:

· Diagram window
· Model Tree window
· Diagram Tree window
· Favorites window
· Documentation window

To find and replace text:

1. Click inside the window where you want to find/replace text.
2. Do one of the following:

c. Click the Replace toolbar button.
d. On the Edit menu, click Replace (or press Ctrl+H).

© 2018-2024 Altova GmbH

Elements 115How to Model...

Altova UModel 2024 Enterprise Edition

5.1.7 Checking Where and If Elements Are Used

While navigating the elements in the Model Tree, you might want to see where, or if, the element is actually
present in a model diagram. To find where elements are used, do one of the following:

· Right-click the element in the Model Tree window, and select Show element in all diagrams (or, if a
diagram is currently open, Show element in active diagram).

You can also find elements not used in any diagram either for the entire project, or for individual packages.

To find unused elements in the entire project:

· On the Project menu, click List elements not used in any diagram.

To find unused elements for a specific package:

· Right-click the package you would like to inspect, and select List elements not used in any
diagram.

A list of unused elements appears in the Messages window. Note that the unused elements are displayed for
the currently selected package and its subpackages. Items inside parentheses are elements which have been
configured to appear in the unused list, from Tools | Options | View tab.

116 How to Model... Elements

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Click the element name in the Messages window to locate it in the Model Tree.

5.1.8 Constraining Elements

Constraints can be defined for most model elements in UModel. Note that constraints are not checked by the
syntax checker, because they are not part of the code generation process.

To constrain an element (from the Model Tree):

1. Right-click the element you want to constrain, and select New Element | Constraints | Constraint.
2. Enter the name of constraint and press Enter.
3. Type the constraint text in the "specification" field of the Properties window (for example, name length

> 10).

To constrain an element (from a diagram):

1. Double-click the specific element to be able to edit it.
1. Type "#", and then type the constraint text inside curly braces, for example, #{interestRate >=0}.

© 2018-2024 Altova GmbH

Elements 117How to Model...

Altova UModel 2024 Enterprise Edition

To assign constraints to multiple modeling elements:

1. Select a constraint in the Model Tree window.
2. Right-click the "constrained elements" property the Properties window, and select Add element to

constrained elements.

3. Select the specific element you want to assign the current constraint to. Hold down the Ctrl key to
select multiple elements.

The "constrained elements" field contains the names of the modeling elements it has been assigned to. For
example, in the image above, Constraint1 has been assigned to the following properties: interestRate,
interestRateOnBalance, interestRateOnCashAdvance.

5.1.9 Hyperlinking Elements

You can manually create hyperlinks between most modeling elements (except lines) and any of the following:

· Other elements (either on the diagram or in the Model Tree)
· Diagrams
· Files external to the project (for example, PDF, Word, or Excel documents, graphics files, and so on)
· Web pages

118 How to Model... Elements

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

A single element can have one or more hyperlinks of any of the kinds mentioned above. In a diagram, elements
that contain hyperlinks can be easily recognized by the hyperlink icon that is visible next to them (either in
the right or left corner). To open the hyperlink target, right-click the hyperlink icon on the element and select
the target. If there is only one hyperlink defined, you can also click and access the target directly.

Class containing hyperlinks

Tip: As you navigate through the UModel graphical user interface, either with or without hyperlinks, you can

easily go back and forward between views by clicking the Back or Forward toolbar
buttons, respectively.

You can automatically generate hyperlinks between dependent packages and diagrams when importing source
code or binary files into a model, provided that you selected the specific settings on the import dialog box. For
more information, see Importing Source Code and Importing Java, C# and VB.NET Binaries . Also, when
you generate UML documentation from the project, you can choose whether to include hyperlinks in the
generated output, see Generating UML documentation .

You can create hyperlinks not only from elements that appear in the diagram or in the Model Tree window, but
also from text within notes, as well as text in the Documentation window, as shown in the instructions below.

To create a hyperlink from an element:

1. Right-click an element on a diagram or in the Model Tree window, and select Hyperlinks | Insert/Edit
Hyperlinks from the context menu.

2. Click Add, and select a hyperlink kind (element, diagram, file, or a Web link).

196 212

328

© 2018-2024 Altova GmbH

Elements 119How to Model...

Altova UModel 2024 Enterprise Edition

3. Do one of the following:
· To create a diagram or hyperlink, select the target element or diagram when prompted.
· To create a file hyperlink, click the Ellipsis button and browse for the target file.

· To create a Web link, type the target address in the "Address" column of the dialog box, for
example:

4. Optionally, enter a custom link name in the "User defined name" column. If defined, this custom name
will be displayed in the UModel's graphical interface instead of the target path (or address).

To create a hyperlink inside a note:

· Select some text inside the note, right-click it and then select Insert/Edit Hyperlinks from the context
menu. The same instructions apply for text in the Documentation window.

120 How to Model... Elements

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To change or remove a hyperlink:

· Right-click the hyperlink icon on the element (or the hyperlinked text), and use the appropriate
command in the "Edit Hyperlinks" dialog box.

5.1.10 Documenting Elements

You can add documentation comments to modeling elements as follows:

· Click the element (either in the diagram or in the Model Tree window).
· Enter text in the Documentation window.

Any documentation text will be saved together with the project.

When an element is selected, its documentation is visible at all times in the Documentation window, if
available. You can also display documentation as a comment on the diagram, as follows:

· Right-click the element on the diagram, and select Show | Annotating Comments from the context
menu.

Documentation hyperlinks
To create a hyperlink inside the Documentation window, select some text inside the window, right-click it and
then select Insert/Edit Hyperlinks from the context menu. The hyperlink target can be a Web site, a diagram,
a file, or another element, see also Hyperlinking Elements .

Documentation window

Code generation and documentation comments
If you generate code from class diagrams, any comments applied to classes and their members (in class
diagrams) can be exported to the generated code as well. To do this, select the check box Write
Documentation as Java Docs (for Java) or Write Documentation as DocComments (for C#, VB.NET)
before generating program code, see also Code Generation Options .

117

174

© 2018-2024 Altova GmbH

Elements 121How to Model...

Altova UModel 2024 Enterprise Edition

Likewise, if you reverse engineer program code into a model, the code comments can be imported into the
model. To do this, select the check box JavaDocs as Documentation (for Java) or DocComments as
Documentation (for C#, VB.NET) before reverse engineering program code, see also Code Import Options .

For information about how comments in program code (or XML schemas) map to UModel comments, refer to
the mapping tables for each language:

· C# Mappings
· VB.NET Mappings
· Java Mappings
· XML Schema Mappings

5.1.11 Changing the Style of Elements

You can change the appearance (style) of modeling elements, including their color, font size, font weight,
background color, line thickness, and others. The appearance of elements can be changed at various levels:
globally for all elements in the project, selectively for all elements of the same family (for example, classes), or
for each individual element. For information about changing the style of the diagram itself, see Changing the
Style of Diagrams .

If you would like to use custom images instead of conventional element representations in diagrams, this is
possible by extending your project with custom profiles and stereotypes. For more information, see Example:
Customizing Icons and Styles .

To change the appearance of elements:

1. Click the element on a diagram.
2. Notice the dropdown list at the top of the Styles Window and do one of the following as applicable:

a. To edit the properties of the current element only, select "Element Styles" from the list.

b. To edit the properties of all elements of the same kind (for example, classes), select "Element
Family Styles" from the list.

c. To edit the properties of all elements globally at the project level, select "Project Styles".
d. To edit the properties of all lines in the project, including association, dependency, and realization

lines, select "Line Styles". (This value is only visible if the currently selected element is a line.)
e. To edit the properties of all elements that are not lines (the so-called "nodes") across the project,

select "Node Styles". (This value is only visible if the currently selected element is not a line.)

199

238

258

272

278

127

464

122 How to Model... Elements

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Change the value of the required property (for example, "Fill Color").

A more specific style overrides a more generic style. That is, styles applied at individual element level
override those applied at element family level. Likewise, styles applied at element family level override
those applied at project level.

When a style is overridden, a small red triangle appears in the upper-right corner of the overridden property.
Move the cursor over the triangle to display a tooltip with information about style precedence.

Overridden element style

© 2018-2024 Altova GmbH

Diagrams 123How to Model...

Altova UModel 2024 Enterprise Edition

5.2 Diagrams

5.2.1 Creating Diagrams

Diagrams represent visually how modeling elements interact, what is their structure, dependencies, hierarchy,
and so on. Diagrams must belong to a package in the project, and therefore must be created under an existing
package in the Model Tree window. You can move diagrams from one package to another at any time, by
dragging them into a destination package.

To create a new diagram:

1. Right-click a package in the Model Tree window .
2. Select New Diagram | <Diagram Kind>.

You can also create a new diagram from the Diagram Tree window , as follows:

1. Right-click the root node ("Diagrams") in the Diagram Tree window.
2. Select a package where the diagram should belong, and click OK.

When the diagram window is active, the toolbars display only modeling elements applicable to the current
diagram kind. The diagram kind is displayed in the Properties window after you click an empty area of the
diagram. In addition to this, the following icons depict the diagram kind.

Icon Description

Activity Diagram

BPMN 1 (Business Process Modeling Notation) Business Process Diagram

BPMN 2 Business Process Diagram

BPMN 2 Choreography Diagram

BPMN 2 Collaboration Diagram

Class Diagram

Communication Diagram

Component Diagram

Composite Structure Diagram

Database Diagram

Deployment Diagram

Interaction Overview Diagram

Object Diagram

82

86

124 How to Model... Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Icon Description

Package Diagram

Profile Diagram

Protocol State Machine Diagram

Sequence Diagram

State Machine Diagram

SysML diagrams (9 diagram types)

Timing Diagram

Use Case Diagram

XML Schema Diagram

5.2.2 Generating Diagrams

In addition to creating diagrams from scratch, you can also generate certain diagrams automatically from
existing modeling elements or from program code. This topic shows you how to generate diagrams from
existing modeling elements. For information about how to generate diagrams from source code, see:

· Generating Class Diagrams
· Generating Sequence Diagrams from Source Code
· Generating Package Diagrams While Importing Code or Binaries

To generate diagrams from existing elements, right-click an element (for example, package) in the Model Tree,
and then select Show in new diagram | <option> from the context menu. Below are some examples:

To create a diagram which shows the contents of an existing package:

· Right-click a package in the Model Tree window and select Show in new Diagram | Content from
the context menu.

To create a diagram which shows the dependencies of an existing package:

· Right-click a package in the Model Tree window and select Show in new Diagram | Package
dependencies from the context menu.

To create a diagram which shows the generalization hierarchy of a class:

1. In the Model Tree window, right-click a class which has generalization relationships to or from other
classes (for example, class Account from the sample project C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Bank_CSharp.ump).

442

409

451

© 2018-2024 Altova GmbH

Diagrams 125How to Model...

Altova UModel 2024 Enterprise Edition

2. Select Show in new diagram | Generalization hierarchy from the context menu. A dialog box
appears where you can adjust the preferences for the diagram to be created, including the diagram
type. Notice the text "N diagram-items", which displays the number of items that are to be added to
the diagram. In the example below, the chosen diagram type is "Class Diagram" and there will be four
diagram items (classes) on the diagram: the Account class and three classes derived from it.

3. Click OK. The diagram is generated according to the selected options and opens in the Diagram
window, for example:

126 How to Model... Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

5.2.3 Opening Diagrams

If the UModel project contains diagrams, these are displayed in the Diagram Tree window.

Diagram Tree window

Note: By default, diagrams are grouped by type in the Diagram Tree window. To display only diagrams
(without parent groups), right-click inside the window and clear the Group by diagram type context
menu option.

Diagrams are also displayed in the Model Tree window under the packages where they belong, for example:

© 2018-2024 Altova GmbH

Diagrams 127How to Model...

Altova UModel 2024 Enterprise Edition

To open an existing diagram:

· Double-click the diagram icon in the Model Tree window (or in the Diagram Tree window, or in the
Favorites window).

· Right-click the diagram, and select Open diagram from the context menu.

5.2.4 Deleting Diagrams

UModel diagrams can be deleted in one of the following ways:

· In the Model Tree window (or Diagram Tree window, or Favorites window), right-click the diagram, and
then select Delete from the context menu.

· Click the diagram in any of the windows mentioned above, and then press Delete.

Deleting a diagram does not remove any elements from the project except the diagram itself. To check if
elements are used in any diagrams, right-click the package you would like to inspect, and select List
elements not used in any diagram, see also Checking Where and If Elements Are Used .

For information about deleting elements from a diagram or from a project, see Deleting Elements .

5.2.5 Changing the Style of Diagrams

You can change the appearance (style) of a diagram, including the background color, grid visibility, grid size
and color, as well as the appearance of the diagram heading. You can either change the style of individual
diagrams in the project, or apply the same properties to all diagrams in the project. For information about
changing the style of elements inside a diagram, see Changing the Style of Elements .

115

112

121

128 How to Model... Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The size of diagrams is defined by elements and their placement. To enlarge the diagram size, drag an element
to one of the diagram edges and the size will adjust accordingly.

To change the appearance of diagrams:

1. Open a diagram (see Opening Diagrams).
2. Notice the dropdown list at the top of the Style Window and do one of the following as applicable:

a. To edit the properties of the current diagram only, select "Diagram Styles" from the list. This value
is selected by default if you click anywhere where the diagram background is empty (that is, when
you do not click any diagram elements).

b. To apply changes to all diagrams in the project, select "Project Styles". In this case, scroll down
to the end of the Styles window until you find the styles applicable to diagrams (that is, the ones
that begin with "Diag.").

3. Change the value of the required property (for example, "Diagram Background Color").

Styles applied at diagram level override those applied at project level.

When a style is overridden, a small red triangle appears in the upper-right corner of the overridden property.
Move the cursor over the triangle to display a tooltip with information about style precedence.

126

© 2018-2024 Altova GmbH

Diagrams 129How to Model...

Altova UModel 2024 Enterprise Edition

Overridden diagram style

The following diagram-specific properties are available as toolbar buttons. Changing the property in the Styles
window will update the state of the toolbar button, and vice versa.

Show grid Shows or hides the diagram grid.

Show diagram
heading

Shows or hides the diagram heading.

Snap to grid When enabled, this property makes all elements adhere to the grid. When
disabled, elements are positioned regardless of the grid pattern.

5.2.6 Aligning and Resizing Modeling Elements

You can change the size of elements on the diagram as follows:

1. Click an element on the diagram. A set of black dots appear at the element's edges.

2. Drag any of the black dots into the direction where you want the element to grow.

To reset the element size to its default boundaries, do one of the following:

· Click the Enable Autosize icon at the lower-right corner of the element.

130 How to Model... Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· Right-click an element on the diagram, and select Autosize from the context menu.
· Select one or more elements. On the Layout menu, click Autosize.

When at least two modeling elements are selected on the diagram, they can be aligned in relation to each
other (for example, both can be aligned to have the same horizontal or vertical position, or even size). The
commands which align or resize elements are available in the Layout menu and in the Layout toolbar.

Layout toolbar

When you select several elements, the element that was selected last serves as a template for the
subsequent align or resize commands. For example, if you select three class elements and run the Make
same width command, then all three will be made as wide as the last class you selected. The element
that was selected last always appears with a dashed border.

The commands specific to element alignment and resizing are as follows:

Icon Command Notes

Align left

Align right

Align top

Align bottom

Center vertically

Center horizontally

Space across This command is available when three or more elements are
selected. It distributes the horizontal space evenly between
selected elements.

Space down This command is available when three or more elements are
selected. It distributes the vertical space evenly between selected
elements.

Line up horizontally This command repositions all selected elements on the diagram
so that they are arranged horizontally one after the other.

© 2018-2024 Altova GmbH

Diagrams 131How to Model...

Altova UModel 2024 Enterprise Edition

Icon Command Notes

Line up vertically This command repositions all selected elements on the diagram
so that they are arranged vertically one after the other.

Make same width

Make same height

Make same size

You can also automatically layout all elements in the diagram, as follows:

· On the Layout menu, click Autolayout All and choose one of the following options: Force Directed,
Hierarchic, or Block.

Force Directed Displays the modeling elements from a centric viewpoint.

Hierarchic Displays elements according to their hierarchical relationships. For example, a
superclass will be placed above any of its derived classes.

The hierarchical layout options can be customized from the Tools | Options
menu, View tab, Autolayout Hierarchic group.

Block Displays elements grouped by element size in rectangular fashion.

5.2.7 Adding Layers to Diagrams

By default, a diagram consists of a single layer—this layer stores all the elements visible on the diagram
canvas. However, you can optionally add multiple layers to a diagram. With layers, you can make logical
groupings of modeling elements within the same diagram and thus separate concerns. For example, you can
create, in addition to the default layer, some extra layers that would store notes with some internal information,
or unfinished classes. Layers can be viewed and managed from the Layer window.

Layer window

132 How to Model... Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

In the image above, three layers are defined on the diagram. The layer "Notes" is currently selected. The third
layer, "Work in progress", is currently locked. The number displayed in the brackets to the right of each layer
denotes how many elements each layer has.

Any UML element can be assigned to any layer. By default, new elements are added to the currently active
layer, which is highlighted in the Layer window. If all layers are visible, you can create relationships such as
association, generalization, etc between elements on different layers.

When printing diagrams or saving them to an image, only elements from the currently visible layers are printed.
The maximum number of layers per diagram is 20.

The buttons available in the Layer window have the following purpose:

Icon Command Notes

Append layer Appends a new layer to the current layer list, and assigns a default name
which you can change immediately or through the context menu option
"Rename".

Insert layer Inserts a new layer above the currently active layer in the layer list.

Delete layer Deletes the currently active layer. Before the layer is deleted, a dialog box
opens asking where the current layer's items (if any) should be moved
(merged).

Focus previous on
active layer

Selects the previous element on the currently active layer. This command is
enabled only if the layer contains elements.

Focus next on
active layer

Selects the next element on the currently active layer. This command is
enabled only if the layer contains elements.

Layer item count Shows or hides the count of elements in each layer.

Reset all layer
states

Sets all layers to visible and unlocked state.

Some of the commands above are also available as context menu items, when you right-click inside the Layer
window.

To move elements from one layer to another:

· Right-click the element on the diagram and select the Layer | <layer name> command from the
context menu. This command is also applicable after you selected multiple elements; in this case, all
of them will be moved to the destination layer.

· Alternatively, select one or more elements on the diagram and drag them onto the destination layer in
the Layer window.

· To move all elements of a layer into a different one, right-click the layer, and select Merge To | <layer
name> from the context menu.

© 2018-2024 Altova GmbH

Diagrams 133How to Model...

Altova UModel 2024 Enterprise Edition

To show, hide, or lock individual layers, or multiple layers at once:

· Right-click the layer in the Layer window, and select the Show, Hide, or Lock command, respectively.
The submenu commands Selected layer and Others let you toggle the command either for the
currently selected layer, or for all layers except the one currently selected.

· Alternatively, right-click the layer, and use the Toggle Visibility or Toggle Lock commands,
respectively. This will hide the layer(s) if they were previously shown, or lock them if they were
previously unlocked (and vice versa).

5.2.8 Type Autocompletion in Classes

When you add operations and attributes to a class, autocompletion of data types is enabled by default in
UModel. This makes it possible to specify the data type of the operation or property directly on the diagram, for
example:

1. Right-click a class, and select New | Operation from the context menu.
2. Type the name of the operation after the double angle brackets << >>, and then type the colon (:)

character.
3. An autocompletion window is automatically opened.

Autocompletion window

The autocompletion window has the following features:

· Clicking a column name sorts the window by that attribute in ascending or descending order.
· The window can resized by dragging the bottom-right corner.
· The window contents can be filtered by clicking the respective filters (categories) at the bottom of the

window: Class, Interface, PrimitiveType, DataType, Enumeration, Class Template, Interface Template,
DataType Template.

134 How to Model... Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To enable only one of the filters at a time:

· Click the Single mode button . The image above shows the autocompletion window in "multi-
mode", that is, all filters are enabled. The single mode button is not enabled.

To select or clear all filters simultaneously:

· Click the Set All Categories or Clear All Categories buttons, respectively.

To disable autocompletion:

1. On the Tools menu, click Options, and then click the Diagram Editing tab.
2. Clear the Enable automatic entry helper check box.

To trigger autocompletion on demand (when it is disabled):

1. Make sure that the cursor is inside an attribute or operation of a class, after the colon (:) character.
2. Press Ctrl+Space.

5.2.9 Zooming into/out of Diagrams

To zoom into or out of a diagram, do one of the following:

· Run the menu command View | Zoom In (Ctrl+Shift+I) or View | Zoom out (Ctrl+Shift+O).
· Select a predefined percentage value from the Zoom toolbar.

· Hold down the Ctrl key while rotating the mouse wheel.

To fit the diagram area to the visible window:

· Run the menu command View | Fit to window (or click the Fit to window toolbar button).

© 2018-2024 Altova GmbH

Relationships 135How to Model...

Altova UModel 2024 Enterprise Edition

5.3 Relationships

5.3.1 Creating Relationships

A relationship typically needs two elements, so your diagram must already contain the elements between
which you want to add relationships. You can create relationships as follows:

1. By using a toolbar button that depicts the relationship you need (for example, Association).
2. By using handles that appear when you click on any element on the diagram.

Creating relationships using toolbar buttons
When a diagram window is active in UModel's main pane (in focus), the toolbar displays all the elements and
relationships supported by that diagram. For example, a Class diagram provides toolbar buttons for all

supported relationships, including Association , Collection Association , Aggregation , Composition

, Realization , Generalization , and others. Likewise, a Use Case diagram provides toolbar buttons for

Associations , Generalizations , as well as Include and Extend relationships.

The instructions below illustrate how to create an association relationship between an actor and a use case.
Use the same approach for other relationships you might need.

1. Click an element on the diagram (actor "Standard User", in the image below).

2. Click the toolbar button corresponding to the relationship you need (Association , in this example).
3. Move the mouse over "Standard User" and drag onto a target element ("get account balance" use

case). Note that the target element is highlighted in green color and accepts the relationship only when
it is meaningful according to UML specifications.

Association in a Use Case diagram

Creating relationships using handles
When you click an element on a diagram, several handles may appears to the left, right, top, or bottom of the
element. The handles appear only for elements which support relationships. Each handle corresponds to a
relationship kind. For example, class elements have the following handles:

136 How to Model... Relationships

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· InterfaceRealization
· Generalization
· Association
· Collection Association

To view the relationship kind that each handle creates, move the mouse over the handle. For example, in the
image below, the selected top handle can be used to create a Generalization relationship.

To create the relationship, click the handle and drag the cursor over a destination element. This creates the
corresponding relationship (Generalization, in this case).

Generalization relationship between two classes

5.3.2 Changing the Style of Lines and Relationships

You can change the thickness, color, and bending style of lines from the Styles window. You can also add text
(labels) to relationships, reposition labels, and hide/show labels on the diagram either individually for each
relationship or in batch.

Note: In the instructions below, it is important to distinguish between "lines" (any line on the diagram) and
"relationships" such as association, generalization, composition, and so on. All relationships are lines,
but the opposite is not true. For example, a comment or note link is just a line, not a relationship.

To change line properties:

1. Click a line on the diagram.
2. In the Styles window, set the required property (for example, "Line Thickness").

© 2018-2024 Altova GmbH

Relationships 137How to Model...

Altova UModel 2024 Enterprise Edition

The values available for the "Line Style" property are also available as commands under the Layout | Line
Style menu, and as toolbar buttons. If you change this property, the corresponding toolbar button will become
enabled, and vice versa.

Orthogonal line A line with this style will only bend at straight angles.

Direct line A line with this style will make a direct connection between two elements,
without any waypoints.

Custom line A line with this style can bend at any angle. To move the line, drag any
waypoint (small black dots) on the line. To create new waypoints, click in
between two existing waypoints, and drag the line. To delete waypoints,
drag a waypoint directly on the top of an existing one.

Line styles, just like other element styles, can be set for each individual line, or at a more generic level
(project level, for example). The more specific style overrides the generic one. When a style is overridden,
this is indicated by a red triangle next to the affected property in the Styles window, see also Changing the
Style of Elements .

To add label text to a relationship:

· Click a relationship on the diagram, and start typing.

To move the label text:

· Click the label, and the drag it to some other position on the diagram.
· To move the label back to the default position, right-click the relationship, and select Text Labels |

Reposition Text Labels from the context menu.

121

138 How to Model... Relationships

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· To reposition multiple labels simultaneously, select one or more relationships on the diagram, and then
run the menu command Layout | Reposition Text Labels.

To show or hide the label text:

· Right-click the relationship, and select Text Labels | Show/Hide all Text Labels from the context
menu.

5.3.3 Viewing Element Relationships

By default, the relationships of an element are visible in the Model Tree window under that specific element. For
example, the CheckingAccount class illustrated below has a Generalization relationship with the Account
class:

Relationship in the Model Tree window

Note: To hide relationships from the Model Tree window, right-click inside the window and clear the Show
Relations in Tree option.

To show the relationships of an element on the diagram, right-click the element on the diagram, and select
Show | <relationship kind> from the context menu.

5.3.4 Associations

An association is a conceptual connection between two elements. You can create association relationships
like any other relationship in UModel, see Creating Relationships .

When you create an association between two classes, a new attribute is automatically inserted in the
originating class. For example, creating an association between Car and Engine classes adds a property of
type Engine to the Car class.

135

© 2018-2024 Altova GmbH

Relationships 139How to Model...

Altova UModel 2024 Enterprise Edition

When a class is added to a diagram, its associations are shown automatically on the diagram, provided that
the following conditions are met:

· The option Automatically create Associations is enabled from Tools | Options | Diagram Editing
tab.

· The attribute's type is set (in the image above, Property1 is of type Engine)
· The class of the referenced "type" is also present in the current diagram (in the image above, the class

Engine).

You can also explicitly show the class properties of any class as associations on the diagram. To do this,
right-click a class property, and select one of the following commands:

· Show | <Property> as Association
· Show | All Properties as Associations

When you click an association on the diagram, its properties can be changed, if necessary, from the
Properties window.

It is important to note the properties listed below. Modifying these properties changes the appearance of the
association on the diagram, or adds various informative text labels. For information about showing or hiding text
labels, or changing the appearance of the relationship (such as color or line thickness), see Changing the Style
of Lines and Relationships .

136

140 How to Model... Relationships

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Property Purpose

A: name The name of the member on end A of the relationship. In the car example above, it
is Property1.

A: aggregation Enables you to change the type of association on end A. Changing this property
will also change the representation of the association on the diagram. Valid
values:

none Denotes a normal association

shared Changes the association into an aggregation

composite Changes the association into a composition

A: memberEndKind Attributes participating in a relationship can belong either to a class or to the
association. This property specifies who owns this end of the relationship and
whether this end of the relationship is navigable. ("Navigable" means that the end
has an "arrow" ending). Valid values:

memberEnd Member on this end belongs to the class.

ownedEnd Member on this end belongs to the association

navigableOwnedEnd Member on this end belongs to the association and
this end becomes navigable.

Setting both A and B ends to ownedEnd makes the association bi-directional.

A: multiplicity Multiplicity specifies the number of objects at this end of the relationship. For
example, if a car has four wheels, multiplicity would be 1 on one end and 4 on the
other end of the relationship.

The same set of attributes are available for end B of the relationship.

If enabled, the property Show Assoc. Ownership in the Styles window displays ownership dots for the
selected relationship. By default, this property is set to False. The following is an example of a class where
Show Assoc. Ownership is set to True:

© 2018-2024 Altova GmbH

Relationships 141How to Model...

Altova UModel 2024 Enterprise Edition

Creating reflexive associations
Associations can be created using the same class as both the source and target. This is a so-called "self link",
or reflexive association. It may describe, for example, the ability of an object to send a message to itself, for

recursive calls. To create a self link, click the association toolbar button , then drag from the element,
dropping somewhere else on the same element.

Creating association qualifiers
Associations can be optionally decorated with association qualifiers. Qualifiers are attributes of an association.
In the example below, the association qualifier isbn specifies that a book can be retrieved from the list of books
by this attribute. To add a qualifier:

1. Create an association between two classes.
2. Right-click the association and select New | Qualifier.

To rename or delete association qualifiers, use the same steps as for all other elements, see Renaming,
Moving, and Copying Elements and Deleting Elements .

5.3.5 Collection Associations

A collection association relationship is suitable to illustrate that a class property is a collection of some
kind. For example, in the diagram below, the property colors of the class ColorBox is a list of colors. This
type is defined in this case as an enumeration; however, it may also be another class or even an interface.

111 112

142 How to Model... Relationships

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Before you can create collection associations, the UModel project must contain the collection templates for the
project language you want to use (such as Java, C#, or VB.NET). Otherwise, a tooltip with the text "No
collections defined for this language" appears when you attempt to create the collection association.

If your project is UML only (without support for a specific code engineering language), you can define collection
templates from the menu Tools | Options | Diagram Editing | Collection Templates | UML tab.

If your project already contains a language namespace (such as Java, C#, VB.NET), the collection templates
are predefined from the profile of that language. Additional templates can be added from the menu Tools |
Options | Diagram Editing | Collection Templates.

To create a collection association (between two classes, for example):

1. Add two classes to the diagram.

2. Click the Collection Association toolbar button.
3. Drag from the first class and drop it onto the second class. The collection templates defined for the

project appear in the context menu, and you can select the required one.

Collection associations and code engineering
If you import program code into the model, collection associations are created automatically by default, based
on predefined collection templates. To enable or disable this option:

1. On the Tools menu, click Options.
2. Click the Diagram Editing tab.
3. Select or clear, as necessary, the check box Resolve collections.

© 2018-2024 Altova GmbH

Relationships 143How to Model...

Altova UModel 2024 Enterprise Edition

The collection associations are resolved by default based on a list of built-in collection templates. To view or
modify the built-in collection templates, click Collection Templates.

To insert custom collection types, use the Append, Insert, or Delete buttons available in the dialog box
below. The column Par.Pos. denotes the position of the parameter which contains the value type of the
collection.

144 How to Model... Relationships

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Collection Templates dialog box

To reset the collection templates to their default values, click Set default.

5.3.6 Containment

A containment line is used to show, for example, parent-child relationships between two classes or two
packages.

To illustrate containment between two classes:

1. Click the Containment toolbar button (in a class or package diagram).
2. Drag from the class that is to be "contained", and drop on the container class.

Note that the contained class, Engine in this case, is now visible in a compartment of Car. This also places
the contained class in the same namespace as the container class.

© 2018-2024 Altova GmbH

Stereotypes and Tagged Values 145How to Model...

Altova UModel 2024 Enterprise Edition

5.4 Stereotypes and Tagged Values

A stereotype is an extension mechanism; it is intended as a flexible way to extend an existing UML element
and capture some aspect of it that standard UML doesn't. Stereotypes applied to an element signify that that
element has some special use. The UModel built-in profiles (C#, Java, VB.NET, and so on) contain all the
stereotypes required to model projects in the respective languages. However, you can also create your own
profiles (and their respective stereotypes), see Creating and Applying Custom Profiles .

When you import source code or binaries into the model, UModel applies stereotypes to elements
automatically, based on the structure of the original code. For example, if annotations modifiers exist in the
imported Java source code, the corresponding elements in the model get the «annotations» stereotype. For
information about how various language constructs map to UModel elements and become stereotypes in the
model, see UModel Element Mappings .

You can also apply stereotypes to elements manually, while modeling them. For example, you can apply the
«attributes» stereotype to a C# class, which would indicate that the class must be decorated with attributes
in generated code. To specify the attribute values in the generated code, you can add so-called "tagged values"
in UModel, as shown in Applying Stereotypes . Stereotypes are also used extensively in XML schema
modeling, to model elements such as simple types, complex types, facets, and so on. Likewise, stereotypes
are used in database modeling, to model elements such as tables, columns, indices, and so on, see Designing
Database Objects .

Across the UModel graphical interface, stereotypes are displayed enclosed within guillemets (for example,
«static»). All stereotypes included into the built-in UModel profiles appear in the Properties window when you
click an element. For example, clicking a Java class in the Model Tree would display in the Properties window
only class stereotypes applicable to the Java profile (in this example, «annotations», «static», «strictfp»).

In class diagrams, stereotypes are visible above the name of the class. For example, the class below has the
«attributes» stereotype applied to it.

455

232

147

538

146 How to Model... Stereotypes and Tagged Values

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

In case of methods or properties, stereotypes are displayed inline, like the «constructor» stereotype applied
to the Account() method in the class above.

5.4.1 Tagged Values

Stereotypes may have attributes (tagged values) associated with them. Tagged values are name-value pairs
that provide extra information related to the stereotype where they belong. For example, the class illustrated
below has the stereotype «attributes» applied to it. Notice that the «attributes» stereotype has tagged
values associated with it: a key (name) called "sections" and a value called "Serializable".

Tagged values

A stereotype may have multiple pairs of tagged values. Also, a value can be selected from a set of enumeration
values.

You can change how tagged values are displayed on the diagram, or hide them altogether, see Showing or
Hiding Tagged Values . For information about changing a stereotype's tagged values, see Applying
Stereotypes . For an example that illustrates how to create stereotypes with tagged values, see Example:
Creating and Applying Stereotypes .

149

147

459

© 2018-2024 Altova GmbH

Stereotypes and Tagged Values 147How to Model...

Altova UModel 2024 Enterprise Edition

5.4.2 Applying Stereotypes

By applying a stereotype to an element, you indicate that the element has some specific use. In case of code
languages supported in UModel (such as C#, VB.NET, Java), you typically apply stereotypes in order to
comply with the grammar of that language. For example, a Java class may have the «static» stereotype
applied to it.

Before you can apply stereotypes, the corresponding profile must be applied to your package(s) first. This
is done automatically by UModel if you right-click a package and select the Code Engineering | Set as
{language} namespace root command. For more information, see Applying UModel Profiles .

If you created custom profiles, these must be applied manually to the package, see Creating and Applying
Custom Profiles .

To apply a stereotype to an element:

1. Click the element in the Model Tree window. If the element can be extended by any stereotypes, they
appear as properties in the Properties window, enclosed within guillemets ("«" and "»").

2. Select the stereotype's check box in the Properties window (for example, «static»).

You can also apply stereotypes while designing elements inside a class diagram. To do this, click a property of
a class and start typing text inside the "<< and ">>" characters.

Some stereotypes are associated with a list of name-value pairs referred in UML as "tagged values". To apply a
stereotype with tagged values to an element, select the stereotype's check box in the Properties window (in
this example, «attributes»). This adds an indented entry where you can select the required value from a
predefined list.

159

455

148 How to Model... Stereotypes and Tagged Values

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Tagged values

You can also add multiple values to the same key. To do this, right-click the idented entry, and select Add
Tagged Value | <name> from the context menu.

Alternatively, you can add tagged values directly from the diagram, by right-clicking a value, and selecting New
| Tagged Value from the context menu.

© 2018-2024 Altova GmbH

Stereotypes and Tagged Values 149How to Model...

Altova UModel 2024 Enterprise Edition

5.4.3 Showing or Hiding Tagged Values

When an element has tagged values, you can view all the respective tagged values either in a standalone box,
or inline, as a compartment. You can also hide tagged values completely. To choose how tagged values should
be displayed, right-click the element on the diagram, and select Tagged Values | <display option>. For
example, to display all tagged values outside of the class, right-click the class on the diagram, and select
Tagged Values | all. To hide all tagged values of a class, right-click the class on the diagram, and select
Tagged Values | none.

Tagged values displayed outside a class

Toggle compact mode
When some values in a tagged values box are empty, you can hide only the empty values, as follows:

1. Select a tagged values box on the diagram (one that has both empty and non-empty values).

2. Click the Toggle compact mode handle in the bottom-right corner of the box.

When the handle is in expanded state , the empty values are shown as well. When the handle is in

collapsed state , the empty values are hidden.

Changing the display of tagged values globally
You can change the display of tag values either individually for each element as shown above, or globally at
project level.

150 How to Model... Stereotypes and Tagged Values

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To change tag values at project level:

1. Select Project Styles from the list at the top of the Styles Window .
2. Scroll down until to the Show Tagged Values property and select the required option from the list (for

example, all, hide empty).

For information about changing styles at various levels, see Changing the Style of Elements .

Possible display options
The possible options for controlling the display of tagged values are listed in the table below. These options are
similar when you change tagged values globally or for individual elements.

None Hides all tagged values.

All Displays the tagged values of an element (for
example, a class) as well as those of elements
owned by the class, such as attributes and
operations.

All, hide empty Displays only those tagged values where a value
exists.

Element Displays the tagged values of an element (for
example, a class) but not those of owned attributes,
operations, and so on.

Element, hide empty Displays only those tagged values of an element
where a value exists.

89

121

© 2018-2024 Altova GmbH

Stereotypes and Tagged Values 151How to Model...

Altova UModel 2024 Enterprise Edition

In compartment Displays the tagged values in a separate
compartment. For example, the class illustrated
below has an «attributes» compartment that contains
tagged values.

In compartment, hide empty Displays only those tagged values where a value
exists, in a compartment.

In compartment, compact Same as above.

152 Projects and Code Engineering

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

6 Projects and Code Engineering

This chapter provides information about creating UModel modeling projects (either new, or by importing data
from source code or binaries). It also describes various operations applicable to code engineering with UModel,
namely:

· Forward engineering (generating code from a UModel project)
· Reverse engineering (importing source code into a UModel project)
· Roundtrip engineering (that is, synchronizing the model and code in either direction, as and when

necessary)

The menu commands applicable to code engineering are available in the Project menu. For example, the menu
command Project | Import Source Project enables you to import C#, C++, or VB.NET Visual Studio
solutions, or Java code, and generate UModel diagrams based on it. When no project solution is available, use
the menu command Project | Import Source Directory, see Importing Source Code (Reverse Engineering)
. Java, C#, and VB.NET binaries can also be imported, provided that a few basic prerequisites are met, see
Importing Java, C# and VB.NET Binaries .

The code engineering operations above are applicable not only to programming languages but also to
databases and XML Schema. For example, you could use the menu command Project | Import XML
Schema File to reverse engineer an existing XML schema and automatically generate a class diagram based
on it.

For the list of mappings between UModel elements and elements in each supported language profile (including
databases and XML Schema), see UModel Element Mappings . For database connectivity instructions and
operations applicable to databases, see UModel and Databases .

196

212

232

529

© 2018-2024 Altova GmbH

Managing UModel Projects 153Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

6.1 Managing UModel Projects

A UModel project acts as a container for UML modeling elements, diagrams, and various project-related
settings that you may define. UModel projects are saved as files with .ump (UModel Project File) extension.

UModel does not force you to follow any predetermined modeling sequence. You can add any type of model
element: UML diagram, package, actor etc., to the project in any sequence (and in any position). All model
elements can be inserted, renamed, and deleted in the Model Tree window itself, you are not even forced to
create them as part of a diagram.

6.1.1 Creating, Opening, and Saving Projects

When you start UModel for the first time, a new project is open automatically. On subsequent runs, UModel will
open the most recent project you worked with.

Note: UModel includes several example projects that you can explore in order to learn the modeling basics
and the graphical user interface. These can be found at the following path: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples.

To create a new project:

· On the File menu, click New (or click the New toolbar button).

A new project with the default name NewProject1 is created. Also, the following packages are automatically
added to the project and visible in the Model Tree window.

· Root
· Component View

These two packages have special use and are the only ones that cannot be renamed, or deleted, as explained
in the tutorial, see Forward Engineering (from Model to Code) .

Once the project is created, you can add modeling elements to it, such as UML packages and diagrams, see
Creating Elements and Creating Diagrams .

To add a new package:

1. Right-click the package under which you want the new package to appear (either Root or Component
View in a new project).

2. Select New Element | Package from the context menu.

Be aware that packages, as well as other modeling elements, can also be added from UML diagrams, in which
case they will appear in the Model Tree window automatically.

To add a new diagram:

· Right-click a package in the Model Tree, and select New Diagram.

63

108 123

154 Projects and Code Engineering Managing UModel Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To add elements to a diagram:

o Do one of the following:

§ Right-click the diagram, and select New Element | <Element Kind> from the context menu.
§ Drag the desired element from the toolbar.

For a worked example of how to create a project and generate program code from it, see Forward Engineering
(from Model to Code) .

To open an existing project:

· On the File menu, click Open, and browse for the .ump project file.

Note: By default, UModel registers any changes made externally to the .ump project file or included file(s),
and displays a dialog box asking you to reload the project. This functionality can be disabled from the
Tools | Options | File tab.

To save a project:

· On the File menu, click Save (or Save as).

All project relevant data is stored in the UModel project file, which has the extension *.ump (UModel Project
File).

Note: The *.ump file is an XML file format which can be optionally "prettified" on saving. Pretty-printing can be
enabled from the Tools | Options | File tab.

6.1.2 Opening Projects from a URL

In addition to opening local project files, you can also open files from a URL. The supported protocols are
HTTP, HTTPS, and FTP. Note that files loaded from URLs cannot be saved back to their original location (in
other words, access to the file is read-only), unless they are checked out from a Microsoft® SharePoint®
Server, as shown below.

To open a file from a URL:

1. On the Open dialog box, click Switch to URL.

63

© 2018-2024 Altova GmbH

Managing UModel Projects 155Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

2. Enter the URL of the file in the File URL text box, and click Open.

156 Projects and Code Engineering Managing UModel Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

If the server requires password authentication, you will be prompted to enter the user name and password. If
you want the user name and password to be remembered next time you start UModel, enter them in the Open
dialog box and select the Remember password between application starts check box.

If the file you are loading is not likely to change, select the Use cache/proxy option to cache data and speed
up loading the file. Otherwise, if you want the file to be reloaded each time when you open UModel, select
Reload.

For servers with Web Distributed Authoring and Versioning (WebDAV) support, you can browse files after
entering the server URL in the Server URL text box and clicking Browse.

Note: The Browse function is only available on servers which support WebDAV and on Microsoft SharePoint
Servers.

If the server is a Microsoft® SharePoint® Server, select the This is a Microsoft® SharePoint® Server check
box. Doing so displays the check-in or check-out state of the file in the preview area.

© 2018-2024 Altova GmbH

Managing UModel Projects 157Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

The state of the file can be one of the following:

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

To be able to modify the file in UModel, right-click the file and select Check Out. When a file is checked out
from Microsoft® SharePoint®, saving the file in UModel sends the changes back to the server. To check in the
file back to the server, right-click the file in the dialog box above, and select Check In from the context menu
(alternatively, log on to the server and perform this operation directly from the browser). To discard the changes
made to the file since it was checked out, right-click the file, and select Undo Check Out (or perform this
operation from the browser).

Note the following:

· When a file is already checked out by another user, it is not available for check out.
· If you check out a file in one Altova application, you cannot check it out in another Altova application.

The file is considered to be already checked out to you.

158 Projects and Code Engineering Managing UModel Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

6.1.3 Moving Projects to a New Directory

UModel projects and generated code can be easily moved to a different directory (or a different computer) and
be resynchronized there. There are two ways to do this:

· Select the menu option File | Save As..., and click Yes when prompted to adjust the file paths to the
new project location.

· Copy the UModel project (*.ump) to a new location, and then adjust the code generation paths for each
component involved in code generation.

For an example of the second approach, open the following sample project: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamplesBank_Multilanguage.ump.

1. Locate the BankView component in the Model Tree.

2. In the Properties window, locate the directory property and update it to the new path.

© 2018-2024 Altova GmbH

Managing UModel Projects 159Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

3. Re-synchronize the model and code.

6.1.4 Applying UModel Profiles

By default, whenever you start a new modeling project in UModel, the project is unaware of the business
application or code engineering language that you are going to need. Therefore, to tailor your UML project to a
domain or language, you must apply a profile to it.

One must distinguish between two types of profiles:

· Profiles built into UModel (these include C++, C#, VB.NET, Java, BPMN 1.0, BPMN 2.0, SysML, and
so on).

· Custom profiles that you can create to extend UML to your specific domain or needs.

You can add any of the built-in profiles to your project by selecting the menu command Project | Include
Subproject. In addition, UModel prompts you to apply a built-in profile whenever you take an action that
requires that specific profile. For example, when you right-click some new package and select the Code
engineering | Set as Java Namespace Root context menu option, you are prompted to apply the Java profile
to it.

To view the full list of UModel built-in profiles or add them to your model manually, select the menu command
Project | Include Subproject. See also Including Subprojects . 163

160 Projects and Code Engineering Managing UModel Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

For instructions about creating custom profiles in order to extend or adapt UML, see Creating and Applying
Custom Profiles .

6.1.5 Splitting UModel Projects

You can split UModel projects into multiple subprojects and thus allow several developers to simultaneously
edit different parts of a single project. Subprojects are like standard UModel project files and have the same
*.ump extension. Each individual subproject can be added to a source control system. The top-level project is
called the main project.

You can create a subproject from nearly any package in the main project. You can choose whether the
subproject should be editable from within the main project, or be read-only. In the latter case, the subproject is
editable only if you open it as a standalone project.

Subprojects can be structured in any way that you wish, in a flat or hierarchical structure, or a combination of
both. This makes it theoretically possible to split off every package of a main project into subproject files.

In the Model Tree Window , subprojects appear with the respective .ump file name displayed to the right,
enclosed within square brackets. For example, the project illustrated below includes several subprojects (this is
the Bank_MultiLanguage.ump from the C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples directory).

During the code-engineering process, all subordinate components of a subproject are considered. There is no
difference between a single project file or one that consists of multiple editable subprojects. This also applies to
UML diagrams—they can also be edited at the main, or subproject, level.

455

82

© 2018-2024 Altova GmbH

Managing UModel Projects 161Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

Note: You can also share packages and UML diagrams they might contain, between different projects. For
more information, see Sharing Packages and Diagrams .

Creating subprojects
To create a subproject, right-click a package, and select the command Subproject | Create new Subproject
from the context menu.

Next, click Browse and select the directory where the subproject should be saved.

Select Editable to be able to edit the subproject from the main project. (Selecting Read-only makes it
uneditable in the main project.)

Note: You can change the file path of the subproject at any time by right clicking the subproject and
selecting Subproject | Edit File Path.

Opening and editing subprojects
You can open a subproject as a standalone UModel project, directly from the main project. For this to be
successful, there should not be any unresolved references to other elements. UModel automatically performs
checks when creating a subproject from the "main" project, and whenever a file is saved.

To open a subproject as a standalone UModel project, right-click the subproject package in the main project
and select Subproject | Open as Project. This starts another instance of UModel and opens the subproject
as a "main" project. Any unresolved references are shown in the Messages window.

Reusing subprojects
Subprojects that have been split off from a main project can be used in any other main project(s).

1. Open a project and select the menu command Project | Include Subproject.
2. Click the Browse button and select the *.ump file that you want to include.

165

162 Projects and Code Engineering Managing UModel Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Choose how the file is to be included; by reference or as copy.

Saving projects
When you save the main project file, all editable subproject files are also saved. You should therefore not
create/add data (components) outside of the shared/subproject structure, if the subproject is defined as
"editable" in a main project file. If data exists outside of the subproject structure, a warning message will be
displayed in the Messages window.

Saving subproject files
When saving subprojects (from the main project level), all references to sibling, as well as child subprojects,
are considered and saved. For example, if two sibling subprojects, "sub1" and "sub2", exist and "sub1" uses
elements from "sub2", then "sub1" is saved in such a way that it automatically saves references to "sub2" as
well.

If "sub1" was opened as a "main" project, then it is considered as a self contained project and can be edited
without any reference to the actual main project.

Reintegrating subprojects into the main project
You can copy previously defined subprojects back into the main project again. If the subproject does not
contain any diagrams then the reintegration will be immediate. If diagrams exist, a dialog box will open.

1. Right-click the subproject and select Subproject | Include as Copy. This opens the "Include
Subproject" dialog box, which allows you to define the diagrams styles you want to use when including
the subproject.

© 2018-2024 Altova GmbH

Managing UModel Projects 163Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

2. Select the style option that you want to use, and then click OK.

6.1.6 Including Subprojects

When you want to generate code from a model, or import source code into a model, a profile project applicable
to that specific language (for example, C#, Java, VB.NET) must be included in your UModel project.

To include a UModel project as a subproject of another UModel project, select the menu command Project |
Include Subproject. As illustrated below, several .ump subprojects (language profiles required for code
engineering) are available on the Basic tab. In addition, several .ump subprojects containing C#, Java, and
VB.NET types, organized by version, are available in tabs with the same name.

In order for all types to be recognized correctly during code engineering, make sure to include both the
language profile (for example, the C# profile) and the types project of the corresponding language version
(for example, .NET 5 for C# 9.0). Otherwise, an "Unknown Externals" package will be created in the
project which will include all unrecognized types. Note that, for C++, there are no "types" projects, only a
C++ language profile exists.

164 Projects and Code Engineering Managing UModel Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Include Subproject dialog box

The tabs and UModel projects (.ump files) available on the "Include Subproject" dialog box are configurable.
Namely, UModel reads this information from the following path relative to the "Program Files" folder on your
operating system: \Altova\UModel2024\UModelInclude. Note that the project files available on the Basic tab
exist directly under the UModelInclude folder, while projects in each of the Java, VB, and C# tabs exist as
subfolders of the UModelInclude folder.

To view all currently imported projects:

· Select the menu option Project | Open Subproject Individually. The context menu displays the
currently included subprojects.

To create a custom tab on the "Include Subproject" dialog box:

· Navigate to the \Altova\UModel2024\UModelInclude folder (relative to your "Program Files"), and
create your custom folder in it, for example \UModelInclude\myfolder. The name you give to the
folder determines the name of the tab on the "Include Subproject" dialog box.

· Copy to your custom folder any .ump files that you want to make available on the corresponding tab.

© 2018-2024 Altova GmbH

Managing UModel Projects 165Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

To create descriptive text for each UModel project file:

· Create a text file using the same name as the *.ump file and place in the same folder. For example,
the MyModel.ump file requires a descriptive file called MyModel.txt. Please make sure that the
encoding of this text file is UTF-8.

To remove an included project:

1. Click the included package in the Model Tree view and press the Delete key.
2. When prompted, click OK to delete the included file from the project.

To delete or remove a project from the "Include Subproject" dialog box:

· Delete or remove the (MyModel).ump file from the respective folder.

6.1.7 Sharing Packages and Diagrams

You can share packages (and UML diagrams they might contain) between different UModel projects. Packages
can be included in other UModel projects by reference, or as a copy.

Also note that subproject files can be split off a main, or subproject, file at any time. The subproject files can be
included as editable or read-only from the main project; each package is shared and saved as a subproject file.
Subprojects can be added to a source control system, see Teamwork support for UModel projects .

Notes
· In order to be shareable, a package must not contain links to external elements (elements outside

of the shared scope).
· When creating UModel project files, do not use one project file as a "template/copy" for another

project file into which you intend to share a package. This will cause conflicts due to the fact that
every element should be globally unique (see uuid) and this will not be the case, as two
projects will have elements that have identical uuids.

To share a package between projects:

· Right-click a package in the Model Tree window and select Subproject | Share package. A "shared"
icon appears below the shared package in the Model Tree. This package can now be included in any
other UModel project.

160

632

166 Projects and Code Engineering Managing UModel Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To include/import a shared folder in a project:

1. Open the project which should contain the shared package (an empty project in this example).

2. Select the menu item Project | Include Subproject...
3. Click Browse, select the project that contains the shared package, and click Open. The "Include

Subproject" dialog box allows you to choose between including the package/project by reference, or as
a copy.

4. Select the required option ("Include by reference", in this example) and click OK.

© 2018-2024 Altova GmbH

Managing UModel Projects 167Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

The "Deployment View" package is now visible in the new package. The packages' source project is displayed
in parenthesis (SharedPackage.ump, in this example).

Notes:

· When you include a source project which contains subprojects, all subprojects of the source project
will also be included into the target project.

· Shared folders that have been included by reference can be changed to "Include by copy" at any time,
by right-clicking the folder and selecting Subproject | Include as a Copy.

Resolving links to external elements
Attempting to share a package which has links to external elements causes a warning dialog box to appear.
For example, the following message appears if you attempt to share the "Deployment View" package of the
sample project C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Tutorial\BankView-start.ump.

Click Yes to share the package despite of the errors; otherwise, click No. The Messages window provides
information about each of the external links.

168 Projects and Code Engineering Managing UModel Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Click an entry in the Messages window to display the relevant element in the Model Tree window.

6.1.8 Tips for Enhancing Performance

Some modeling projects can become quite large, in which case there are a few ways you can enhance the
modeling performance:

· Make sure that you are using the latest driver for your specific graphics card (resolve this before
addressing the following tips)

· Disable syntax coloring (from the Styles window, set the property Use Syntax Coloring to false).
· Disable "gradient" as a background color for diagrams, use a solid color (from the Styles window, set

the property Diagram background color to a solid color, for example, white).
· Deactivate automatic completion (go to Tools | Options | Diagram Editing and clear the check box

Enable automatic entry helper).

© 2018-2024 Altova GmbH

Generating Program Code 169Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

6.2 Generating Program Code

After you design the model of your application in UModel (for example, one or more class diagrams), you might
want to quickly generate a prototype project which includes all defined interfaces, classes, operations, and so
on, in your language of choice. UModel enables you to generate C++, C#, VB.NET, or Java program code from
a model, based on UML elements found in your UModel project (such as interfaces, classes, operations, and
so on). This process is also known as "forward engineering". The generated code will create all objects exactly
as they were defined in the model, so that you can proceed to their actual implementation.

Code generation is also applicable to XML schemas and databases*. For example, you could design an XML
schema or a database with UModel and then generate the corresponding file (or SQL script, in case of
databases) from the model. To achieve this, consult the mapping tables to find out which schema or database
elements map to UModel elements, see UModel Element Mappings .

* Engineering databases requires UModel Enterprise or Professional editions.

Prerequisites
In order for code generation to be possible, the UModel project must meet the following minimum requirements:

· One of the packages in your project must be designated as namespace root. The namespace root can
be a C++, C#, Java, VB.NET, XSD, or Database namespace. This package must contain all classes
and interfaces from which code is to be generated. For more information, see Setting a Package as
Namespace Root .

· A code engineering component must be added to the project. This component must be realized by all
the classes or interfaces from which code is to be generated. For more information, see Adding a Code
Engineering Component .

· In case of databases, a connection to the target database must be created first, using the menu option
Project | Import SQL database. Once the connection is established, you can design or modify the
database structure in the model and commit the changes to the database through a SQL script. For
more information, see UModel and Databases ..

In addition to this, it is recommended that you include one of the built-in UModel subprojects corresponding to
the language (or the language version) you want to use, see Including Subprojects . For example, if your
application must target a specific version of C#, Java, or VB.NET, this would enable you to use the
corresponding data types while designing your UML classes, interfaces, and so on.

For a worked example of how to create a project from scratch and generate code from it, see Example:
Generate Java Code and Example: Generate C++ Code .

6.2.1 Setting a Package as Namespace Root

In order to generate program code from your UModel project, a package in your model must be designated as
namespace root.

232

169

170

529

163

181 190

170 Projects and Code Engineering Generating Program Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To set a package as namespace root:

· Right-click a package in the Model Tree Window and select Code Engineering | Set as <...>
Namespace Root from the context menu, where <...> is one of the following: C++, C#, Java, VB.NET,
XSD, Database.

When you set a package as namespace root, UModel informs you that the UML profile of the corresponding
language will also be added to the project and applied to the selected package. Click OK to confirm when
prompted by a dialog box such as the one below.

6.2.2 Adding a Code Engineering Component

In order to generate program code, your UModel project must contain a code engineering component that
specifies all the code generation details (for example, which classes from the project should be included in
code generation, and what should be the target generation directory). As illustrated in the instructions below,
the component must meet the following criteria for successful code generation:

· The component must have a physical location (directory) assigned to it. Code will be generated in this
directory.

· The classes or interfaces that take part in code engineering must be realized by the component.
· The component must have the property use for code engineering enabled.

To add a component which realizes the desired classes or interfaces:

1. Right-click a package in the Model Tree and select New Element | Component from the context
menu. This adds a new Component to the model.

2. In the model tree, click the class or interface that must be realized by the component, and then drag
and drop the cursor onto the component (in this example, Class1 from Package1 was dragged onto
Component1). This automatically creates a ComponentRealization relation in the Model Tree.

82

© 2018-2024 Altova GmbH

Generating Program Code 171Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

There is also an alternative approach to do this, by creating a Component diagram and then drawing a
ComponentRealization relation between the component and the classes or interfaces. For more information,
see Component Diagrams .

To prepare a component for code engineering:

1. Select the component in the Model Tree (it is assumed that this component is already realized by at
least one class or interface, as explained above).

2. In the Properties window, locate the directory property and set it to the path where you want to
generate code.

3. In the Properties window, select the check box use for code engineering.

For example, in the image below, the component Component1 from package Component View is configured
to generate Java 8.0 code into the directory C:\codegen:

52

172 Projects and Code Engineering Generating Program Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

6.2.3 Checking Project Syntax

It is important to check the syntax of the project before generating code from the model. This will inform you of
any problems which prevent code from being generated. Project syntax can be checked from the menu
command Project | Check Project Syntax (alternatively, press F11). A syntax check will also be performed
automatically before code is updated from the model. The results (errors, warnings, and information messages)
are reported in the Messages window.

When a syntax check is performed, the project file is checked on multiple levels as detailed in the tables
below. Note the following:

· For information about solving common syntax errors, see the Code generation prerequisites .
· For components, the checks below are performed only if the use for code engineering property is

enabled for the component in the Properties window.
· For classes, interfaces, and enumerations, the checks below are performed only if the class, interface,

enumeration is contained in a code language namespace. In other words, it must be under a package
which has been defined as namespace root.

169

© 2018-2024 Altova GmbH

Generating Program Code 173Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

· Constraints on model elements are not checked, as they are not part of the code generation process,
see Constraining Elements .

Level Checks if... Error severity if check fails

Project ...at least one namespace root package exists. Error

Component

...project file or directory is set. Error

...this component has a ComponentRealization relation
with at least one class or interface.

Error

Class ...code file name is set.

Note: This check is not applicable for nested classes.

Error if the option Generate
missing code file names is
not set in Tools | Options |
Code Engineering tab.
Warning if the option is set.

...type for operation parameter is set. Error

...type for properties is set. Error

...operation return type is set. Error

...duplicate operations (names + parameter types) exist. Error

...a ComponentRealization relation exists to a
component.

Note: This check is not applicable for nested classes.

Warning

...name is valid (no forbidden characters, name is not a
keyword)

Error

...multiple inheritance occurs Error

Class
operation

...name is valid (no forbidden characters, name is not a
keyword)

Error

...a return parameter exists. Error

Class
operation
parameter

...name is valid (no forbidden characters, name is not a
keyword)

Error

...type is valid Error

Interface ...code file name is set. Error if the option Generate
missing code file names is
not set in Tools | Options |
Code Engineering tab.
Warning if the option is set.

...interface is contained in a code language namespace. Error

...type for properties are set. Error

116

174 Projects and Code Engineering Generating Program Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Level Checks if... Error severity if check fails

...type for operation parameters are set Error

...operation return type is set Error

...duplicate operations (names + parameter types) Error

...interfaces are involved in a ComponentRealization Warning

...name is valid (no forbidden characters, name is not a
keyword)

Error

Interface
operation

...name is valid (no forbidden characters, name is not a
keyword)

Error

Interface
operation
parameter

...name is valid (no forbidden characters, name is not a
keyword)

Error

Interface
properties

...name is valid (no forbidden characters, name is not a
keyword)

Error

Package ...name is valid (no forbidden characters, name is not a
keyword)

Note: This check is applicable if the package is inside a
namespace root package and has the <<namespace>>
stereotype applied to it from the Properties window.

Error

Enumeration ...a ComponentRealization relation exists to a
component.

Warning

6.2.4 Code Generation Options

When generating program code into a UModel project, you may want to set or change the options listed below.
These options are available when you run the menu command Project | Project Settings and are saved
together with the project.

© 2018-2024 Altova GmbH

Generating Program Code 175Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

The options are grouped into tabs as follows.

Tab Options

Java Select the check box Write Documentation as JavaDocs to convert the
documentation of UModel elements to equivalent JavaDocs-style documentation in
generated code.

C# Select the check box Write Documentation as DocComments to convert the
documentation of UModel elements to comments in generated C# code.

VB Select the check box Write Documentation as DocComments to convert the
documentation of UModel elements to comments in generated VB.NET code.

C++ See Code Import Options .

SPL Templates If you want to force UModel to read SPL templates from a custom path other than
the default one, the custom path must be entered here. See also SPL
Templates .

Scripting Options in this tab are only applicable if you developed UModel scripting projects to
handle various events or customize the behaviour of your UModel projects. For
more information, see Scripting Editor .

In addition to the settings above, there are a few other settings which affect code generation. To access them,
run the menu command Tools | Options, and then click the Code Engineering tab. The settings applicable to
generating code from a model are grouped under Update Program Code from UModel Project. Note that

199

195

770

176 Projects and Code Engineering Generating Program Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

these settings are local (they will only affect the current installation of UModel and will not be saved with the
project).

6.2.5 Example: Generate C# Code

This example shows you how to generate C# code with UModel. You will first create a sample C# namespace
that contains a couple of classes, configure the project for code generation, and then generate the actual code.

In this example, the target platform is .NET Standard 2.0 for C# 7.1. This is possible thanks to a profile built
into UModel that defines all the types of .NET Standard 2.0 for C# 7.1. UModel also includes built-in profiles for
specific .NET Framework versions. For details, see Including Subprojects .

Create a new project and its structure
The first step is to create an empty project that has two default packages (Root and Component View): Click
New in the File menu or in the toolbar. Next, right-click the Root package and create a few more packages, as
illustrated below. If you are new to the UModel graphical user interface, see the UModel Tutorial and How to
Model sections to get started.

In this example, the Design View package acts as a container for the design part of your model (e.g., classes
and class diagrams), while the SampleNamespace package acts as a namespace for all classes that are to be
created. In general, you can organize your packages differently.

Code engineering
The next step is to set C# for our package. Right-click the Design View package and select Code
Engineering | Set as C# Namespace Root from the context menu. UModel will inform you that the C# profile
will be applied to the package. Click OK. The C# profile built into UModel has just been included in the project
(see screenshot below).

163

17

107

© 2018-2024 Altova GmbH

Generating Program Code 177Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

Set SampleNamespace as namespace
Next, click the SampleNamespace package and select the <<namespace>> check box in the Properties

window. This applies the namespace stereotype to the package, and its icon changes to . You can now
create classes under this namespace.

Include a subproject
So far, the model includes the C# profile, which contains the data types applicable to C#. However, the model
does not yet include the types specific to .NET Standard 2.0 (these are available in a separate UModel profile).
To add this profile to the project, do the following:

1. Go to the Project menu and select Include Subproject.
2. Switch to the C# tab and select .NET Standard 2.0 for C# 7.1 (types only).
3. Select Include by reference in the Include Subproject dialog and click OK.

The additional profile has been added to the project (see below).

Create C# classes
The next step is to create classes, which you can do directly in the Model Tree pane or from a class diagram.
For this example, we have chosen the second option. Follow the steps below:

1. Open the Diagram Tree pane.

178 Projects and Code Engineering Generating Program Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2. Right-click Class Diagrams and select New Diagram | Class Diagram.

This example assumes that all your classes must be generated under the SampleNamespace namespace.
Therefore, when prompted to select an owner for the diagram, select the SampleNamespace package. If you
choose a different package, any elements that you add to the diagram will belong to the same package as the
diagram (which may or may not be the intended goal).

Create classes and their structure
Next, create classes, types, and other elements required in your model. For our example, you can create a
simple diagram that contains an Artist class and a MusicStore class (see screenshot below). Follow the
instructions below:

1. Right-click inside the pkg SampleNamespace window and select New | Class.
2. Name this class Artist.
3. Right-click inside the Artist box and create two properties: ID of type int and Name of type string.
4. Create the second class called MusicStore.
5. Create a property called LastUpdated of type DateTime.
6. Create an operation and type its name and definition as shown below.

For more information about designing classes and their members, see the Class Diagrams and How to
Model sections.

About auto-implemented C# properties
In UModel, you can see whether C# properties have been auto-implemented. The auto-implementation option
becomes available after the property check box has been selected (for CreateTestArtist() in our example)
in the Properties window (see screenshots below).

30

107

© 2018-2024 Altova GmbH

Generating Program Code 179Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

Add documentation (optional)
Optionally, click the MusicStore class in the diagram and add some documentation by typing the text in the
Documentation window (see screenshot below). This lets you generate code comments for this class.

Configure the project for code engineering
In the next step, we need to define code engineering settings. Take the steps below:

1. Save the project to a directory.

2. Then right-click the Component View package in the Model Tree pane and add a new Component
(that is, a software component) to it.

3. Click the new software component and set the following properties in the Properties window (see
screenshot below):

· Set the code language of the component to C# 7.1, for example.
· Select the code generation directory (C:\codegen in our example).

· Select the use for code engineering check box.

93

180 Projects and Code Engineering Generating Program Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Create a ComponentRealization relationship

Next, create a ComponentRealization relationship between the classes from which C# code must be
generated. This can be done as follows: In the Model Tree pane, click the class to be realized by the
component (Artist in this example), then drag and drop it into the code engineering component (Component1)
(see screenshot below). Take the same step for the MusicStore class.

Note: In case you forget to create a ComponentRealization relationship for a class, UModel still
generates the corresponding code file, even though warnings will be issued in the Messages window.
This setting is configurable from Tools | Options | Code Engineering tab (the Generate missing
ComponentRealizations check box).

Generate C# code
The final step is to generate the actual C# code. Take the steps below:

1. Go to the Project menu and click Merge Program Code from UModel Project. A dialog box
appears where you can adjust whether changes in code should be merged with those in the code or
overwrite them (if applicable). For the scope of this example, you can select Overwrite since a new
project is getting generated.

2. To include the class documentation as comments in the generated code, click Project | Project
Settings and select the Write Documentation as DocComments check box. For more information,
see Code Generation Options .

3. Click OK. The Messages window displays the code engineering result (see below).

174

© 2018-2024 Altova GmbH

Generating Program Code 181Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

If you have added any documentation to the MusicStore class, notice that it appears as code comments in the
generated code:

using System;

using System.Collections.Generic;

namespace SampleNamespace

{
 /// This class models a music store. It contains methods to manage assets such as

music tracks or artists.

 public class MusicStore

 {
 public DateTime LastUpdated;

 public List<Artist> CreateTestArtists()

 {
 // TODO add implementation

 }
 }

}

6.2.6 Example: Generate Java Code

This example illustrates how to create a new UModel project and generate program code from it (a process
known as "forward engineering"). For the sake of simplicity, the project will be very simple, consisting of only
one class. You will also learn how to prepare the project for code generation and check that the project uses
the correct syntax. After generating program code, you will modify it outside UModel, by adding a new method
to the class. Finally, you will learn how to merge the code changes back into the original UModel project (a
process known as "reverse engineering").

The code generation language used in this tutorial is Java; however, similar instructions are applicable for other
code generation languages.

Creating a new UModel project
You can create a new UModel project as follows:

182 Projects and Code Engineering Generating Program Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· On the File menu, click New. (Alternatively, press Ctrl+N, or click the New toolbar button.)

At this stage, the project contains only the default "Root" and "Component View" packages. These two
packages cannot be deleted or renamed. "Root" is the top grouping level for all other packages and elements in
the project. "Component View" is required for code engineering; it typically stores one or more UML
components that will be realized by the classes or interfaces of your project; however, we didn't create any
classes yet. Therefore, let's first design the structure of our program, as follows:

1. Right-click the "Root" package in the Model Tree window and select New Element | Package from
the context menu. Rename the new package to "src".

2. Right-click "src" and select New Element | Package from the context menu. Rename the new
package to "com"

3. Right-click "com" and select New Element | Package from the context menu. Rename the new
package to "nanonull".

4. Right-click "nanonull" and select New Element | Class from the context menu. Rename the new class
to "MyClass".

Preparing the project for code generation
To generate code from a UModel model, the following requirements must be met:

· A Java, C#, or VB.NET namespace root package must be defined.
· A component must exist which is realized by all classes or interfaces for which code must be

generated.
· The component must have a physical location (directory) assigned to it. Code will be generated in this

directory.
· The component must have the property use for code engineering enabled.

All of these requirements are explained in more detail below. Note that you can always check if the project
meets all code generation requirements, by validating it:

· On the Project menu, click Check Project Syntax. (Alternatively, press F11.)

If you validate the project at this stage, the Messages window displays a validation error ("No Namespace Root
found! Please use the context menu in the Model Tree to define a Package as Namespace Root"). To resolve
this, let's assign the package "src" to be the namespace root:

· Right-click the "src" package and select Code Engineering | Set As Java Namespace Root from

© 2018-2024 Altova GmbH

Generating Program Code 183Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

the context menu.
· When prompted that the UModel Java Profile will be included, click OK.

Notice the package icon has now changed to , which signifies that this package is a Java namespace root.
Additionally, a Java Profile has been added to the project.

The actual namespace can be defined as follows:

1. Select the package "com" in the Model Tree window.
2. In the Properties window, enable the <<namespace>> property.

3. Repeat the step above for the "nanonull" package.

184 Projects and Code Engineering Generating Program Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Notice that the icon of both "com" and "nanonull" packages has now changed to , which indicates these are
now namespaces.

Another requirement for code generation is that a component must be realized by at least a class or an
interface. In UML, a component is a piece of the system. In UModel, the component lets you specify the code
generation directory and other settings; otherwise, code generation would not be possible. If you validate the
project at this stage, a warning message is displayed in the Messages window: "MyClass has no
ComponentRealization to a Component - no code will be generated". To solve this, a component must be
added to the project, as follows:

1. Right-click "Component View" in the Model Tree window, and select New Element | Component from
the context menu.

2. Rename the new Component to "nanonull".

3. In the Properties window, change the directory property to a directory where code should be
generated (in this example, "src\com\nanonull"). Notice that the property use for code engineering
is enabled, which is another prerequisite for code generation.

4. Save the UModel project to a directory and give it a descriptive name (in this example, C:
\UModelDemo\Tutorial.ump).

© 2018-2024 Altova GmbH

Generating Program Code 185Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

Note: The code generation path can be absolute or relative to the .ump project. If it is relative as in this
example, a path such as src\com\nanonull would create all the directories in the same directory
where the UModel project was saved.

We have deliberately chosen to generate code to a path which includes the namespace name; otherwise,
warnings would occur. By default, UModel displays project validation warnings if the component is configured to
generate Java code to a directory which does not have the same name as the namespace name. In this
example, the component "nanonull" has the path "C:\UModelDemo\src\com\nanonull", so no validation
warnings will occur. If you want to enforce a similar check for C# or VB.NET, or if you want to disable the
namespace validation check for Java, do the following:

1. On the Tools menu, click Options.
2. Click the Code Engineering tab.
3. Select the relevant check box under Use namespace for code file path.

The component realization relationship can be created as follows:

· In the Model Tree window, drag from the MyClass created previously and drop onto component
nanonull.

The component is now realized by the project's only class MyClass. Note that the approach above is just one of
the ways to create the component realization. Another way is to create it from a component diagram, as
illustrated in the tutorial section Component Diagrams .

Next, it is recommended that the classes or interfaces which take part in code generation have a file name.
Otherwise, UModel will generate the corresponding file with a default file name and the Messages window will
display a warning ("code file name not set - a default name will be generated"). To remove this warning:

1. Select the class MyClass in the Model Tree window.
2. In the Properties window, change the property code file name to the desired file name (in this

example, MyClass.java).

52

186 Projects and Code Engineering Generating Program Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Including the JDK types
Although this step is optional, it is recommended that you include the Java Development Kit (JDK) language
types, as a subproject of your current UModel project. Otherwise, the JDK types will not be available when you
create the classes or interfaces. This can be done as follows (the instructions are similar for C#, C++, and
VB.NET):

1. On the Project menu, click Include Subproject.
2. Click the Java tab and select the Java JDK 9 (types only) project.

© 2018-2024 Altova GmbH

Generating Program Code 187Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

3. When prompted to include by reference or as a copy, select Include by reference.

Generating code
Now that all prerequisites have been met, code can be generated as follows:

1. On the Project menu, click Merge Program Code from UModel Project. (Alternatively, press F12.)
Note that this command will be called Overwrite Program Code from UModel Project if the
Overwrite Code according to Model option was selected previously on the "Synchronization
Settings" dialog box illustrated below.

188 Projects and Code Engineering Generating Program Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2. Leave the default synchronization settings as is, and click OK. A project syntax check takes place
automatically, and the Messages window informs you of the result:

Modifying code outside of UModel
Generating program code is just the first step to developing your software application or system. In a real life
scenario, the code would go through many modifications before it becomes a full-featured program. For the
scope of this example, open the generated file MyClass.java in a text editor and add a new method to the
class, as shown below. The MyClass.java file should look as follows:

package com.nanonull;

public class MyClass{

 public float sum(float num1, float num2){

 return num1 + num2;

 }
}

MyClass.java

Merging code changes back into the model
You can now merge the code changes back into the model, as follows:

1. On the Project menu, click Merge UModel Project from Program Code (Alternatively, press Ctrl +
F12).

© 2018-2024 Altova GmbH

Generating Program Code 189Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

2. Leave the default synchronization settings as is, and click OK. A code syntax check takes place
automatically, and the Messages window informs you of the result:

The operation sum (which has been reverse engineered from code) is now visible in the Model Tree window.

190 Projects and Code Engineering Generating Program Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

6.2.7 Example: Generate C++ Code

This example shows you how to generate C++ code with UModel. You will first create a simple UModel project,
configure it for code generation, and then generate the actual code.

Create a new UModel project and its structure
On the File menu, click New. This creates an empty project with two default packages ("Root" and
"Component View"). Next, right-click the "Root" package, and create a few more packages, as illustrated
below. (If you are completely new to the UModel graphical user interface, see the UModel Tutorial and How
to Model... chapters to get started.)

In this example, the "Design View" package acts as a container for whatever is going to be the design part of
your model (classes and class diagrams, for example), while the "MyNamespace" package will act as a

17

107

© 2018-2024 Altova GmbH

Generating Program Code 191Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

namespace for all classes that are to be created. In general, however, the package structure is not prescriptive
in any way; you may organize your packages in a different way if so required.

Right-click the "Design View" package and select Code Engineering | Set as C++ Namespace Root from
the context menu. When prompted by UModel that the C++ profile will be applied to the package, click OK to
confirm. The C++ profile built into UModel is now included to the project.

Next, click the "MyNamespace" package and select the <<namespace>> check box in the Properties window.

This applies the "namespace" stereotype to the package and its icon changes to . You can now create
classes under this namespace.

Create C++ classes
You can either create classes directly from the Model Tree window, or from a class diagram. For the scope of
this example, create a class diagram from the Diagram Tree window as shown below:

This example assumes that all your classes must be generated under the "MyNamespace" namespace.
Therefore, when prompted to select an owner for the diagram, select the "MyNamespace" package (as
illustrated below). If you choose a different package, any elements that you add to the diagram will belong
to the same package as the diagram (which may or may not be the intended goal).

192 Projects and Code Engineering Generating Program Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Next, create the classes, types, and other elements required in your model, for example, a simple diagram that
illustrates a Car class:

Of particular interest in the diagram above is the enumeration ColorType and the data type string. These
types are not C++ fundamental types, so they are not included in the C++ profile built into UModel. For this

reason, they must be created in the model explicitly, using the Enumeration and DataType toolbar
buttons, respectively. By contrast, fundamental types (such as int or bool) are automatically available for

© 2018-2024 Altova GmbH

Generating Program Code 193Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

selection as you type, see also Type Autocompletion in Classes . For step-by-step instructions about
designing classes and their members, see Class Diagrams , as well as the How to Model... chapter.

Configure the project for code engineering

Right-click the "Component View" package and add a new Component (that is, a software component) to
it. Click the new software component and, in the Properties window, set the following properties:

· Code language of the component ("C++ 14", in this example)
· Code generation directory ("C:\codegen", in this example).

Also, ensure that the "use for code engineering" property is set to True.

Next, create a ComponentRealization relationship between the classes from which C++ code must be
generated (Car and ColorType, in this example) and the code engineering component. This can be done either
from a Component diagram , or, more simply, as follows:

· In the Model Tree window, click the class to be realized by the component (Car and ColorType, in this
example) and drag and drop onto the code engineering component (Component1).

133

30 107

52

194 Projects and Code Engineering Generating Program Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Perform the same step for the ColorType class.

Note: In case you forget to create a ComponentRealization relationship for a class, UModel still
generates the corresponding code file, even though warnings will be issued in the Messages window.
This setting is configurable from Tools | Options | Code Engineering tab (the check box name is
Generate missing ComponentRealizations).

Generate C++ code
You can now generate the actual C++ code, as follows:

1. On the Project menu, click Merge Program Code from UModel Project. (Alternatively, press F12).
A dialog box appears where you can adjust whether changes in code should be merged with those in
the code, or overwrite them (if applicable). For the scope of this example, the default settings are OK,
since code is generated for the first time. For more information, see Code Synchronization Settings
.

2. Click OK. The Messages window displays the code engineering result.

229

© 2018-2024 Altova GmbH

Generating Program Code 195Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

6.2.8 SPL Templates

When generating C++, C#, Java, or VB.NET code, as well as XSD schemas, UModel uses a templating
language called SPL (Spy Programming Language). The SPL templates dictate the syntax of the generated
code files. It is possible to customize the SPL templates, for example, in order to slightly change the syntax of
the generated code. Editing SPL templates is meaningful only for languages supported by UModel. If you want
to create completely new SPL templates for other languages, it would be possible to generate new code but it
would not be possible to update existing code (since the language syntax would be unknown to UModel).

The default SPL templates are available in the UModelSPL directory relative to the program installation
directory.

Do not modify the existing default SPL templates, since these directly affect the default code generation.
Should you need to customize code generation, create custom templates instead, as shown below.

SPL templates are only used when new code is generated (that is, when new classes, operations etc have
been added to the model, and then code generation takes place). Any existing code is not affected by the SPL
templates.

For an introduction to SPL, see SPL Reference .

To modify the provided SPL templates:

1. Locate the provided SPL templates in the UModel installation directory ("Program Files"), for
example: ...\UModel2024\UModelSPL\Java\Default.

2. Copy the SPL files you want to modify into the parent directory. For example, if you want to modify
the appearance of a Java class in generated code, copy the Class.spl file from ...
\UModel2024\UModelSPL\Java\Default to ...\UModel2024\UModelSPL\Java.

3. Make the changes to the .spl file(s) and save them.

To use the custom SPL templates:

1. Select the menu option Project | Synchronization settings.
2. Select the User-defined override default check box in the SPL templates group.

1333

196 Projects and Code Engineering Importing Source Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

6.3 Importing Source Code

Existing Java, C#,C++, and VB.NET program code can be imported into UModel (a process also known as
"reverse engineering"). The following project types can be imported into UModel:

· Java projects (Eclipse .project files, NetBeans project.xml files, and JBuilder .jpx files)
· C# and VB.NET projects (Visual Studio .sln, .csproj, .csdprj, .vbproj, .vbp as well as Borland .bdsproj

project files)
· C++98, C++11, C++14, C++17 projects (this includes Visual Studio .vcxproj and .sln project files

created with Visual Studio 2010, 2012, 2013, 2015, 2017, and 2019).

In addition to importing source code from a source project, it is also possible to import code from a source
directory. Importing from a source directory works in a similar way, and is particularly useful when your code
doesn't use any of the project types listed above. For an example of importing a source directory, see Reverse
Engineering (from Code to Model) .

It is possible to import source code either into a new, empty UModel project or into an existing UModel project.
During the import, you can specify whether the imported elements should overwrite those in the model (if any),
or be merged into the model. Optionally, Class and Package diagrams can be generated automatically as you
import code.

The import wizard includes various import options specific to each platform (Java, .NET, C++). For example, if
the imported Java/C#/VB.NET code contains comments, these can be optionally converted to UModel
documentation. For a complete list of options, see Code Import Options .

Once your C++, C#, VB.NET, or Java code has been imported into UModel, it is possible to modify the model
(for example, add new classes, or rename properties and operations), and optionally synchronize it back with
the original code, thus achieving full round-trip engineering, see Synchronizing the Model and Source Code .

Prerequisites
UModel includes several built-in sub-projects that were created specifically for code engineering and which
include the data types applicable to each supported language and platform. Before attempting to import source
code into a UModel project, it is recommended to include the built-in UModel subproject applicable to the
corresponding programming language and platform, see Including Subprojects . Otherwise, certain data
types will not be recognized and will be placed after import into a separate package called "Unknown
externals".

To include a subproject with the required language data types:

1. On the Project menu, click Include Subproject.
2. Click the tab applicable to the source language and platform (for example, Java 8.0, C# 6.0, VB 9.0),

and then click OK.

72

199

225

163

© 2018-2024 Altova GmbH

Importing Source Code 197Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

Note the following:

· When you include a data type subproject for a particular language, UModel also automatically adds the
profile of that language to your project. The profile subproject (.ump) contains only the most basic
types and is different from the data type subproject (also .ump) which contains more extensive type
definitions.

· If you perform the import without including a data type subproject, the import operation will take place
nonetheless, and UModel will also automatically include the profile of that language to the project.
However, any unknown types will be placed into the "Unknown externals" package. To solve this, make
sure to include the data types subproject for the required language and platform, as explained above.

· For C++, there is no subproject with all possible C++ data types from the Standard Template Library
(STL). Instead, there is a C++ language profile with basic (fundamental) types. You can either add this
subproject manually as shown above, or it is automatically added to the project when you import C++
code or when you right-click a package and select the context menu command Code Engineering |
Set as C++ Namespace Root.

Importing source code from a project
1. On the Project menu, click Import Source Project. (Alternatively, if you would like to import code

from an existing directory, select Import Source Directory.)
2. Select the language version of the source project (for example, Java 8.0, C# 6.0, or C++14).

3. Click Browse and select the source project file.
4. Set or change the required import options, see also Code Import Options (note that these options

depend on the language selected in step 2).
5. Click Finish to complete the wizard.

For a step-by-step example, see Example: Import a C# Project .

199

205

198 Projects and Code Engineering Importing Source Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

6.3.1 Reverse Engineering C++ Code

When it comes to reverse engineering, C++ projects are very big in size compared to Java, C#, or VB.NET
projects. In general, it is recommended to use the reverse engineering function for small to mid-sized C++
projects. For big C++ projects, the import operation would take a very long time (for example, 15 minutes or
more).

To import C++ projects into UModel, use the menu command Project | Import Source Project.

To import C++ projects authored in an IDE other than Visual Studio, use the menu command Project | Import
Source Directory instead of Project | Import Source Project. For such projects, you will need to specify the
preprocessor directives, include paths, and compiler settings from the import dialog box, see Code Import
Options .

The include directories to be searched by the parser can be defined either at project level, from Code Import
Options , or globally. To add include directories globally, set the environment variable UMODEL_CPP_INCLUDE
to a list of directories, separated by ";". For example, you can add the include path "C:\example\include" as
follows:

1. Open the Control Panel and start typing "environment variables" in the search box.
2. Click Edit the system environment variables.
3. Click Environment Variables.

199

199

© 2018-2024 Altova GmbH

Importing Source Code 199Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

4. Click New, and add a new variable with the name UMODEL_CPP_INCLUDE and the value C:
\example\include.

5. Click OK to close all dialogs.
6. Restart UModel.

For C++ projects written with Visual Studio, the preprocessor directives and include paths are detected
automatically from the .vcproj files. Microsoft Visual C++ compiler compatibility is supported starting with
Visual Studio 6.0 up to Visual Studio 2019 (note this compatibility refers to the code dialect used in the source
.cpp files; your Visual Studio project must be saved with Visual Studio 2010, 2012, 2013, 2015, 2017 or 2019
to qualify for import).

Note the following:

· If UModel encounters an unknown data type during the import operation, the Messages window
displays a warning, and the type appears in the model as int. This is unlike C# or Java, where
unknown types are placed in the "Unknown Externals" package.

· When you import C++ code into UModel, a built-in UModel profile for C++ is automatically added to the
project. The profile includes the C++ basic (fundamental) data types and stereotypes required for code
engineering, and is similar to profiles available for other languages.

· Support for C++ attributes is limited. Only standard built-in attributes such as [[noreturn]],
[[carries_dependency]], [[deprecated]] will be recognized. Custom (user-defined) attributes will
be ignored.

Once the C++ code has been imported into UModel, you can make changes to it from the model, and then
propagate the changes back to the code (round-trip engineering). As with other code engineering languages,
the original source code implementation (for example, method bodies) remains unchanged after round-trip
engineering. However, any data types or member names that you've changed in the model (for example,
renamed classes) will be reflected in the code. For more information, see Example: Generate C++ Code
and Synchronizing the Model and Source Code .

6.3.2 Code Import Options

When importing program code into a UModel project, you may need to set or change the options listed below.
These options are available on the dialog box which appears when you run the menu command Project |
Import Source Project or Project | Import Source Directory.

190

225

200 Projects and Code Engineering Importing Source Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Import Source Project dialog box

Most of the options on the dialog box above can also be changed at any time later, see Code Synchronization
Settings .

The following options are applicable to all project types, regardless of the language or platform:

Option Description

Import project relative to UModel
project file

By default, this option is selected, which means that a relative path
dependency will be established between the UModel project and
the imported source code project.

After source code is imported, a UML component is generated
automatically in the UModel project (it is available in the Model
Tree, as a child of "Component View"). This component realizes
the interfaces or classes to be engineered; it also specifies the
code engineering options, including the path to the source project
or directory. This will be a relative path if Import project relative
to UModel project file is selected; otherwise, it will be an
absolute path.

229

© 2018-2024 Altova GmbH

Importing Source Code 201Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

Option Description

Merge Code into Model / Overwrite
Model according to Code

If Merge... is selected, potential name conflicts (such as package
or class names) will be resolved by appending a number to the
element that is being imported.

If Overwrite... is selected, and if there are name conflicts, the
imported element will take precedence over (overwrite) the one
existing in the project.

Enable diagram generation Optionally, select this check box if you want to generate Class and
Package diagrams from the imported classes. When this check
box is selected, the import wizard includes additional steps which
enable you to customize the look of the generated diagrams.

The following options are applicable only to C++ projects:

202 Projects and Code Engineering Importing Source Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

C++ Project Settings dialog box

Option Description

Microsoft Visual C++
Compatibility

This option is applicable only when importing C++ code compiled with
Visual Studio; it lets you specify the Microsoft Visual C++ compiler
compatibility. Set this to the compiler version (code dialect) used by your
Visual Studio C++ project. Be aware that this setting refers to the code
dialect of the source code files; the Visual Studio project (or solution) itself
must be saved with Visual Studio 2010 or later to qualify for import. To
import source code authored in an IDE other than Visual Studio, use the
Project | Import Source Directory command.

© 2018-2024 Altova GmbH

Importing Source Code 203Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

Option Description

Additional compiler options
(clang)

Internally, UModel uses the clang compiler version 3.8 to read C++ code.
Additional code parsing options can be specified in this text box if
necessary (if applicable to UModel), see also clang documentation
(http://releases.llvm.org/3.8.1/tools/docs/UsersManual.html#command-line-
options).

Include directories Use this option to specify any additional directories where UModel should
look for C++ classes when reverse engineering the C++ code. Specifying
include directories is optional if the source project is a Visual Studio
project.

If you select the auto-detect and use system include directories check
box, UModel will attempt to detect any include directories defined system-
wide, in addition to those explicitly mentioned in this dialog box.

It is also possible to define the include directories paths from the
UMODEL_CPP_INCLUDE system environment variable, see Reverse
engineering C++ projects . In this case, the include directories defined in
the UMODEL_CPP_INCLUDE system environment variable will replace those
which would otherwise be included if the auto-detect and use system
include directories check box is selected.

Preprocessor definitions Use this option to specify any C++ preprocessor directives required to
compile the code. If the source project is a Visual Studio project, the
preprocessor directives are detected automatically.

Import mode The option read C++ source files will parse all files of the source project.
This is the default option. If you want to import only C++ libraries, select
the option read C++ headers only, which will also make the import
operation faster.

By default, .h files are treated as C++ headers. Clear the check box treat
.h files as C++ headers if the source project is using another extension for
header files.

The following options are applicable only to C# and VB.NET projects:

Option Description

DocComments as
Documentation

Select this check box to convert comments found in the C# code into
UModel element documentation (see also Documentation).

Resolve aliases This check box is enabled by default. If your C# or VB.NET code contains
namespace or class aliases like in the code listing below, it is
recommended to keep this check box selected. Otherwise, associations
and dependencies involving aliased classes and namespaces in your code
may not be detected automatically by UModel during the import (and thus
would not be present in the model).

198

93

http://releases.llvm.org/3.8.1/tools/docs/UsersManual.html#command-line-options
http://releases.llvm.org/3.8.1/tools/docs/UsersManual.html#command-line-options

204 Projects and Code Engineering Importing Source Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Option Description

using Q = System.Collections.Generic.Queue<String>;

Q myQueue;

Example of an alias in C# code

During the source code import, any potentially conflicting aliases are added
to the "Unknown externals" package of the UModel project if their use is
unclear.

When you update the code back from the model (round-trip engineering),
aliases will be retained as they exist in the generated code.

The Resolve aliases option can be changed at any time later, see Code
Synchronization Settings . If you enable this option after (not before) the
import operation, UModel prompts you to update the project from the code
again, since the option also has consequences for forward engineering.

Defined symbols If your C# or VB.NET code includes symbols that are defined through
preprocessor directives such as #if, #endif, you can instruct UModel to
take them into account while reverse engineering code.

#if DEBUG
 static void DisplayMessage()
 {
 Console.WriteLine("Please wait...");
 }
#endif

Example of a conditional compilation symbol in C# code

For example, if you reverse engineer the code above, the method
DisplayMessage() will only be imported into the model if you specified the
DEBUG symbol.

To specify conditional compilation symbols, enter them in the "Defined
symbols" text box, delimited by a semicolon.

During the reverse engineering process, UModel outputs all symbols used
in the source code in the Messages window.

The following option is applicable only to Java projects:

Option Description

JavaDocs as Documentation Select this check box to convert JavaDocs-style comments found in the
code into UModel element documentation (see also Documentation).

Note: Only comments applicable for Java classes, interfaces, operations,
and properties are converted.

229

93

© 2018-2024 Altova GmbH

Importing Source Code 205Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

6.3.3 Example: Import a C# Project

This example illustrates how to import into UModel a sample C# solution created with Visual Studio. The
source solution is available as a .zip archive at the following path: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Tutorial\Anagram_CSharp.zip. It
is not necessary to compile the solution with Visual Studio before importing it; however, make sure to unzip the
Anagram_CSharp.zip archive to a folder of your choice before proceeding to the steps below.

Our goal in this example is to reverse engineer the C# solution and create a UModel project from it. As we
import code, we will opt to generate class and package diagrams automatically.

Step 1: Create a new project
It is possible to import source code either into existing or new UModel projects. For the scope of this example,
we will be importing code into a new UModel project.

· On the File menu, click New (Alternatively, press Ctrl + N or click the New toolbar button).

Step 2: Include the C# language types
The source project was written in C# with Visual Studio 2015, so we will include a built-in UModel project that
contains the C# 6.0 language types (since the C# language version corresponding to Visual Studio 2015 is
6.0). Earlier versions of C# are also likely to work with our C# example solution.

1. On the Project menu, click Include Subproject.
2. Click the C# tab.

3. Select the project Microsoft .NET 4.6 for C# 6.0 (types only).ump, and click OK.

206 Projects and Code Engineering Importing Source Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

4. When prompted to select the kind of include (by reference or as a copy), leave the default option as is.

As a result, both the C# language types and the C# language profile are included and visible in the Model Tree:

Step 3: Import the C# solution
1. On the Project menu, click Import Source Project.

© 2018-2024 Altova GmbH

Importing Source Code 207Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

2. Select C# 6.0 as language.

3. Click Browse next to Project file and browse for the solution .sln file.
4. Select the DocComments as Documentation check box (this will import the code comments found

on operations or properties into the model).
5. Since we are importing code into a new UModel project, select the option Overwrite Model

according to Code (the other option Merge Code into Model is preferable when you import into an
existing project).

6. Click Next.
7. Select the diagram generation options as shown below, and click Next. (These options are applicable

to Class diagrams generated automatically on code import.)

208 Projects and Code Engineering Importing Source Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

8. Select the diagram generation options as shown below, and click Finish. (These options are applicable
to Package diagrams generated automatically on code import.)

© 2018-2024 Altova GmbH

Importing Source Code 209Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

9. Enter a name and select a destination folder for the new UModel project, and click Save (by default,
this dialog box displays the same folder as the solution you are importing).

210 Projects and Code Engineering Importing Source Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The progress of the reverse engineering operation is shown in the Messages window.

Also, when code import completes, all generated diagrams are opened automatically since this option was
selected before code generation. All generated diagrams are available in the Diagram Tree:

© 2018-2024 Altova GmbH

Importing Source Code 211Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

Since we opted to generate documentation from the source code, the imported documentation is visible in the
Documentation window if you click, for example, the Create operation of the Anagram class:

Note: The documentation is added only if the option DocComments as Documentation was selected while
importing the C# solution (see "Step 3: Import the C# Solution" above).

212 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

6.4 Importing Java, C# and VB.NET Binaries

UModel supports the import of C# , Java and VB.NET binaries. This is extremely useful when working with
binaries from a third party, or if the original source code has become unavailable. Note the following:

· To import Java binary files, a supported version of the Java Runtime Environment (JRE) or
Development Kit (JDK) must be installed. Type import is supported for Java .class files or .jar class
archives adhering to the Java Virtual Machine Specification. This includes Java Virtual Machines such
as OpenJDK, SapMachine, Liberica JDK, and others, see Adding Custom Java Runtimes .

· To import C# or VB.NET binary files, .NET Framework, .NET Core, .NET 5, or .NET 6 must be
installed, as applicable. For best results, select the any (use disassembler) option on the import
dialog box. After import, any unrecognized types will be placed in the "Unknown externals" package.
To prevent (or decrease the number of) unknown externals, apply the UModel profile specific to the
version of your code engineering language (for example, ".NET 5 for C# 9.0") before the import. See
also Applying UModel Profiles .

· The import of obfuscated binaries is not supported.

The table below lists the available approaches for importing binary types into a UModel project.

C#, VB.NET Java

Import assembly file (.dll, .exe) Import class file archive (.jar, .zip)

Import assembly from Global Assembly Cache
(GAC)

Import class file (.class) from a package root folder

Import assembly from Visual Studio .NET
References

Import class archives from class path

Import class archives from Java runtime (only for Java
versions up to and including Java 8)

You can import binary files by running the Project | Import Binary Types menu command. Optionally, you
can have UModel generate class and package diagrams from the imported types. For examples, see Example:
Import .NET GAC Assemblies and Example: Import Java .class Files .

In addition, you can import binary files from the command line (see UModel Command Line Interface) and
programmatically using the UModel API (see Importing Binary Types Programmatically).

When importing binary files into a UModel project, you can specify various import options, including:

· You can import any referencing types, in addition to the types defined in the binary file. In addition, you
can restrict importing referencing types to specific Java packages and .NET namespaces.

· You can skip type members while importing. For example, you can import classes and interfaces
without their properties and methods.

· You can import types according to their accessibility modifiers (such as private or public). For
example, you can import only public classes and skip private, protected, and internal classes.

For reference to all options, see Import Binary Options .

13

213

159

217 219

100

836

213

© 2018-2024 Altova GmbH

Importing Java, C# and VB.NET Binaries 213Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

6.4.1 Adding Custom Java Runtimes

By default, UModel detects JDKs and JREs if they are installed on the local machine. Consequently, these
appear in the list of Java runtimes when you start the binary import wizard. This is the case for JDKs and JREs
released by Oracle, which come with an installer and register themselves in the system when installed.
However, other Java Virtual Machine distributions that do not have an installer must be added manually into
UModel. The latter include Oracle OpenJDK, SapMachine, and others.

To add custom Java runtimes to UModel:

1. On the Project menu, click Import Binary Types.
2. Select Java as language.
3. Expand the Runtime drop-down list, and click Edit user Java runtime locations.
4. Click Append and browse for the directory of the respective JDK.

5. Click OK.

The selected runtime now appears in the Runtime list, and you can select it whenever you need to import
binary files targeting that runtime.

Note that these settings affect only the import of binary files. For information about adding a Java Virtual
Machine path to be used for JDBC connectivity and Java code generation and import, see Java Virtual Machine
Settings .

6.4.2 Import Binary Options

When you run the menu command Project | Import Binary Types, one of the wizard steps prompts you to
specify the binary import options. The options you can set are described below. Note that the dialog box
options may be slightly different, depending on whether you are importing .NET or Java binaries.

757

214 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Import Binary Options dialog box

Automatic type inclusion
.NET or Java binaries may reference various external assemblies or packages. Select the option add all
referenced types... if you would like to import all types referenced by the types included in the binary file.

To import referenced types only for specific Java packages or .NET namespaces, enter those packages or
namespaces in the adjacent text box. To separate multiple packages or namespaces, use the comma, semi-
colon, or space characters.

For example, let's assume that the source .NET .dll file references types from System.Reflection and
System.Data namespaces. If you would like to import types from the System.Reflection namespace but not
from the System.Data namespace, select the option add all referenced types, optionally restricted to the
following packages and enter "System.Reflection" in the text box.

Content restriction
Select the option import only types to skip members such as fields, operations, properties, and so on.

Select the option import only elements with visibility greater than or equal to to import types and type
members according to their visibility. The table below lists visibility of types, beginning with types with least

© 2018-2024 Altova GmbH

Importing Java, C# and VB.NET Binaries 215Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

visibility. For example, selecting "private" will import all types, whereas selecting "public" will import only public
types and type members.

Note: If the check box is not selected, all types will be imported, regardless of their visibility.

.NET Java

private private

internal package (default visibility when
no explicit modifier exists)

protected protected

public public

The option suppress attribute sections is applicable for .NET binaries. By default, UModel imports the C# or
VB.NET attributes detected in the binary. Select the suppress attribute sections option if you don't want to
import attributes. Otherwise, members that were decorated with attributes in the original source code will have
the <<attributes>> stereotype applied to them after you import the binary into the model. If attributes are
imported, you can display them on the diagram as tagged values, by right-clicking the class on the diagram
and selecting Tagged Values | All from the context menu. For more information, see Stereotypes and Tagged
Values .

The option suppress annotation modifiers is applicable for Java binaries. By default, UModel imports Java
annotations detected in the binary, provided that their retention policy was defined as RUNTIME (not CLASS or
SOURCE). If you don't want to import annotations, select the suppress annotation modifiers option. If
annotations are imported, members that had annotations in the original source have the <<annotations>>
stereotype, and annotations appear as tagged values, as illustrated below.

Attribute section styles
These options are applicable to .NET binaries only. As previously mentioned, if types or type members in the
original source code were decorated with attributes, these are imported as tagged values in UModel.

The option create only one attribute per attribute section is best illustrated by an example. Let's assume
that the original C# source code defined a method with two attributes:

using System;
using System.Diagnostics;

namespace MyNamespace

145

216 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

{
 class Program
 {
 [Conditional("VERBOSE"), Conditional("TERSE")]
 static void reportHeader()
 {
 Console.WriteLine("This is the header");
 }

 static void Main(string[] args)
 {
 reportHeader();
 }
 }
}

If the option create only one attribute per attribute section is enabled upon importing from the binary file,
then each attribute would appear on a separate line inside the "Tagged Values" element :

Otherwise, attributes would appear as comma-separated:

Finally, the option suppress 'Attribute' suffix on attribute type names removes the 'Attribute' suffix of an
attribute type. For example, if this option is selected, an attribute type defined in the original code as
System.Xml.Serialization.XmlTypeAttribute would be imported as
System.Xml.Serialization.XmlType.

© 2018-2024 Altova GmbH

Importing Java, C# and VB.NET Binaries 217Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

6.4.3 Example: Import .NET Assemblies

This example shows you how to import binary types from the .NET Global Assembly Cache (GAC) into a
UModel C# project. The instructions are similar if you want to import binary types from a standalone .dll or
.exe file. To find out out how to import Java .class files, see the next topic .
To import binary files from the .NET Global Assembly Cache:

1. Go the Project menu and click Import Binary Types (see screenshot below).

2. Choose the target language of the UModel project (C#, VB.NET, Java). In this example, C# is selected,
since we are importing a .NET GAC assembly.

3. If you would like to set a specific language version for the imported UModel project, select it from the
adjacent text box. In this example, C# 7.3 is selected.

4. Optionally, select a .NET runtime version from the Runtime drop-down list. The default option is any
(use disassembler). In this case, UModel will choose a reflection API that is most appropriate for the
imported binary.

5. If you import binary types into a new project, select either Merge Code into Model or Overwrite
Model according to Code.

6. Optionally, to generate class diagrams and package diagrams from the imported binary types, select
the Enable diagram generation check box. If you select this option, more diagram generation
options will be available in the next steps. See Generating Class Diagrams and Generating
Package Diagrams .

7. Click Next.

219

442

451

218 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

8. Click Add | Assembly from Global Cache (GAC) (see screenshot below). Note that the option
Assembly from Global Cache (GAC) is only available for .NET Framework 2.x-4.x. The GAC is not
relevant to .NET Core, .NET 5 and later versions. For more information, see the Microsoft
documentation. In order to import assembly files for .NET Core, .NET 5 and .NET 6, you will need to
extract the required files from the GAC. Then click Add | Assembly File (DLL/EXE), select the
assembly files manually and add them to the project.

9. Select an assembly from the dialog box. In this example, the EventViewer assembly is selected (see
screenshot below).

10. Select the types you would like to import and click Next. For more information about other options of
the Import Binary Selection dialog box, see the notes below.

11. Select the import options as applicable. For more information, see Import Binary Options .
12. If you enabled diagram generation in Step 6, click Next and configure the options applicable to diagram

generation. Otherwise, click Finish.

UModel performs the conversion and displays a progress log in the Messages window. If the conversion of
binary types is not possible, the error text may provide additional information. For example, the binary file you
are trying to import is targeting a runtime newer than the one selected in the Import Binary Types dialog box.
In this case, select a newer runtime version and try again.

Notes:

· The text box Override of PATH variable... in the Import Binary Selection dialog box is applicable
only to Java. Optionally, paste here any Java class paths that must be queried in addition to those read
from the CLASSPATH environment variable. Alternatively, click Add and browse for the required folders.

· The check box use 'reflection only' context... in the Import Binary Selection dialog box is
applicable only when you import a C# or VB.NET binary. This is useful when importing a library which
has dependencies that cannot be resolved or loaded. Selecting this check box will not execute any
static initializer code, which might cause errors when importing.

213

https://docs.microsoft.com/en-us/dotnet/core/compatibility/core-libraries/5.0/global-assembly-cache-apis-obsolete
https://docs.microsoft.com/en-us/dotnet/core/compatibility/core-libraries/5.0/global-assembly-cache-apis-obsolete
https://docs.microsoft.com/en-us/archive/blogs/akukreja/get-dll-out-of-the-gac

© 2018-2024 Altova GmbH

Importing Java, C# and VB.NET Binaries 219Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

6.4.4 Example: Import Java .class Files

This example shows you how to import compiled Java .class files into UModel. In this example, the source
Java .class files originate from a tutorial Java project that was created with UModel, but you can also use other
.class files as an alternative.

Compiling UModel-generated Java code (optional)
This section shows you how to compile a demo UModel-generated Java project with Eclipse. Note that this
step is purely optional, the goal here is to obtain some compiled .class files. You can skip it if you already have
readily available Java .class files. In this example, Eclipse is chosen as compilation environment for
convenience; however, you can use the Java command line or some other Java development environment to
achieve the same result.

1. If you haven't done that already, create a simple Java project with UModel, as shown in Example:
Generate Java Code . This is a very simple example consisting of a Java package with only one
class. When you complete the example, the directory C:\UModelDemo\src will contain the required
Java source code.

2. Run Eclipse. On the File menu, click Import.

3. Select Projects from Folder or Archive, and click Next.

4. Enter C:\UModelDemo as directory, and click Finish.

181

220 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

5. Right-click the com.nanonull package in Eclipse's Package Explorer and select New | Class from
the context menu.

6. Enter a class name ("MainClass", in this example), and select the public static void main... check
box.

7. On the Run menu, click Run.

You have now finished compiling the UModel-generated Java project. The compiled .class files should now be
available in the bin sub-directory of your project's directory.

Finally, take note of the Java version used for compilation—this is important if you intend to import binary types
later. By default, if you did not modify your Eclipse project properties, it is likely that it was compiled with the
default Java version available to Eclipse. To view the default Java version, do the following in Eclipse:

© 2018-2024 Altova GmbH

Importing Java, C# and VB.NET Binaries 221Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

1. On the Window menu, click Preferences.
2. Click Java, and then click Installed JREs.

Importing Java .class files
If you already have binary .class files such as the ones compiled previously, you can now proceed to importing
them into UModel.

1. Create a new UModel project, or open an existing one. In this example, we are importing binary types
into a new project.

2. If your project does not contain the Java JDK types already, do the following:

a. On the Project menu, click Include subproject.
b. Click the Java tab and select Java JDK (types only).
c. Select Include by reference when prompted.

Note: This is an optional step which normally prevents the "Unknown externals" package from appearing in
the project after the import is complete.

3. On the Project menu, click Import Binary Types.
4. Select Java as language, and the Java version in which the Java code was compiled (for example,

11.0).
5. Select the Java runtime to be used by UModel for extracting information from the binary files (the so-

called "reflection"). The runtime version must be equal or newer than the Java version selected in the
previous step.

222 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Note: The Runtime drop-down list contains only Java JDKs and JREs detected automatically. If your JDK or
JRE is not listed, select the entry Edit user java runtime locations and browse for the directory
where the respective distribution is installed on your machine, see Adding Custom Java Runtimes .

6. If you import binary types into a new project, select either Merge Code into Model or Overwrite
Model according to Code. Otherwise, select Merge code into Model.

7. Optionally, to generate class diagrams and package diagrams from the imported binary types, select
the Enable diagram generation check box. If you select this option, more diagram generation
options are available in subsequent steps, see also Generating Class Diagrams and Generating
Package Diagrams .

8. Click Next.

213

442

451

© 2018-2024 Altova GmbH

Importing Java, C# and VB.NET Binaries 223Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

9. In this example, we are importing Java .class files from a package root. Select Add | Class File
Package Root Folder. and browse for the C:\UModelDemo\bin directory. If this directory does not
exist, make sure to compile the project first, as shown in the first part of this tutorial.

10. Select the classes to be imported, and click Next.

224 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

11. Select the import options as applicable, see Import Binary Options .
12. If you enabled diagram generation in an earlier step, click Next and configure the options applicable to

diagram generation. Otherwise, click Finish.

UModel performs the conversion and displays a progress log in the Messages window. If the conversion of
binary types is not possible, the error text may provide additional information. For example, the binary file you
are trying to import is targeting a runtime newer than the one selected in the Import Binary Types dialog box.
In this case, select a newer runtime version and try again.

213

© 2018-2024 Altova GmbH

Synchronizing the Model and Source Code 225Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

6.5 Synchronizing the Model and Source Code

You can synchronize the model and code in either direction, and at different levels (for example, project,
package or class).

When UModel (Enterprise or Professional) runs as an Eclipse or Visual Studio plug-in, synchronization
between model and code takes place automatically. Manual synchronization is possible at the project
level; the option to update individual classes or packages is not available. For more information, see
UModel Plug-in for Visual Studio and UModel Plug-in for Eclipse .

When you right-click an element in the Model Tree (for example, a class), the context menu displays the code
synchronization or merging commands under the Code Engineering menu item:

· Merge Program Code from UModel ***
· Merge UModel *** from Program Code

*** is a Project, Package, Component, Class, and so on, depending on your current selection.

Depending on the settings you have defined from Project | Synchronization Settings, the alternative name of
these two commands may be:

· Overwrite Program Code from UModel ***
· Overwrite UModel *** from Program Code

To update the entire project (but not classes, packages, or other local elements), you can also use the
following commands on the Project menu of UModel:

· Merge (or Overwrite) Program Code from UModel Project
· Merge (or Overwrite) UModel Project from Program Code

For convenience, any of the commands listed above will be generically referred to as "code synchronization
commands" further in this topic.

To synchronize at the project or Root package level, do one of the following:

· Right-click the Root package in the Model Tree, and select the required code synchronization
command.

· On the Project menu, click the required code synchronization command.

To synchronize at package level:

1. Use Shift, or Ctrl + Click to select the package(s) you want to merge.
2. Right-click the selection, and select the required code synchronization command.

633 644

226 Projects and Code Engineering Synchronizing the Model and Source Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To synchronize at class level:

1. Use Shift, or Ctrl + Click to select the classes(s) you want to merge.
2. Right-click the selection, and click the required code synchronization command.

To avoid undesired results when synchronizing the model and code, consider the following scenarios:

On the Project menu, click Overwrite
UModel Project from Program Code.

· This checks all directories (project files) of all different code
languages you have defined in your project.

· New files are identified and added to the project.
· An entry "Collecting source files in (...)" appears in the

Messages window.

Right-click a class or interface in the Model
Tree and select Code Engineering |
Overwrite UModel Class from Program
Code.

· This updates only the selected class (interface) of your
project.

· If the source code contains classes that are new or
modified classes since the last synchronization, those
changes will not be added to the model.

Right-click a Component in the Model Tree
(within the Component View package) and
select Code Engineering | Overwrite
UModel Component from Program Code.

· This updates the corresponding directory (or project file)
only.

· New files in the directory (project file) are identified and
added to the project.

· An entry "Collecting source files in (...)" appears in the
Message window.

Note: When synchronizing code, you might be prompted to update your UModel project before
synchronization. This occurs when you open UModel projects created before the latest release. Click
Yes to update your project to the latest release format, and save your project file. The notification
message will not occur once this has been done.

6.5.1 Synchronization Tips

Renaming of classifiers and reverse engineering
The process described below applies to the standalone application as well as to the plug-in versions (Visual
Studio or Eclipse) when reverse engineering or automatic synchronization takes place.

Renaming a classifier in the code window of your programming application causes it to be deleted and re-
inserted as new classifier in the Model Tree.

The new classifier is only re-inserted in those modeling diagrams that are automatically created during the
reverse-engineering process, or when generating a diagram using the Show in new Diagram | Content
option. The new classifier is inserted at a default position on the diagram, that will likely differ from the previous
location.

See also Refactoring code and synchronization .228

© 2018-2024 Altova GmbH

Synchronizing the Model and Source Code 227Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

Automatic generation of ComponentRealizations
UModel is capable of automatically generating ComponentRealizations during the code engineering process.
ComponentRealizations are only generated where it is absolutely clear to which component a class should be
assigned:

· Only one Visual Studio project file exists in the .ump project.
· Multiple Visual Studio projects exist but their classes are completely separate in the model.

To enable automatic generation of ComponentRealizations:

1. Open the menu item Tool | Options.
2. Click the Code Engineering tab and activate the Generate missing ComponentRealizations

option.

Automatic ComponentRealizations are created for a Classifier that can be assigned one (and only one)
Component

· without any ComponentRealizations, or
· contained in a code language namespace.

The way the Component is found differs for the two cases.

Component representing a code project file (property "projectfile" set)

· if there is ONE Component having/realizing classifiers in the containing package
· if there is ONE Component having/realizing classifiers in a subpackage of the containing package (top

down)
· if there is ONE Component having/realizing classifiers in one of the parent packages (bottom up)
· if there is ONE Component having/realizing classifiers in a subpackage of one of the parent packages

(top down)

Component representing a directory (property "directory" set)

· if there is ONE Component having/realizing classifiers in the containing package
· if there is ONE Component having/realizing classifiers in one of the parent packages (bottom up)

Notes:

· The option "Code Engineering | Generate missing ComponentRealizations" has to be set.
· As soon as ONE viable Component is found during one of the above steps, this Component is used

and the remaining steps are ignored.

Error/Warnings:

· If no viable Component was found, a warning is generated (message log)
· If more than one viable Component was found, an error is generated (message log)

228 Projects and Code Engineering Synchronizing the Model and Source Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

6.5.2 Refactoring Code and Synchronization

When refactoring code, it is often the case that class names are changed or updated in the code. If it detects
that new types have been added or renamed during reverse engineering, UModel (version 2009 or later) displays
a dialog box. The new types are listed in the "Name in code" column while the assumed original type name is
listed in the "Name in model" column. UModel attempts to determine the original name by relying on
namespace, class content, base classes and other data.

If a class was renamed, select the previous class name using the combo box in the "Name in model" column,
e.g. C1. This ensures that all related data are retained and the code engineering process remains accurate.

Changing class names in the model and regenerating code
Having created a model and generated code from it, it is possible that you might want to make changes to the
model again before going through the synchronization process.

E.g. You decide that you want to change the class names before generating code the second time round. As
you previously assigned a file name to each class, in the "code file name" field of the Properties window, the
new class and file name would now be out of sync.

UModel prompts if you want the code file name to agree with the new class name, when you start the
synchronization process. Note that you also have the option to change the class constructors as well.

Round-trip engineering and relationships between modeling elements
When updating model from code, associations between modeling elements are automatically displayed, if the
option Diagram Editing | Automatically create Associations has been activated in the Tools | Options

© 2018-2024 Altova GmbH

Synchronizing the Model and Source Code 229Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

dialog box. Associations are displayed for those elements where the attributes type is set, and the referenced
"type" modeling element is in the same diagram.

InterfaceRealizations as well as Generalizations are all automatically shown in the diagram when
updating model from code.

6.5.3 Code Synchronization Settings

The code synchronization settings are relevant in the following scenarios:

· When program code is generated from the model (that is, when either the command Project | Merge
Program Code from UModel Project or the command Project | Overwrite Program code from
UModel Project is run)

· When source code is imported into the model (that is, when either the command Project | Merge
UModel Project from Program Code or the command Project | Overwrite UModel Project from
Program Code is run)

· When automatic synchronization takes place in either direction (this applies to UModel Enterprise and
Professional Editions when UModel runs as a Visual Studio or Eclipse plug-in).

To change the code synchronization settings:

· On the Project menu, click Synchronization Settings.

Synchronization Settings dialog box

By default, the Synchronization Settings dialog box will be displayed automatically every time when you initiate
any of the code synchronization commands. To disable this behaviour, clear the check box Always show
dialog when synchronizing.

230 Projects and Code Engineering Synchronizing the Model and Source Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The available options are grouped into two tabs:

· Code from Model (options in this tab are applicable when program code is generated from the model)
· Model from Code (options in this tab are applicable when program code is imported into the model).

Option Description

SPL templates This option is applicable only when generating program code. Select the check box
User-defined override default check box if you have created custom Spy
Programming Language (SPL) templates that should override the default ones
supplied with UModel (see also SPL Templates).

When deleting code This option is applicable only when generating program code. Select whether
program code should be deleted or commented out during synchronization
(assuming the relevant objects no longer exist in the model).

Synchronization This option is applicable both when generating and importing program code. It lets
you specify whether changes should be merged as opposed to being overwritten.
Assuming that code has been generated once from a model, and changes have
since been made to both model and code, for example:

· A new class X has been added in UModel
· A new class Y has been added to the external code,

Merge Model into Code means that:

· The newly added class Y in the external code is retained
· The newly added class X, from UModel, is added to the code.

Overwrite Code according to Model means that:

· The newly added class Y in the external code is deleted (or commented
out, depending on the current settings)

· The newly added class X, from UModel, is added to the code.

Merge Code into Model means that:

· The newly added class X in UModel is retained
· The newly added class Y, from the external code, is added to the model

Overwrite Model according to Code means that:

· The newly added class X in UModel is deleted (or commented out,
depending on the current settings)

· The newly added class Y, from the external code, is added to the model.

Project settings Opens the Project Settings dialog box, where you can modify the code engineering
settings applicable to each language. For reference to all settings, see Code Import
Options and Code Generation Options , respectively.

195

199 174

© 2018-2024 Altova GmbH

Synchronizing the Model and Source Code 231Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

Option Description

The Project Settings dialog box can also be triggered from the menu command
Project | Project Settings. Note that the project settings in this dialog box are
global (they are saved together with the project and are applicable on any
workstation where the UModel project is open) whereas the options you define from
Tools | Options are local (they are applicable only to the current installation of
UModel).

232 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

6.6 UModel Element Mappings

This section illustrates how UModel elements map to elements (constructs) in various programming languages
(C++, C#, Java, VB.NET), as well as to databases and XML schemas. The mappings are grouped by language,
and are applicable when importing code into model, or when generating code from model.

· C++ Mappings
· C# Mappings
· VB.NET Mappings
· Java Mappings
· XML Schema Mappings
· Database Mappings

6.6.1 C++ Mappings

The table below shows the one-to-one correspondence between C++ code elements and UModel model
elements, when importing from C++ code into model, or generating code from the model.

Support for C++ attributes is limited. Only standard built-in attributes such as [[noreturn]],
[[carries_dependency]], [[deprecated]] will be recognized. Custom (user-defined) attributes will be
ignored.

C++ Project

 C++ UModel

Project projectfile projectfile Component

directory directory

C++ Namespace

 C++ UModel

Namespace name name Package <<namespace>>

C++ Class / Struct / Union

 C++ UModel

Class

/

Struct

/

Union

name name Class

/

<<struct>>

Class

/

<<union>>

Class

access

specifier

public visibility public

protected protected

private private

232

238

258

272

278

287

© 2018-2024 Altova GmbH

UModel Element Mappings 233Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

 C++ UModel

filename code file name

associated projectfile / directory ComponentRealization

base

specifier

base types Generalization

virtual Generalization <<virtual>>

access Generalization <<visibility>> value

attributes <<attributes>>

final isFinalSpecialization

Template

Parameter

name name Template

Parameter
template parameter pack parameterPack

type property @type

default default

Template

Specializatio

n

arguments arguments <<specializat

ion>>

Field name name Property

access

specifier

public visibility public

protected protected

private private

type type

type modifiers type modifier

static static

mutable <<mutable>>

thread_local <<thread_local>>

const <<const>>

constexpr <<constexpr>>

in class initializer default

attributes <<attributes>>

volatile <<volatile>>

variable template <<varTemplate>>

Method name name Operation

234 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 C++ UModel

access

specifier

public visibility public

protected protected

private private

static static

virtual <<virtual>>

= 0 <<purevirtual>>

const <<const>>

inline <<inline>>

 = delete <<delete>>

 = default <<default>>

override <<overrride>>

final <<final>>

volatile <<volatile>>

constexpr <<constexpr>>

noexcept <<noexcept>>

throw exceptions <<throw >> specification

attributes <<attributes>>

Template

parameter

name name Template

Parameter
template

parameter pack

parameterPack

type property @type

default default

Template

specializatio

n

arguments arguments <<specializat

ion>>

Parameter name name Parameter

type type

type modifiers type modifier

const <<const>>

volatile <volatile>>

attributes <<attributes>>

© 2018-2024 Altova GmbH

UModel Element Mappings 235Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

 C++ UModel

varArgList varArgList

default value default

Constructor name name Operation

<<constructo

r>>access

specifier

public visibility public

protected protected

private private

explicit <<explicit>>

 = delete <<delete>>

inline <<inline>>

= default <<default>>

noexcept <<noexcept>>

throw exceptions <<throw >> specification

attributes <<attributes>>

Template

parameter

name name Template

Parameter
template

parameter pack

parameterPack

type property @type

default default

Template

specializatio

n

arguments arguments <<specializat

ion>>

Parameter name name Parameter

type type

type modifiers type modifier

const <<const>>

volatile <volatile>>

attributes <<attributes>>

varArgList varArgList

default value default

Destructor name name Operation

<<destructor

>>access

specifier

public visibility public

236 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 C++ UModel

protected protected

private private

inline <<inline>>

noexcept <<noexcept>>

throw exceptions <<throw >> specification

attributes <<attributes>>

Operator name 'operator' name Operation

access

specifier

public visibility public

protected protected

private private

static static

virtual <<virtual>>

= 0 <<purevirtual>>

const <<const>>

inline <<inline>>

 = delete <<delete>>

 = default <<default>>

override <<overrride>>

final <<final>>

volatile <<volatile>>

constexpr <<constexpr>>

noexcept <<noexcept>>

throw exceptions <<throw >> specification

attributes <<attributes>>

Template

parameter

name name Template

Parameter
template

parameter pack

parameterPack

type property @type

default default

Template arguments arguments <<specializat

ion>>

© 2018-2024 Altova GmbH

UModel Element Mappings 237Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

 C++ UModel

specializatio

n

Parameter name name Parameter

type type

type modifiers type modifier

const <<const>>

volatile <volatile>>

attributes <<attributes>>

varArgList varArgList

default value default

C++ Typedef

 C++ UModel

Typedef name name Class

<<typedef>>
filename code file name

associated projectfile /

directory

ComponentRealization

type @type property

attributes <<attributes>>

C++ Type alias

 C++ UModel

Type alias name name Class

<<typealias>>
filename code file name

associated projectfile/directory ComponentRealization

type @type property

attributes <<attributes>>

Template

Parameter

name name Template

Parameter
template parameter

pack

parameterPack

type property @type

238 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 C++ UModel

default default

C++ Enum

 C++ UModel

Enum name name Enumeration

filename code file name

associated projectfile/directory ComponentRealization

base type <<basetype>> value

attributes <<attributes>>

Enumerator name name Enumeration Literal

default value default

attribute sections <<attributes>>

6.6.2 C# Mappings

The table below shows the one-to-one correspondence between:

· UModel elements and C# code elements, when outputting model to code
· C# code elements and UModel model elements, when inputting code into model

C# Project

C# UModel

Project projectfile projectfile Component

directory directory

C# Namespace

C# UModel

Namespace name name Package <<namespace>>

C# Class

C# UModel

Class name name Class

© 2018-2024 Altova GmbH

UModel Element Mappings 239Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

C# UModel

modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

sealed leaf

abstract abstract

static <<static>>

unsafe <<unsafe>>

partial <<partial>>

new <<new >>

filename code file name

associated projectfile/directory ComponentRealization

base types Generalization, InterfaceRealization(s)

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Field name name Property

modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

readonly readonly

volatile <<volatile>>

unsafe <<unsafe>>

new <<new >>

type type

type dimensions multiplicity

type pointer type modifier

240 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

C# UModel

nullable <<nullable>>

default value default

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Constant name name Property

<<const>>
modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

new <<new >>

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

default value default

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Method name name Operation

modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

abstract abstract

sealed leaf

override <<override>>

partial <<partial>>

virtual <<virtual>>

© 2018-2024 Altova GmbH

UModel Element Mappings 241Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

C# UModel

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

implemented interfaces implements

type direction return Parameter

Parameter name name

modifiers ref direction inout

out out

params varArgList

type type

type dimensions multiplicity

type pointer type modifier

this <<this>>

nullable <<nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

struct <<ValueTypeConstraint

>>

class <<ReferenceTypeConst

raint>>

new () <<ConstructorConstrain

t>>

attribute sections <<attributes>>

Construct

or

name name Operation

<<constru

ctor>>modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

242 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

C# UModel

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Parameter name name Parameter

modifiers ref direction inout

out out

params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Destructor name name Operation

<<destruc

tor>>modifiers private visibility private

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Property name name Operation

<<propert

y>>modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

abstract abstract

sealed leaf

override <<override>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

© 2018-2024 Altova GmbH

UModel Element Mappings 243Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

C# UModel

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<nullable>>

Get

Accessor

modifiers internal visibility internal <<GetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Set

Accessor

modifiers internal visibility internal <<SetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Operator name name Operation

<<operato

r>>modifiers public visibility public

static static

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Indexer name (="this") name (="this") Operation

<<indexer

>>modifiers internal visibility package

protected internal protected <<internal>>

public public

244 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

C# UModel

protected protected

private private

static static

abstract abstract

sealed leaf

override <<override>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Get

Accessor

modifiers internal visibility internal <<GetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Set

Accessor

modifiers internal visibility internal <<SetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Event name name Operation

<<event>>
modifiers internal visibility package

protected internal protected <<internal>>

© 2018-2024 Altova GmbH

UModel Element Mappings 245Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

C# UModel

public public

protected protected

private private

static static

abstract abstract

sealed leaf

override <<override>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<nullable>>

Add Accessor <<AddRemoveAccessor>>

Remove Accessor

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

struct <<ValueTypeConstraint>>

class <<ReferenceTypeConstraint>>

new () <<ConstructorConstraint>>

attribute sections <<attributes>>

C# Struct

C# UModel

Struct name name Class

<<struct>

>modifiers internal visibility package

protected internal protected <<internal>>

public public

246 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

C# UModel

protected protected

private private

unsafe <<unsafe>>

partial <<partial>>

new <<new >>

filename code file name

associated projectfile/directory ComponentRealization

base types InterfaceRealization(s)

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Field name name Property

modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

readonly readonly

volatile <<volatile>>

unsafe <<unsafe>>

new <<new >>

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

default value default

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Constant name name Property

<<const>>
modifiers internal visibility package

© 2018-2024 Altova GmbH

UModel Element Mappings 247Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

C# UModel

protected internal protected <<internal>>

public public

protected protected

private private

new <<new >>

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

default value default

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Fixedsize

Buffer

name name Property

<<fixed>>
modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

unsafe <<unsafe>>

new <<new >>

type type

type pointer type modifier

nullable <<nullable>>

buffer size default

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Method name name Operation

modifiers internal visibility package

protected internal protected <<internal>>

public public

248 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

C# UModel

protected protected

private private

static static

abstract abstract

sealed leaf

override <<override>>

partial <<partial>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

implemented interfaces implements

type direction return Parameter

Parameter name name

modifiers ref direction inout

out out

params varArgList

type type

type dimensions multiplicity

type pointer type modifier

this <<this>>

nullable <<nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

struct <<ValueTypeConstraint

>>

class <<ReferenceTypeConst

raint>>

new () <<ConstructorConstrain

t>>

© 2018-2024 Altova GmbH

UModel Element Mappings 249Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

C# UModel

attribute sections <<attributes>>

Construct

or

name name Operation

<<constru

ctor>>modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Parameter name name Parameter

modifiers ref direction inout

out out

params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Destructor name name Operation

<<destruc

tor>>modifiers private visibility private

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Property name name Operation

<<propert

y>>modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

250 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

C# UModel

static static

abstract abstract

sealed leaf

override <<override>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<nullable>>

Get

Accessor

modifiers internal visibility internal <<GetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Set

Accessor

modifiers internal visibility internal <<SetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Operator name name Operation

<<operato

r>>modifiers public visibility public

static static

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier params varArgList

© 2018-2024 Altova GmbH

UModel Element Mappings 251Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

C# UModel

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Indexer name (="this") name (="this") Operation

<<indexer

>>modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

abstract abstract

sealed leaf

override <<override>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Get

Accessor

modifiers internal visibility internal <<GetAcc

essor>>
protected

internal

protected

internal

protected protected

252 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

C# UModel

private private

Set

Accessor

modifiers internal visibility internal <<SetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Event name name Operation

<<event>>
modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

abstract abstract

sealed leaf

override <<override>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<nullable>>

Add Accessor <<AddRemoveAccessor>>

Remove Accessor

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

struct <<ValueTypeConstraint>>

class <<ReferenceTypeConstraint>>

© 2018-2024 Altova GmbH

UModel Element Mappings 253Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

C# UModel

new () <<ConstructorConstraint>>

attribute

sections

<<attributes>>

C# Interface

C# UModel

Interface name name Interface

modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

unsafe <<unsafe>>

partial <<partial>>

new <<new >>

filename code file name

associated projectfile/directory ComponentRealization

base types Generalization(s)

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Method name name Operation

modifiers public visibility public

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifiers ref direction inout

out out

254 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

C# UModel

params varArgList

type type

type dimensions multiplicity

type pointer type modifier

this <<this>>

nullable <<nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

struct <<ValueTypeConstraint

>>

class <<ReferenceTypeConst

raint>>

new () <<ConstructorConstrain

t>>

attribute sections <<attributes>>

Property name name Operation

<<propert

y>>modifiers public visibility public

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<nullable>>

Get

Accessor

modifiers internal visibility internal <<GetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Set

Accessor

modifiers internal visibility internal <<SetAcc

essor>>
protected

internal

protected

internal

© 2018-2024 Altova GmbH

UModel Element Mappings 255Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

C# UModel

protected protected

private private

Indexer name (="this") name (="this") Operation

<<indexer

>>modifiers public visibility public

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Get

Accessor

modifiers internal visibility internal <<GetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Set

Accessor

modifiers internal visibility internal <<SetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Event name name Operation

<<event>>
modifiers public visibility public

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

256 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

C# UModel

type direction return Parameter

type dimensions multiplicity

nullable <<nullable>>

Add Accessor <<AddRemoveAccessor>>

Remove Accessor

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

struct <<ValueTypeConstraint>>

class <<ReferenceTypeConstraint>>

new () <<ConstructorConstraint>>

attribute sections <<attributes>>

C# Delegate

C# UModel

Delegate name name Class

<<delegat

e>>modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

unsafe <<unsafe>>

new <<new >>

filename code file name

associated projectfile/directory ComponentRealization

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter Operation

Parameter name name

modifiers ref direction inout

out out

© 2018-2024 Altova GmbH

UModel Element Mappings 257Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

C# UModel

params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Type

Parameter

name name Template

Parameter

constraint constraini

ng

classifier

predefine

d

constraint

struct <<ValueTypeConstraint

>>

class <<ReferenceTypeConst

raint>>

new () <<ConstructorConstrain

t>>

attribute

sections

<<attribute

s>>

C# Enum

C# UModel

Enum name name Enumeration

modifiers internal visibility package

protected internal protected

<<internal>>

public public

protected protected

private private

new <<new >>

filename code file name

associated projectfile/directory ComponentRealization

base type type <<BaseType>>

attribute sections <<attributes>>

258 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

C# UModel

doc comments Comment(-

>Documentation)

Enum Constant name name Enumeration Literal

default value default

attribute sections <<attributes>>

doc comments Comment(-

>Documentation)

C# Parameterized Type

C# UModel

Parameterized Type Anonymous Bound Element

6.6.3 VB.NET Mappings

The table below shows the one-to-one correspondence between:

· UModel elements and VB.NET code elements, when outputting model to code
· VB.NET code elements and UModel model elements, when inputting code into model

VB.NET UModel

Project projectfile projectfile Componen

t
directory directory

Namespac

e

name name Package

<<namesp

ace>>

Class name name Class

modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

NotInheritable leaf

MustInherit abstract

Partial <<Partial>>

© 2018-2024 Altova GmbH

UModel Element Mappings 259Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

VB.NET UModel

Shadow s <<Shadow s>>

filename code file name

associated projectfile/directory ComponentRealization

base types Generalization, InterfaceRealization(s)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Field name name Property

modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shared static

ReadOnly readonly

Shadow s <<Shadow s>>

type type

type dimensions multiplicity

nullable <<Nullable>>

default value default

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Constant name name Property

<<Const>

>modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shadow s <<Shadow s>>

type type

type dimensions multiplicity

260 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

VB.NET UModel

nullable <<Nullable>>

default value default

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Method name name Operation

modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shared static

MustOverride abstract

NotOverridable leaf

Overrides <<Overrides>>

Overridable <<Overridable>>

Partial <<Partial>>

Shadow s <<Shadow s>>

Overloads <<Overloads>>

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

implemented interfaces implements

type (function) direction return Parameter

Parameter name name

modifiers ByRef direction inout

ByVal in

ParamArr

ay

varArgList

Optional default

type type

type dimensions multiplicity

© 2018-2024 Altova GmbH

UModel Element Mappings 261Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

VB.NET UModel

nullable <<Nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

Structure <<ValueTypeConstraint

>>

Class <<ReferenceTypeConst

raint>>

New <<ConstructorConstrain

t>>

attribute sections <<Attributes>>

Construct

or

name name Operation

<<Constru

ctor>>modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shared static

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Parameter name name Parameter

modifiers ByRef direction inout

ByVal in

ParamArr

ay

varArgList

Optional default

type type

type dimensions multiplicity

nullable <<Nullable>>

Property name name Operation

<<Propert

y>>modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

262 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

VB.NET UModel

Protected protected

Private private

Default <<Property>> (Default <= IsDefault)

Shared static

MustOverride abstract

NotOverridable leaf

Overrides <<Overrides>>

Overridable <<Overridable>>

Shadow s <<Shadow s>>

Overloads <<Overloads>>

ReadOnly <<GetAccessor>> (w ithout

<<SetAccessor>>)

WriteOnly <<SetAccessor>> (w ithout

<<GetAccessor>>)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<Nullable>>

Get

Accessor

modifiers Friend visibility Friend <<GetAcc

essor>>
Protected

Friend

Protected

Friend

Protected Protected

Private Private

Set

Accessor

modifiers Friend visibility Friend <<SetAcc

essor>>
Protected

Friend

Protected

Friend

Protected Protected

Private Private

Operator name name Operation

<<Operato

r>>modifiers Public visibility Public

Shared static

© 2018-2024 Altova GmbH

UModel Element Mappings 263Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

VB.NET UModel

Narrow ing name <= Narrow ing

Widening name <= Widening

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier ByVal direction in

type type

type dimensions multiplicity

nullable <<Nullable>>

Event name name Operation

<<Event>>
modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shared static

MustOverride abstract

NotOverridable leaf

Overrides <<Overrides>>

Overridable <<Overridable>>

Shadow s <<Shadow s>>

Overloads <<Overloads>>

kind w ithout specifying a

delegate type

<<Event>> (Type <= Simple)

w ith specifying a

delegate type

<<Event>> (Type <= Regular)

w ith custom accessors <<Event>> (Type <= Custom)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

264 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

VB.NET UModel

type dimensions multiplicity

nullable <<Nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

Structure <<ValueTypeConstraint>>

Class <<ReferenceTypeConstraint>>

New <<ConstructorConstraint>>

attribute sections <<Attributes>>

Structure name name Class

<<Structur

e>>modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Partial <<Partial>>

Shadow s <<Shadow s>>

filename code file name

associated projectfile/directory ComponentRealization

base types InterfaceRealization(s)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Field name name Property

modifiers Friend visibility package

Public public

Private private

Shared static

ReadOnly readonly

Shadow s <<Shadow s>>

type type

type dimensions multiplicity

© 2018-2024 Altova GmbH

UModel Element Mappings 265Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

VB.NET UModel

nullable <<Nullable>>

default value default

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Constant name name Property

<<Const>

>modifiers Friend visibility package

Public public

Private private

Shadow s <<Shadow s>>

type type

type dimensions multiplicity

nullable <<Nullable>>

default value default

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Method name name Operation

modifiers Friend visibility package

Public public

Private private

Shared static

MustOverride abstract

NotOverridable leaf

Overrides <<Overrides>>

Overridable <<Overridable>>

Partial <<Partial>>

Shadow s <<Shadow s>>

Overloads <<Overloads>>

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

implemented interfaces implements

266 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

VB.NET UModel

type (function) direction return Parameter

Parameter name name

modifiers ByRef direction inout

ByVal in

ParamArr

ay

varArgList

Optional default

type type

type dimensions multiplicity

nullable <<Nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

Structure <<ValueTypeConstraint

>>

Class <<ReferenceTypeConst

raint>>

New <<ConstructorConstrain

t>>

attribute sections <<Attributes>>

Construct

or

name name Operation

<<Constru

ctor>>modifiers Friend visibility package

Public public

Private private

Shared static

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Parameter name name Parameter

modifiers ByRef direction inout

ByVal in

ParamArr

ay

varArgList

Optional default

© 2018-2024 Altova GmbH

UModel Element Mappings 267Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

VB.NET UModel

type type

type dimensions multiplicity

nullable <<Nullable>>

Property name name Operation

<<Propert

y>>modifiers Friend visibility package

Public public

Private private

Shared static

Default <<Property>> (Default <= IsDefault)

MustOverride abstract

NotOverridable leaf

Overrides <<Overrides>>

Overridable <<Overridable>>

Shadow s <<Shadow s>>

Overloads <<Overloads>>

ReadOnly <<GetAccessor>> (w ithout

<<SetAccessor>>)

WriteOnly <<SetAccessor>> (w ithout

<<GetAccessor>>)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<Nullable>>

Get

Accessor

modifiers Friend visibility Friend <<GetAcc

essor>>
Private Private

Set

Accessor

modifiers Friend visibility Friend <<SetAcc

essor>>
Private Private

Operator name name Operation

<<Operato

r>>modifiers Public visibility Public

Shared static

268 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

VB.NET UModel

Narrow ing name <= Narrow ing

Widening name <= Widening

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier ByVal direction in

type type

type dimensions multiplicity

nullable <<Nullable>>

Event name name Operation

<<Event>>
modifiers Friend visibility package

Public public

Private private

Shared static

MustOverride abstract

NotOverridable leaf

Overrides <<Overrides>>

Overridable <<Overridable>>

Shadow s <<Shadow s>>

Overloads <<Overloads>>

kind w ithout specifying a

delegate type

<<Event>> (Type <= Simple)

w ith specifying a

delegate type

<<Event>> (Type <= Regular)

w ith custom accessors <<Event>> (Type <= Custom)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<Nullable>>

© 2018-2024 Altova GmbH

UModel Element Mappings 269Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

VB.NET UModel

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

Structure <<ValueTypeConstraint>>

Class <<ReferenceTypeConstraint>>

New <<ConstructorConstraint>>

attribute sections <<Attributes>>

Interface name name Interface

modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shadow s <<Shadow s>>

filename code file name

associated projectfile/directory ComponentRealization

base types Generalization(s)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Method name name Operation

modifiers Public visibility public

Shadow s <<Shadow s>>

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type (function) direction return Parameter

Parameter name name

modifiers ByRef direction inout

ByVal in

ParamArr

ay

varArgList

Optional default

270 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

VB.NET UModel

type type

type dimensions multiplicity

nullable <<Nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

Structure <<ValueTypeConstraint

>>

Class <<ReferenceTypeConst

raint>>

New <<ConstructorConstrain

t>>

attribute sections <<Attributes>>

Property name name Operation

<<Propert

y>>modifiers Public visibility public

Default <<Property>> (Default <= IsDefault)

Shadow s <<Shadow s>>

ReadOnly <<GetAccessor>> (w ithout

<<SetAccessor>>)

WriteOnly <<SetAccessor>> (w ithout

<<GetAccessor>>)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<Nullable>>

Event name name Operation

<<Event>>
modifiers Public visibility public

Shadow s <<Shadow s>>

kind w ithout specifying a

delegate type

<<Event>> (Type <= Simple)

w ith specifying a

delegate type

<<Event>> (Type <= Regular)

attribute sections <<Attributes>>

© 2018-2024 Altova GmbH

UModel Element Mappings 271Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

VB.NET UModel

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<Nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

Structure <<ValueTypeConstraint>>

Class <<ReferenceTypeConstraint>>

New <<ConstructorConstraint>>

attribute sections <<Attributes>>

Delegate name name Class

<<Delegat

e>>modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shadow s <<Shadow s>>

filename code file name

associated projectfile/directory ComponentRealization

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter Operation

Parameter name name

modifiers ByRef direction inout

ByVal in

type type

type dimensions multiplicity

nullable <<Nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

272 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

VB.NET UModel

predefine

d

constraint

struct <<ValueTypeConstraint>>

class <<ReferenceTypeConstraint>>

new () <<ConstructorConstraint>>

attribute sections <<Attributes>>

Enum name name Enumerati

on
modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shadow s <<Shadow s>>

filename code file name

associated projectfile/directory ComponentRealization

base type type <<BaseTy

pe>>

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Enum

Constant

name name Enumerati

on Literal
default value default

attribute sections

doc comments

<<Attributes>>

Comment(->Documentation)

Parameterized Type Anonymous Bound Element

6.6.4 Java Mappings

The table below shows the one-to-one correspondence between:

· UModel elements and Java code elements, when outputting model to code
· Java code elements and UModel model elements, when inputting code into model

 Java UModel

Project projectfile projectfile Componen

t

© 2018-2024 Altova GmbH

UModel Element Mappings 273Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

 Java UModel

directory directory

Package name name Package

<<namesp

ace>>

Class name name Class

modifiers package visibility package

public public

protected protected

private private

abstract abstract

strictfp <<strictfp>>

final <<final>>

filename code file name

associated projectfile/directory ComponentRealization

extends clause Generalization

implements clause InterfaceRealization(s)

java docs Comment(->Documentation)

Field name name Property

modifiers package visibility package

public public

protected protected

private private

static static

transient <<transient>>

volatile <<volatile>>

final <<final>>

type type

type dimensions multiplicity

default value default

java docs Comment(->Documentation)

Method name name Operation

274 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 Java UModel

modifiers package visibility package

public public

protected protected

private private

static static

abstract abstract

final <<final>>

native <<native>>

strictfp <<strictfp>>

synchronized <<synchronized>>

throw s clause raised exceptions

java docs Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier final <<final>>

... varArgList

type type

type dimensions multiplicity

Type

Parameter

name name Template

Parameter
bound constraining classifier

Construct

or

name name Operation

<<constru

ctor>>modifiers public visibility public

protected protected

private private

throw s clause raised exceptions

java docs Comment(->Documentation)

Parameter name name Parameter

modifier final <<final>>

... varArgList

type type

© 2018-2024 Altova GmbH

UModel Element Mappings 275Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

 Java UModel

type dimensions multiplicity

Type

Parameter

name name Template

Parameter
bound constraining classifier

Type

Parameter

name name Template

Parameter
bound constraining classifier

Interface name name Interface

modifiers package visibility package

public public

protected protected

private private

abstract abstract

strictfp <<strictfp>>

filename code file name

associated projectfile/directory ComponentRealization

extends clause Generalization(s)

java docs Comment(->Documentation)

Field name name Property

modifiers public visibility public

static static

final <<final>>

type type

type dimensions multiplicity

default value default

java docs Comment(->Documentation)

Method name name Operation

modifiers public visibility public

abstract abstract

throw s clause raised exceptions

java docs Comment(->Documentation)

type direction return Parameter

276 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 Java UModel

Parameter name name

modifier final <<final>>

... varArgList

type type

type dimensions multiplicity

Type

Parameter

name name Template

Parameter
bound constraining classifier

Type

Parameter

name name Template

Parameter

bound constraining classifier

Enum name name Enumerati

on
modifiers package visibility package

public public

protected protected

private private

filename code file name

associated projectfile/directory ComponentRealization

java docs Comment(->Documentation)

Enum

Constant

name name Enumerati

on Literal

Field name name Property

modifiers package visibility package

public public

protected protected

private private

static static

transient <<transient>>

volatile <<volatile>>

final <<final>>

type type

type dimensions multiplicity

© 2018-2024 Altova GmbH

UModel Element Mappings 277Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

 Java UModel

default value default

java docs Comment(->Documentation)

Method name name Operation

modifiers package visibility package

public public

protected protected

private private

static static

abstract abstract

final <<final>>

native <<native>>

strictfp <<strictfp>>

synchronized <<synchronized>>

throw s clause raised exceptions

java docs Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier final <<final>>

... varArgList

type type

type dimensions multiplicity

Type

Parameter

name name Template

Parameter
bound constraining classifier

Construct

or

name name Operation

<<constru

ctor>>modifiers public visibility public

protected protected

private private

throw s clause raised exceptions

java docs Comment(->Documentation)

Parameter name name Parameter

278 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 Java UModel

modifier final <<final>>

... varArgList

type type

type dimensions multiplicity

Type

Parameter

name name Template

Parameter
bound constraining classifier

Parameterized Type Anonymous Bound Element

Annotation <<annotations> modifiers

6.6.5 XML Schema Mappings

The table below shows the one-to-one correspondence between:

· UModel elements and XML Schema elements, when outputting model to code
· XML Schema elements and UModel model elements, when inputting code into model

Legend:

 XSD UModel

file path projectfile Componen

t

schema target namespace name Package

<<namesp

ace>>

attributeFormDefault attributeFormDefault Class

<<schema

>>blockDefault blockDefault

elementFormDefault elementFormDefault

finalDefault finalDefault

version version

xml:lang xml:lang

© 2018-2024 Altova GmbH

UModel Element Mappings 279Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

 XSD UModel

xmlns xmlns

annotation source source

appinfo Comment

<<appinfo

>>

document

ation

xml:lang xml:lang Comment

<<docume

ntation>>

attributeGr

oup

name name Class

<<attribute

Group>>annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

attribute name name Property

<<attribute

>>form form

use use

ref type

type

default default

fixed fixed

attributeGr

oup

ref type Property

<<attribute

Group>>

anyAttribu

te

namespace namespace Property

<<anyAttri

bute>>processContents processContents

attribute name name Class

<<attribute

>>form form

use use

type type Property

default default

fixed fixed

annotation appinfo Comment

<<appinfo

280 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 XSD UModel

>>

documentation Comment

<<docume

ntation>>

simpleType name (= name of Class

+

"_anonymousType[n]")

DataType

<<simpleT

ype>>

element name name Class

<<element

>>abstract abstract

block block

final final

form form

nillable nillable

type type Property

default default

fixed fixed

substitutionGroup general Generaliz

ation

<<substitu

tion>>

annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

simpleTyp

e

name (= name of Class

+

"_anonymousType[n]")

DataType

<<simpleT

ype>>

complexT

ype

name (= name of Class

+

"_anonymousType[n]")

Class

<<comple

xType>>

group name name Class

<<group>

>annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

© 2018-2024 Altova GmbH

UModel Element Mappings 281Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

 XSD UModel

all name (= "_all") Property

name (= "mg"_ + "all") Class

<<all>>
annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

element name name Property

<<element

>>ref type

type

choice name (= "_choice") Property

name (= "mg"_ +

"choice")

Class

<<choice>

>
annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

element name name Property

<<element

>>ref type

type

group Property

<<group>

>

any namespac

e

namespac

e

Property

<<any>>

processC

ontents

processC

ontents

choice Property

Class

<<choice>

>

sequence Property

Class

<<sequen

282 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 XSD UModel

ce>>

sequence name (= "_sequence") Property

name (= "mg"_ +

"sequence")

Class

<<sequen

ce>>
annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

element name name Property

<<element

>>ref type

type

group Property

<<group>

>

any namespac

e

namespac

e

Property

<<any>>

processC

ontents

processC

ontents

choice Property

Class

<<choice>

>

sequence Property

Class

<<sequen

ce>>

notation name name DataType

<<notation

>>system system

public public

annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

© 2018-2024 Altova GmbH

UModel Element Mappings 283Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

 XSD UModel

complexT

ype

name name Class

<<comple

xType>>abstract abstract

block block

final final

mixed mixed

annotation source source

appinfo Comment

<<appinfo

>>

document

ation

xml:lang xml:lang Comment

<<docume

ntation>>

group name (= "_ref[n]") Property

<<group>

>

maxOccurs multiplicity

minOccurs

ref type

all name (= "mg"_ + "all") Class

<<all>>

name (= "_all") Property

maxOccurs multiplicity

minOccurs

choice name (= "mg"_ +

"choice[n]")

Class

<<choice>

>

name (= "_choice[n]") Property

maxOccurs multiplicity

minOccurs

sequence name (= "mg"_ +

"sequence[n]")

Class

<<sequen

ce>>

name (=

"_sequence[n]")

Property

maxOccurs multiplicity

284 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 XSD UModel

minOccurs

attribute name name Property

<<attribute

>>ref
type

type

attributeGr

oup

ref

type

Property

<<attribute

Group>>

anyAttribu

te

namespace namespace Property

<<anyAttri

bute>>processContents processContents

complexC

ontent

restriction

base general

Generaliz

ation

<<restricti

on>>

extension Generaliz

ation

<<extensi

on>>

simpleTyp

e

name name DataType

<<simpleT

ype>>

Enumerati

on

<<simpleT

ype>>

final final

annotation source source

appinfo Comment

<<appinfo

>>

document

ation

xml:lang xml:lang Comment

<<docume

ntation>>

list

itemType name (=

"_itemTyp

e")

Property

<<itemTyp

e>>

<<list>>

simpleType DataType

<<simpleType>>

union memberTy

pes

name (=

"memberT

ype[n]")

Property

<<member

Type>>

<<union>>

simpleTyp

e

DataType

<<simpleType>>

minExclusi

ve

value value <<minExcl

usive>>
fixed fixed

© 2018-2024 Altova GmbH

UModel Element Mappings 285Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

 XSD UModel

minInclusi

ve

value value <<minInclu

sive>>
fixed fixed

maxExclu

sive

value value <<maxExc

lusive>>
fixed fixed

maxInclusi

ve

value value <<maxIncl

usive>>
fixed fixed

totalDigits value value <<totalDigi

ts>>
fixed fixed

fractionDi

gits

value value <<fraction

Digits>>
fixed fixed

length value value <<length>

>
fixed fixed

minLength value value <<minLen

gth>>
fixed fixed

maxLengt

h

value value <<maxLen

gth>>
fixed fixed

w hitespac

e

value value <<w hitesp

ace>>
fixed fixed

pattern value value <<w hitesp

ace>>

enumerati

on

value name Enumerati

onLiteral

simpleTyp

e

DataType

<<simpleT

ype>>

restriction base general Generaliz

ation

<<restricti

on>>

complexT

ype

simpleCon

tent

name name DataType

<<comple

xType>>

<<simpleC

ontent>>

annotation source source

appinfo Comment

<<appinfo

>>

286 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 XSD UModel

document

ation

xml:lang xml:lang Comment

<<docume

ntation>>

minExclusi

ve

value value <<minExcl

usive>>
fixed fixed

minInclusi

ve

value value <<minInclu

sive>>
fixed fixed

maxExclu

sive

value value <<maxExc

lusive>>
fixed fixed

maxInclusi

ve

value value <<maxIncl

usive>>

fixed fixed

totalDigits value value <<totalDigi

ts>>

fixed fixed

fractionDi

gits

value value <<fraction

Digits>>

fixed fixed

length value value <<length>

>

fixed fixed

minLength value value <<minLen

gth>>

fixed fixed

maxLengt

h

value value <<maxLen

gth>>

fixed fixed

w hitespac

e

value value <<w hitesp

ace>>

fixed fixed

pattern value value <<w hitesp

ace>>

attribute name name Property

<<attribute

>>ref type

type

attributeGr

oup

ref type Property

<<attribute

Group>>

© 2018-2024 Altova GmbH

UModel Element Mappings 287Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

 XSD UModel

anyAttribu

te

namespac

e

namespac

e

Property

<<anyAttri

bute>>
processC

ontents

processC

ontents

simpleTyp

e

DataType

<<simpleT

ype>>

restriction base general Generaliz

ation

<<restricti

on>>

extension base general Generaliz

ation

<<extensi

on>>

import schemaLocation schemaLocation ElementIm

port

<<import>

>

namespace namespace

include schemaLocation schemaLocation ElementIm

port

<<include

>>

redefine schemaLocation schemaLocation ElementIm

port

<<redefin

e>>

simpleTyp

e

<<redefine>>

DataType

<<simpleT

ype>>

complexT

ype

Class

<<comple

xType>>

attributeGr

oup

Class

<<attribute

Group>>

group Class

<<group>

>

6.6.6 Database Mappings

The table below shows the one-to-one correspondence between:

288 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· UModel elements and database elements, when outputting model to code
· Database elements and UModel model elements, when inputting code into model

 Database UModel

Databas

e

connection connection Compon

ent

Databas

e

name name Package

<<name

space>

>

<<Datab

ase>>

Schema name name Package

<<name

space>

>

<<Sche

ma>>

Table name name Class

<<Table

>>Column name name Property

Data Type type

Not Null <<not_null>>

Null <<nullable>>

Length

MultiplicityPrecision

Scale

Default default

Autoincrement <<autoincrement>>

Part of Primary Key <<PK>>

Part of Foreign Key <<FK>>

Part of Unique Key <<unique>>

Primary

Key

name name Class

<<Prima

ryKey>>Column name name Property

Foreign

Key

name name Class

<<Forei

gnKey>

>

Column name name Property

Foreign

Column

name name Property

foreign

table

type

Unique

Key

name name Class

<<Uniqu

eKey>>Column name name Property

Index name name Class

<<Index

>>Column name Property

© 2018-2024 Altova GmbH

UModel Element Mappings 289Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

 Database UModel

order:

ascendi

ng

<<asce

nding>>

order:

descen

ding

<<desc

ending>

>

CheckC

onstrain

t

name name Class

<<Chec

kConstr

aint>>

definitio

n

definitio

n

View name name Class

<<View

>>definition definition

Column name name Property

Data Type type

Not Null <<not_null>>

Null <<nullable>>

Length

MultiplicityPrecision

Scale

Default default

Autoincrement <<autoincrement>>

Stored

Procedu

re

name name Operatio

n

<<Store

dProced

ure>>

Class

<<Store

dProced

ures>>

definition definition

Paramet

er

name name

Paramet

er

direction mode directio

n

data type type

Functio

n

name name Operatio

n

<<Functi

on>>

Class

<<Functi

ons>>definition definition

Paramet

er

name name Paramet

er
direction mode directio

n

data type type

Trigger name name Class

290 Projects and Code Engineering UModel Element Mappings

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 Database UModel

<<Trigg

er>>

definition definition

© 2018-2024 Altova GmbH

Merging UModel Projects 291Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

6.7 Merging UModel Projects

It is possible to perform a two-way or three-way project merge in UModel. Both operations merge different
UModel project files into a common UModel *.ump model. This option is useful if multiple persons are working
on the same project at the same time, or you just want to consolidate your work into one model.

To merge two UML projects:

1. Open the UML file that is to be the target of the merge process, i.e. the file into which the second
model will be merged - the merged project file.

2. Select the menu option Project | Merge Project....
3. Select the second UML project that is to be merged into the first one. The Messages window reports

on the merge process, and logs the relevant details.

Note: Clicking on one of the entries in the Messages window displays that modeling element in the Model
Tree.

Merging results:

· New modeling elements i.e. those that do not exist in the source, are added to the merged model.
· Differences in the same modeling elements; the elements from the second model take precedence,

e.g. there can only be one default value of an attribute, the default value of the second file is used.
· Diagram differences: UModel first checks to see if there are differences between diagrams of the two

models. If there are, then the new/different diagram is added to the merged model (with a running
number suffix, activity1 etc.) and the original diagram is retained. If there are no differences, then
identical diagrams(s) are ignored, and nothing is changed. You can then decide which of the diagrams
you want to keep or delete, you can of course keep both of them if you want.

· The whole merge process can be undone step-by-step by clicking the Undo toolbar button, or pressing
Ctrl+Z.

· Clicking an entry in the message window displays that element in the Model Tree.
· The file name of the merged file (the first file you opened) is retained.

6.7.1 3-Way Project Merge

UModel supports the merging of multiple UModel projects that have been simultaneously edited by different
developers, in a 3-way project merge. The 3-way project merge works with top-level UModel projects, i.e. main
projects that may contain subprojects, it does not support individual file merging, when these files have
unresolved references to other files.

292 Projects and Code Engineering Merging UModel Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

When merging main projects, any editable subprojects are automatically merged as well. There is no need for a
separate subproject merging process. For an example, see Example: Manual 3-Way Project Merge . Note
the following:

· The whole merge process can be undone step-by-step by clicking the Undo toolbar button, or pressing
Ctrl+Z.

· Clicking an entry in the message window displays that element in the Model Tree.
· The file name of the merged file, the first file you opened, is retained.

Merging results
In the following text, "source" means the initial/first project file you open before starting the merge process.

· New modeling elements in the second file i.e. that do not exist in the source, are added to the merged
model.

· New modeling elements in the source file i.e. that do not exist in the second file, remain in the merged
model.

· Deleted modeling elements from the second file i.e. those that still exist in the source, are removed
from the merged model.

· Deleted modeling elements from the source file i.e. that still exist in the second file, remain deleted
from the merged model.

Differences to the same modeling elements:

· If a property (e.g. the visibility of a class) is changed in either the source, or second file, the updated
value is used in the merged model.

· If a property (e.g. the visibility of a class) is changed in both source and second file, the value of the
second file is used (and a warning is shown in the messages window).

Moved elements:

· If an element is moved in the source, or second file, then the element is moved in the merged model.
· If an element is moved (to different parents) in both the source and second file, a prompt appears, and

you have to manually select the parent element in the merged model.

Diagram differences:

UModel first checks to see if there are differences between diagrams of the two models. If yes, then the
new/different diagram is added to the merged model (with a running number suffix, activity1 etc.) and the
original diagram is retained. If there are no differences, then identical diagrams(s) are ignored, and nothing is
changed. You can then decide which of the diagrams you want to keep or delete, you can of course keep both
of them if you want.

Source control systems support for 3-way merging
When checking in/out project files, UModel automatically generates "Common ancestor" (or snapshot) files
which are then used for the 3-way merge process. This enables a much finer merge result than the normal 2-
way merge.

The specific source control system you use, determines if the automatic snapshot 3-way merge process is
supported by UModel. A manual 3-way merge is however, always possible.

293

© 2018-2024 Altova GmbH

Merging UModel Projects 293Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

· Source control systems that perform automatic file merging without user intervention, will probably not
support an automatic 3-way merge.

· Source control systems that prompt you to choose between Replace or Merge, when a project file has
been changed, will generally support a 3-way merge. After the source control plug-in has replaced the
file, selecting the Replace command activates the UModel file alert which then allows you to do a 3-
way merge. UModel must be used for the check in/out process.

· Main projects as well as subprojects can be placed under source control. Changing data in a
subproject automatically prompts you if the subproject(s) should be checked out.

· Each check in/out action, creates a Common ancestor, or a snapshot, file which is then used during
the 3-way project merge process.

Note: Snapshot files are automatically created and used only with the standalone versions of UModel, i.e.
these functions are not available in the Eclipse or Visual Studio plug-in versions.

Example
User A edits a UModel project file and changes the name of a class in the BankView Main diagram. User B
opens the same project file and changes the visibility of the same class.

As snapshot files are created for each user, the snapshot editing history allows the individual changes to be
merged into the project. Both the name and visibility changes are merged into the project file during the 3-way
merge process.

6.7.2 Example: Manual 3-Way Project Merge

This example illustrates a simple 3-way project merge. Let's suppose that two users, Tom and Alice, created
their own copies of a UModel project and made changes to them. There are now three versions of the same
project: the original one, Tom's copy, and Alice's copy. In the context of 3-way merging, the original project
represents the "common ancestor file".

For the scope of this example, let's assume that the common ancestor file is Bank_CSharp.ump project,
available in the folder C:\Users\<username>\Documents\Altova\UModel2024\UModelExamples. The copies
of Tom and Alice must be created manually. Therefore, let's first create two copies of the Bank_Csharp.ump
project in child folders below the ...\UModelExamples folder. Let's call the child folders Alice and Tom; the
project name can remain as is.

Use the File | Save Project As command to create the copies of Tom and Alice. When prompted to
adjust the relative paths, click Yes. This way you will avoid introducing syntax errors in the project
copies.

The goal of the example is to show how Alice should merge changes not only from the original
Bank_CSharp.ump, but also from Tom's project into a new merged model (a so-called "3-way merge").

Step 1: Prepare Tom's project
Tom opens the Bank_CSharp.ump project file in folder Tom, opens the "BankView Main" diagram, and
makes changes to the BankView class.

1. Operation CollectAccountInfos():bool is deleted from the BankView class.

294 Projects and Code Engineering Merging UModel Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2. The visibility of the CollectBankAddressInfos():bool operation is changed from "protected" to
"public".

3. The project is then saved.

Step 2: Prepare Alice's project
Alice opens the Bank_CSharp.ump project file in folder Alice, opens the "BankView Main" diagram, and
makes changes to the Bank class.

1. The operations CollectAccountInfos and GetBalanceOfAccounts are both changed from "public" to
"protected".

2. The project is then saved.

Step 3: Perform the 3-way merge
Alice now starts a 3-way project merge:

1. Open Alice's project from Alice folder.

© 2018-2024 Altova GmbH

Merging UModel Projects 295Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

2. On the Project menu, click Merge Project (3-way), and select the project file changed by Tom from
Tom folder.

3. You are now prompted to open the common ancestor file. Select the original Bank_CSharp.ump
project file from the ...\UModelExamples folder.

The 3-way merge process is started and you return to the project file from which you started the 3-way merge
process, i.e. from the project file in the Alice folder. The Messages window shows you the merge process in
detail.

The outcome of the 3-way merge is as follows:

· The changes made to the project by Tom are replicated in Alice's project.
· The changes made to the project by Alice are retained in the project file.

Note: The project file in the Alice folder should now be used as the common ancestor file for future 3-way
merges between the project files in folders Tom and Alice.

296 Projects and Code Engineering UML Templates

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

6.8 UML Templates

UModel supports the use of UML templates and their mapping to or from Java, C# and Visual Basic generics.

· Templates are "potential" model elements with unbound formal parameters.
· These parameterized model elements, describe a group of model elements of a particular type:

classifiers, or operations.
· Templates cannot be used directly as types, the parameters have to be bound.
· Instantiate means binding the template parameters to actual values.

· Actual values for parameters are expressions.

· The binding between a template and model element, produces a new model element (a bound element)
based on the template.

· If multiple constraining classifiers exist in C#, then the template parameters can be directly edited in
the Properties tab, when the template parameter is selected.

Template signature display in UModel:

· Class template called MyVector, with formal template parameter "T", visible in the dashed rectangle.
· Formal parameters without type info (T) are implicitly classifiers: Class, Datatype, Enumeration,

PrimitiveType, Interface. All other parameter types must be shown explicitly e.g. Integer.
· Property myArray with unbounded number of elements of type T.

Right clicking the template and selecting Show | Bound elements, displays the actual bound
elements.

Template binding display:

· A bound named template intvector
· Template of type, MyVector, where
· Parameter T is substituted/replaced by int.
· "Substituted by" is shown by - >.

Template use in properties/operations:

An anonymous template binding:
· Property MyFloatVector of type MyVector<T->float>

Templates can also be defined when defining properties or operations. The autocomplete function helps you
with the correct syntax when doing this.

© 2018-2024 Altova GmbH

UML Templates 297Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

· Operation1 returns a vector of floats.

6.8.1 Template Signatures

A Template signature is a string that specifies the formal template parameters. A template is a parameterized
element that is used to generate new model elements by substituting/binding the formal parameters to actual
parameters (values).

Formal template parameter
T
Template with a single untyped formal parameter
(stores elements of type T)

Multiple formal template parameters
KeyType:DateType, ValueType

Parameter substitution
T>aBaseClass

The parameter substitution must be of type "aBaseClass", or derived from it.

Default values for template parameters
T=aDefaultValue

Substituting classifiers
T>{contract}aBaseClass

allowsSubstitutable is true
Parameter must be a classifier that may be substituted for the classifier designated by the classifier
name.

Constraining template parameters
T:Interface>anInterface

When constraining to anything other than a class, (interface, data type), the constraint is displayed
after the colon ":" character. E.g. T is constrained to an interface (T:Interface) which must be of type
"anInterface" (>anInterface).

Using wildcards in template signatures
T>vector<T->?<aBaseClass>

Template parameter T must be of type "vector" which contains objects which are a supertype of
aBaseClass.

298 Projects and Code Engineering UML Templates

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Extending template parameters
T>Comparable<T->T>

6.8.2 Template Binding

Template binding involves the substitution of the formal parameters by actual values, i.e. the template is
instantiated. UModel automatically generates anonymously bound classes, when this binding occurs. Bindings
can be defined in the class name field as shown below.

Substituting/binding formal parameters
vector <T->int>

Create bindings using the class name
a_float_vector:vector<T->float>

Binding multiple templates simultaneously
Class5:vector<T->int, map<KeyType->int, ValueType<T->int>

Using wildcards ? as parameters (Java 5.0)
vector<T->?>

Constraining wildcards - upper bounds (UModel extension)
vector<T->?>aBaseClass>

Constraining wildcards - lower bounds (UModel extension)
vector<T->?<aDerivedClass>

6.8.3 Template Usage in Operations and Properties

Operation returning a bound template
Class1
Operation1():vector<T->int>

Parameter T is bound to "int". Operation1 returns a vector of ints.

Class containing a template operation
Class1
Operation1<T>(in T):T

Using wildcards
Class1
Property1:vector<T->?>

This class contains a generic vector of unspecified type (? is the wildcard).

© 2018-2024 Altova GmbH

UML Templates 299Projects and Code Engineering

Altova UModel 2024 Enterprise Edition

Typed properties can be displayed as associations as follows:

· Right click a property and select Show | PropertyX as Association, or
· Drag a property onto the diagram background.

300 Transforming UML Models

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

7 Transforming UML Models

You can transform any existing UML package from one modeling language to another. After the transformation,
all the relevant elements are transformed from the source to target language, including classes, interfaces,
attributes, operations, generalizations, and so on. The source and target language can be any that UModel
supports (C++, C#, Java, VB.NET, UML, as well as databases and XML schemas).

A transformation involves a "source" model (that is, the package that you would like to transform), and a
"target" model (a destination package). Since the target package may already contain elements, you can
perform a model transformation in one of the two ways:

1. Overwrite changes from the source model into the target one
2. Merge changes from the source model into the target model

(If the target is a new package, then "overwrite" and "merge" are irrelevant first time when you transform the
model.)

If the source model contains class diagrams, these can be optionally transformed to the target model (this is
applicable for C#, Java, VB.NET, and UML). Diagrams which exist in the target model are updated according to
the transformation settings: that is, elements in them will be "overwritten" or "merged" with those from the
source.

During the transformation, a wizard dialog box lets you optionally map each data type in the source language to
a type in the target language. If you skip this step, UModel uses built-in mappings by default. Type mappings
can also be changed at a later time, but you will need to re-run the transformation in order to reflect the
changes in the target model.

When you perform model transformations, UModel will perform the following changes automatically:

· If a class operation has the UML stereotype «create» applied in the UML source model, it will have
the stereotype «constructor» applied in the target model (C++, C#, Java, VB.NET). The opposite is
also true: if an operation has the stereotype «constructor» in C++, C#, Java, or VB.NET, the same
operation will have the stereotype «create» in the target UML model.

· When the target model is a database, a property named "id" in the source model will be converted to a
primary or foreign key of matching data type in the target model.

UModel supports the continuous updating of transformed models. This means that you can safely work in the
source model and run the model transformation as many times as necessary to keep the target model up to
date with the source model. The model transformation can also be configured to take place automatically, see
Model Transformation Settings .

To run a model transformation:

1. Open the UModel project which contains the package that will act as the "source" model.
2. On the Project menu, click Model Transformation.
3. Select the source package (the one that you would like to transform to a different language), and click

Next.
4. Select a target package, and click Next. (To put all elements into a new target package, select the

Transform in new Package check box.)

303

© 2018-2024 Altova GmbH

 301Transforming UML Models

Altova UModel 2024 Enterprise Edition

5. Choose the transformation kind (for example, Java to C#). For all other settings, see Model
Transformation Settings .

6. Do one of the following:
a. To perform the transformation with the default type mappings, click Finish.
b. To review the type mappings before transformation, click Next, change the data mappings as

required, and then click Finish.

When the transformation completes successfully, a new package diagram called "Model transformation from
<source package> to <target package>" is generated automatically. The diagram is generated in the target
package. As shown below, this diagram illustrates the source package, the target package, the dependency
relationship between the two, and a list of Tagged Values.

Sample "Model transformation..." diagram

Apart from illustrating the model transformation, this diagram also enables you to modify the model
transformation settings, as follows:

1. Click the dependency relationship on the diagram (or in the Model Tree window, you will find it under
Relations).

2. Change the necessary options from the Properties window.

Alternatively, double-click a tagged value directly on the diagram to change its value.

After you have finished changing the transformation settings, run the transformation again to update the target
model. You can do this as follows:

· Right-click the dependency relationship on the diagram, and select Update Model Transformation
from the context menu, or

· Right-click the source package in the Model Tree window, and select Update Model Transformation
from the context menu.

303

302 Transforming UML Models

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

For step-by-step transformation examples, see:

· Example: Transform Java to C++
· Example: Transform C# to Java
· Example: Convert Database Structure from Access to SQLite

305

312

318

© 2018-2024 Altova GmbH

Transformation Settings Reference 303Transforming UML Models

Altova UModel 2024 Enterprise Edition

7.1 Transformation Settings Reference

You can set or change how a model should be transformed into another model from the Model
Transformation Details dialog box. This dialog box appears when you perform a new model transformation or
when you update an existing one. For details, see Transforming UML Models .

Note: When you transform a model to C#, there is an option to transform fields to auto-implemented C#
properties. This option is available as a check box in the Type Mapping dialog. To access the Type
Mapping dialog, click Next in the Model Transformation Details dialog.

The available options are described in the subsections below.

Transformation
Select the transformation source and target language. Options available in the list depend on the code
engineering language of the package you select as source package. Note that this option is not available
(disabled) if you re-run an existing transformation.

Synchronization
This option lets you specify whether the source data should be merged into the target data, or the target should
be overwritten with the data from the source. For example, let's assume that a class in the source contains
OperationA while the same class in the target contains OperationA and OperationB. If you choose "merge",

300

304 Transforming UML Models Transformation Settings Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

then both operations will continue to exist in the target model. If you choose "overwrite", OperationB will be
deleted from the target model.

Diagrams
The option Transform class diagrams (when not already existing) generates new class diagrams if they do
not exist in the target model. To open all new diagrams after the model transformation is complete, select the
Open new diagrams check box.

Prepare target for code engineering
Select the option Generate ComponentRealizations and Components if you intend to enable code
engineering in the target package. When this check box is selected, UModel will automatically create
ComponentRealization relationships and code engineering components in the target model. Before you can
generate code successfully from the target model, make sure to also specify a code generation directory, as
follows:

1. In the "Component View" package, click the component generated automatically by UModel.
2. Find the directory property in the Properties window, and enter a directory path.

For more information, see Generating Program Code .

Automatically update transformation
The setting helps you keep the source model synchronized with the target model. This setting is meaningful
when your source model is configured to generate code (or be updated from code). If you make frequent
changes to the source model (or its source code) after it was transformed to a target model, it is possible to
propagate all changes to the target model automatically, as follows:

a) every time after you update the source model from the source program code
b) every time before you generate program code from the source model
c) in both cases above.

For example, let's assume your project contains a package originally created for C# code engineering. This
package was subsequently transformed into a Java package, using the menu command Project | Model
Transformation. After the transformation, you project has two packages: the source C# package and the
target Java package. If option (a) is enabled, the transformation from C# to Java will take place automatically
every time after you modify something in C# code and update the model with the changes. Likewise, if option
(b) is enabled, and you changed the C# model, the transformation from C# to Java will take place automatically
every time before you generate C# program code. For a more detailed example, see Example: Transform C# to
Java .

169

312

© 2018-2024 Altova GmbH

Example: Transform Java to C++ 305Transforming UML Models

Altova UModel 2024 Enterprise Edition

7.2 Example: Transform Java to C++

This example shows you how to perform a simple transformation from a Java model to a C++ model. It also
shows you how to generate C++ code from the transformed (target) model.

1. Open the Bank_Java.ump example file available in the C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples folder.

2. On the Project menu, click Model Transformation.
3. When prompted to supply a source package, select the namespace "bankview". The full path to this

package in the Model Tree window is Root \ DesignView \ BankView \ com \ altova \ bankview.

4. Click Next. When prompted to supply a target package, select the Transform in new Package
check box.

306 Transforming UML Models Example: Transform Java to C++

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

5. Click Next. On the dialog box which appears, select Java to C++ as transformation kind. For
reference to all other settings, see Transformation Settings Reference .303

© 2018-2024 Altova GmbH

Example: Transform Java to C++ 307Transforming UML Models

Altova UModel 2024 Enterprise Edition

6. Click Next. The "Type Mapping" dialog box opens, where you can define the type mappings between
Java and C#. Click Finish to use the default settings.

308 Transforming UML Models Example: Transform Java to C++

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

7. When prompted that the UModel Model Transformation Profile will be included, click OK.

The transformation completes, and the following changes take place in the project:

· A package diagram called "Model transformation from bankview to C++ target" is generated in the
target model and opened automatically. This diagram illustrates the transformation that just took place
and lets you modify (if required) the settings defined previously, see Transforming UML Models .300

© 2018-2024 Altova GmbH

Example: Transform Java to C++ 309Transforming UML Models

Altova UModel 2024 Enterprise Edition

· The Model Tree window now includes a "C++ Target" package. This package includes all the elements
transformed from the Java source model and tailored for C++. For example, if you open the "BankView
Main" diagram, you will notice that it contains the bool type as opposed to the boolean type in Java.

· The "Component View" package in the Model Tree window includes a new component, "C++ Target".
This component was generated automatically because the setting Generate
ComponentRealizations and Components was enabled. The new component defines the code
engineering settings for the target model (in this case, C++).

You can now generate C++ code from the target model, as follows:

1. Click the "C++ Target" component in the "Component View" package.

310 Transforming UML Models Example: Transform Java to C++

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2. Find the directory property in the Properties window and enter the directory where C++ code should
be generated (for example, C:\Bank_Sample\CPP, assuming that this directory exists).

3. Right-click the C++ Target package and select Code Engineering | Merge Program Code from
UModel Package.

The Messages window displays the outcome of C++ code generation:

© 2018-2024 Altova GmbH

Example: Transform Java to C++ 311Transforming UML Models

Altova UModel 2024 Enterprise Edition

For more information about generating code from a UModel project, see Generating Program Code .169

312 Transforming UML Models Example: Transform C# to Java

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

7.3 Example: Transform C# to Java

This example shows you how to perform a transformation from a C# model to a Java model. It also illustrates
how to keep the source and the target models synchronized, manually or automatically.

The UModel project used in this example is available at the following path: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Bank_multiLanguage.ump. If
you open the "Design View" package, you will notice that the model contains two packages written in Java and
one written in C#. The example assumes that the requirements have now changed and the third package must
also be implemented in Java.

Let's first create the package which will store all the elements of the new target Java model.

1. Right-click the "Root" package, and select New element | Package from the context menu.
2. Name the new package "Bank Server Java".

You can now run the transformation from C# to Java, as follows:

1. Right-click the source "Bank Server" package, and select Model Transformation from the context
menu.

© 2018-2024 Altova GmbH

Example: Transform C# to Java 313Transforming UML Models

Altova UModel 2024 Enterprise Edition

2. When prompted to select a target package, select the "Bank Server Java" package created previously,
and click Next.

3. Select C# to Java as transformation type. For now, leave all the other settings as is.

314 Transforming UML Models Example: Transform C# to Java

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

4. Click Finish. When prompted that the "UModel Model Transformation Profile" will be included, click
OK to confirm.

The transformation completes, and the following changes take place in the project:

· A package diagram called "Model transformation from Bank Server to Bank Server Java" is generated
in the target package and opened automatically. This diagram illustrates the transformation that just
took place and also lets you modify the settings defined previously, as you will see below.

· The target "Bank Server Java" package includes all the elements transformed from the C# source
model and tailored for Java. For example, if you open the "Bank Server" diagram, you will notice that it
contains the boolean type as opposed to the bool type used in C#.

· The "Component View" package in the Model Tree window includes a new component, "Agency". This
component was generated automatically because the setting Generate ComponentRealizations
and Components was enabled, and the source BankServer package contains the Agency
namespace. The new component defines the code engineering settings for the target model (in this
case, Java).

© 2018-2024 Altova GmbH

Example: Transform C# to Java 315Transforming UML Models

Altova UModel 2024 Enterprise Edition

Let's now configure the target Java model for code engineering.

1. Click the "Agency" component in the "Component View" package.
2. Find the directory property in the Properties window, and enter a directory where code should be

generated (for example, C:\BankSample\Java, assuming that this directory exists).

Next, let's generate Java code from the target model:

1. Right-click the package "Bank Server Java" and select Code Engineering | Merge Program Code
from UModel Package.

2. Click OK to confirm the default synchronization settings.

At this stage, your UModel project contains both the source Bank Server model in C# and the target model in
Java (and both are configured to generate code). From now on, it is possible to keep both models in sync

316 Transforming UML Models Example: Transform C# to Java

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

(manually or automatically) even if you continue to work in the source C# model. To illustrate this, open the
"Bank Server" diagram located in the source C# package, and add to the BankServer class a new operation
called getNumberOfAccounts which returns an int value.

This change can be propagated manually to the target model, as follows:

1. Right-click the source "Bank Server" package, and select Update Model Transformation | From
'Bank Server' to 'Bank Server Java'.

2. Click Finish.

The operation getNumberOfAccounts added previously from the C# model has now been merged into the target
Java model.

Finally, let's configure the transformation settings so that updates from C# to Java will take place automatically
whenever you import the C# source code into the C# model, or merge changes from the model into the C#
code.

1. Open the "Model transformation from Bank Server to Bank Server Java" package diagram.
2. Double-click the tagged value AutomaticaUpdateAfterModelFromCode and set it to "on".
3. Repeat the previous step for the tagged value AutomaticUpdateBeforeCodeFromModel.

© 2018-2024 Altova GmbH

Example: Transform C# to Java 317Transforming UML Models

Altova UModel 2024 Enterprise Edition

To trigger the automatic updates:

1. Go back to the BankServer class in the source C# model and delete the getNumberOfAccounts
operation.

2. Right-click the Bank Server C# package and run either the Merge Program Code from UModel
Package or Merge UModel Package from Program Code command.

Since automatic updates are now enabled, the change will have taken place automatically in the target
BankServer Java class.

318 Transforming UML Models Example: Transform Access Database to SQLite

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

7.4 Example: Transform Access Database to SQLite

This example illustrates how to convert a database model from one database kind to another. Specifically, it
illustrates how to read the structure of a Microsoft Access database into a UML model, and then merge it into
an existing SQLite database. After completing this example, the structure of the source Access database will
be recreated in the target SQLite database. Note that the Microsoft Access and SQLite databases are provided
here only as an example; the same mechanism described here applies when converting other database kinds
supported by UModel (see UModel and Databases).

This example uses the following files available in the C:\Users\...\Documents\Altova\UModel2024
\UModelExamples\Tutorial directory:

· Nanonull.mdb - The source Microsoft Access database
· Nanonull.sqlite - The target SQLite database

Note: Before proceeding, it is recommended to create a backup of the sample Nanonull.sqlite database file,
because its contents will be modified by the instructions below.

Step 1: Import the source database into UModel
1. On the Project menu, click Import SQL Database, and follow the wizard steps to connect to the

source Microsoft Access database (Nanonull.mdb) . For more information, see Connecting to a
Database .

2. When prompted to create a name for the data source, give it a descriptive name (for example,
"SourceDatabase").

3. Select the database objects to be imported into the model, and click Finish.

529

550

© 2018-2024 Altova GmbH

Example: Transform Access Database to SQLite 319Transforming UML Models

Altova UModel 2024 Enterprise Edition

Notice that a "SourceDatabase" package becomes available in the Model Tree window under the "Root"
package.

Step 2: Import the target database into UModel
1. On the Project menu, click Import SQL Database, and follow the wizard steps to connect to the

target SQLite database (Nanonull.sqlite).
2. When prompted to create a name for the data source, give it a descriptive name (in this example,

"TargetDatabase").

320 Transforming UML Models Example: Transform Access Database to SQLite

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Select the database objects to be imported into the model, and click Next.

4. When prompted to select a target package, select the Import in new Package check box, and click
Finish.

© 2018-2024 Altova GmbH

Example: Transform Access Database to SQLite 321Transforming UML Models

Altova UModel 2024 Enterprise Edition

At this stage, a new "TargetDatabase" package is added in the Model Tree window under the "Root"
package.

Step 3: Run the model transformation from source to target database
1. On the Project menu, click Model Transformation.
2. On the "Select Source Package" dialog box, select "SourceDatabase / Nanonull" as package, and

click Next.

322 Transforming UML Models Example: Transform Access Database to SQLite

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. On the "Select Target Package" dialog box, select "TargetDatabase / main" as package, and click
Next.

© 2018-2024 Altova GmbH

Example: Transform Access Database to SQLite 323Transforming UML Models

Altova UModel 2024 Enterprise Edition

4. On the "Model Transformation Details" dialog box, select DB to DB as transformation type, and click
Next.

324 Transforming UML Models Example: Transform Access Database to SQLite

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

5. On the "Type Mapping" dialog box, review the data types and change them as required. For this
example, we chose to map only some Microsoft Access-specific data types that do not exist in
SQLite, as shown below:

© 2018-2024 Altova GmbH

Example: Transform Access Database to SQLite 325Transforming UML Models

Altova UModel 2024 Enterprise Edition

As a rule of thumb, ensure that the left column contains a data type compatible with the source
database, and the right column contains a data type compatible with the target database. To add or
delete new mappings, use the Append, Insert, and Delete buttons.

6. Click Finish. On the message box which opens, click OK.

A dependency diagram is generated, where you can review (and modify if required) any of the previously defined
settings, including the data type mappings. For the purpose of this example, leave the default settings as is.

326 Transforming UML Models Example: Transform Access Database to SQLite

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Step 4: Merge program code from UModel project
1. On the Project menu, click Merge Program Code from UModel Project.
2. Leave the default settings as is, and click OK.

© 2018-2024 Altova GmbH

Example: Transform Access Database to SQLite 327Transforming UML Models

Altova UModel 2024 Enterprise Edition

An update database script is generated and displayed in a dialog box as shown below. You can now execute
the script directly in UModel, or save it to a file. If you have installed Altova DatabaseSpy, you can also open
and execute the script in DatabaseSpy, which provides a more dedicated database administration interface.

It is strongly recommended to review and, if necessary, modify the generated script before running it
against the target database.

If a source database contains object names (for example, indexes or foreign keys) that are not unique at
database level, the database update script will fail to execute successfully. For example, a Microsoft
Access database could contain multiple indexes with the same name. Unless the target database accepts
duplicate names for indexes, you will need to edit the update script so that all required object names are
unique.

You may also need to update the script to modify the size of columns according to the requirements of the
target database.

After you execute the script (either directly in UModel or externally in a tool such as DatabaseSpy), the
required tables, columns, as well as indexes and key constraints will be recreated in the target SQLite
database. Note that SQLite (version 3.6.19) accepts the names of the foreign key constraints supplied by the
SQL statement but does not provide a way to retrieve them from the database (in particular, foreign key
constraints are retrieved with some arbitrary name, not their actual name). To ensure that your database model
displays the actual object names as they are provided by the database, perform a reverse update of the model
from the database. To do this, run the menu command Project | Merge UModel Project from Program
Code. The model will then be updated to show object names as they are provided by the database.

328 Generating UML Documentation

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

8 Generating UML Documentation

Altova website: UML project documentation

Run the Project | Generate Documentation menu command to generate detailed documentation about your
UML project in HTML, Microsoft Word, RTF or PDF format. The documentation generated by this command
can be freely altered and used; permission from Altova to do so is not required.

Notes
· To generate documentation in PDF format or to customize the generated documentation, Altova

StyleVision (https://www.altova.com/stylevision) must be installed and licensed.
· To generate documentation in Microsoft Word format, Microsoft Word 2000 or later is required.

Documentation is generated for the modeling elements you select in the Generate Documentation dialog box.
You can either use the fixed design, or specify a custom StyleVision Power Stylesheet (SPS). Using a
StyleVision Power Stylesheet enables you to customize the output of the generated documentation, see
Customizing Output with StyleVision .

You can also create partial documentation of modeling elements. To do this, right-click an element (or multiple
elements using Ctrl+Click) in the Model Tree and select Generate Documentation. The element can be a
folder, class, interface, and so on. The documentation options are the same in both cases.

Related elements are hyperlinked in the generated output, enabling you to navigate from component to
component. All manually created hyperlinks also appear in the documentation.

If your project contains UModel profiles (such as C#, Java, VB.NET, and so on), the generated documentation
will include these if the Included subprojects option is enabled in the Include tab, see Documentation
Generation Options .

To generate documentation:

1. Open a project (for example, C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Bank_Java.ump).

2. On the Project menu, click Generate Documentation.

337

332

https://www.altova.com/umodel#proj_docs
https://www.altova.com/stylevision

© 2018-2024 Altova GmbH

 329Generating UML Documentation

Altova UModel 2024 Enterprise Edition

3. Select an output format (HTML, Word, RTF, PDF).
4. Optionally, customize the generation options, see Documentation Generation Options .
5. Click OK and choose a target output folder.

The following image shows a fragment of UModel fixed-design documentation generated from the
Bank_Java.ump project file.

332

330 Generating UML Documentation

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

As illustrated above, the generated documentation includes an index of diagrams and elements (with links) at
the top of the HTML file.

The image below shows a fragment of the generated documentation for the Account class. Note that the
individual members in class diagrams are also hyperlinked to their definitions. For example, clicking a property
or operation takes you to its definition. The hierarchy classes, as well as all underlined text, are also
hyperlinked.

© 2018-2024 Altova GmbH

 331Generating UML Documentation

Altova UModel 2024 Enterprise Edition

332 Generating UML Documentation Documentation Generation Options

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

8.1 Documentation Generation Options

When generating documentation from UModel projects, you can set various options as described below. The
options are organized by the tab in which they appear in the "Generate Documentation" dialog box.

Main tab
The Main tab includes the general documentation generation options.

Documentation Design:

· Select Use fixed design... to use the UModel built-in documentation design.
· Select Use user-defined... to generate documentation formatted with the help of a custom StyleVision

Power Stylesheet (.sps file) created in StyleVision. Note: This option requires Altova StyleVision to be
installed, see also Customizing Output with StyleVision .

· Click Browse to browse for a predefined stylesheet file.
· Click Edit to launch StyleVision and open the selected stylesheet file in a StyleVision window.

Output format:

337

© 2018-2024 Altova GmbH

Documentation Generation Options 333Generating UML Documentation

Altova UModel 2024 Enterprise Edition

· The output format can be one of the following: HTML, Microsoft Word, RTF, or PDF. Microsoft Word
documents are created with the .doc file extension when generated using a fixed design, and with a
.docx file extension when generated using a StyleVision Power Stylesheet. The PDF output format
requires Altova StyleVision to be installed.

· Split output to multiple files generates an output file for each modeling element (class, interface,
diagram, and so on). Clear this check box to generate one global file with all modeling elements.

· Select the Embed CSS in HTML check box to embed the generated CSS code in the HTML
documentation. Clear this check box to keep the CSS file external.

· The Embed diagrams option is enabled for the Microsoft Word and RTF output options. When this
check box is selected, diagrams are embedded in the generated file. Diagrams are created as .png
files, which are displayed in the result file via object links.

· Create folder for diagrams generates a subfolder below the selected output folder, that will contain
all diagrams.

· The Show result file after generation option is enabled for all output formats. When this check box
is selected, the main generated file is displayed in the default browser (for HTML files), in Microsoft
Word (for Word files), or in the default application (for .pdf or .rtf files).

· The Generate links to local files option allows you to specify if the generated links are to be
absolute, or relative, to the output file.

Include tab
This tab allows you to select which diagrams and modeling elements are to appear in the documentation.

334 Generating UML Documentation Documentation Generation Options

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To prevent subprojects or profiles from being documented, clear the Included subprojects check box. Be
aware that, if this check box is not selected, any elements or diagrams that are in subprojects will not be
included in generated documentation. Select the Predefined subprojects check box to include UModel built-
in profiles such as C# or Java profiles. Note, however, that generating documentation from predefined projects
takes a very long time. Unknown externals refers to elements whose kind could not be identified—this
usually happens after you import source code into UModel without first including the built-in subprojects for that
language or language version, see Including Subprojects for more information.

Details tab
This tab allows you to select the element details that are to appear in the documentation.

· If you intend to import XML tags text in your documentation, clear the as HTML option under the
Documentation option.

· The up and down fields allow you to define the nesting depth shown above or below the current class
in the hierarchy diagram.

· The expand each element only once option allows only one of the same classifiers to be expanded
in the same image or diagram.

163

© 2018-2024 Altova GmbH

Documentation Generation Options 335Generating UML Documentation

Altova UModel 2024 Enterprise Edition

Fonts tab
This tab allows you to customize the font settings for the various headers and text content.

336 Generating UML Documentation Documentation Generation Options

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

© 2018-2024 Altova GmbH

Customizing Output with StyleVision 337Generating UML Documentation

Altova UModel 2024 Enterprise Edition

8.2 Customizing Output with StyleVision

You can customize the design of UModel-generated documentation with the help of StyleVision Power
Stylesheet (.sps) files. Such files are created in Altova StyleVision (https://www.altova.com/stylevision). The
advantage of using an .sps file is that you have complete control over the design of the documentation. In
addition, PDF output is available if an .sps file is used.

To generate documentation with .sps files, Altova StyleVision must be installed and licensed.

UModel includes a predefined .sps file, which is available at the following path: C:
\users\<username\Documents\UModel2024\Documentation\UModel\UModelDocumentation.sps. To
format the generated documentation using a custom .sps file, select this option while generating
documentation, for example:

You can begin the customization by creating a copy of the default UModelDocumentation.sps and editing it
in StyleVision. For example, you can change the existing formatting or add links and images to the design.

Any StyleVision Power Stylesheet is based on an XML Schema. In case of stylesheets that control the design
of UModel-generated documentation, this schema is available at the following path: C:
\users\<username\Documents\UModel2024\Documentation\UModel\UModelDocumentation.xsd. Note
that the UModelDocumentation.xsd file references the Documentation.xsd file located in the folder above it.

When you author custom .sps files in StyleVision for UModel documentation, the UModelDocumentation.xsd
file must be used as a schema. The image below illustrates the Design Overview window of StyleVison after
you open the UModelDocumentation.sps file. Notice that it uses the UModelDocumentation.xsd schema
file, and a working XML required to preview the design. The working XML file is available in the SampleData
subfolder relative to the schema file.

https://www.altova.com/stylevision

338 Generating UML Documentation Customizing Output with StyleVision

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

For instructions about how to edit .sps files, refer to the StyleVision documentation
(https://www.altova.com/documentation).

https://www.altova.com/documentation

© 2018-2024 Altova GmbH

 339UML Diagrams

Altova UModel 2024 Enterprise Edition

9 UML Diagrams

Altova website: UML diagrams

There are two major groups of UML diagrams, Structural diagrams, which show the static view of the model,
and Behavioral diagrams, which show the dynamic view. UModel supports all fourteen diagrams of the UML 2.5
specification, as well as Additional diagrams.

· Behavioral diagrams include Activity, State machine, Protocol State Machine and Use Case
diagrams; as well as the Interaction, Communication, Interaction Overview, Sequence, and Timing
diagrams.

· Structural diagrams include: Class, Composite Structure, Component, Deployment, Object, and
Package diagrams.

· Additional diagrams XML schema diagrams, Business Processing Modeling Notation (BPMN),
SysML diagrams, Database diagrams.

Note: The Ctrl+Enter keys can be used to create multi-line labels for most of the modeling diagrams, e.g.
Lifeline labels in sequence diagrams, timing diagrams; guard conditions, state names, activity names
etc.

340

430

467

https://www.altova.com/umodel/uml-diagrams

340 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.1 Behavioral Diagrams

These diagrams depict behavioral features of a system or business process, and include a subset of diagrams
which emphasize object interactions.

 Activity Diagram

 State Machine Diagram

 Protocol State Machine Diagram

 Use Case Diagram

A subset of the Behavioral diagrams are those that depict the object interactions, namely:

 Communication Diagram

 Interaction Overview Diagram

 Sequence Diagram

 Timing Diagram

9.1.1 Activity Diagram

Altova website: UML Activity diagrams

Activity diagrams are useful for modeling real-world workflows of business processes, and display which
actions need to take place and what the behavioral dependencies are. The Activity diagram describes the
specific sequencing of activities and supports both conditional and parallel processing. The Activity diagram is
a variant of the State diagram, with the states being activities.

The Activity diagram shown below is available in the Bank_MultiLanguage.ump sample, in the ...
\UModelExamples folder supplied with UModel.

385

421

https://www.altova.com/umodel/activity-diagrams

© 2018-2024 Altova GmbH

Behavioral Diagrams 341UML Diagrams

Altova UModel 2024 Enterprise Edition

9.1.1.1 Inserting Activity Diagram elements

To add elements to the diagram:

1. Click the element's toolbar button in the Activity Diagram toolbar.

342 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2. Click in the Activity Diagram to insert the element.

To insert multiple elements of the selected type, hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the activity diagram
Most elements occurring in other activity diagrams can be inserted into an existing activity diagram.

1. Locate the element you want to insert in the Model Tree Window (you can use the search function
text box, or press Ctrl+F to search for any element).

2. Drag the element(s) into the activity diagram.

Inserting an action (CallBehavior)

1. Click the Action (CallBehavior) toolbar button, and click in the Activity diagram to insert it.
2. Enter the name of the Action, e.g. "Validate References", and press Enter to confirm.

Note: Use Ctrl+Enter to create a multi-line name.

Inserting an action (CallOperation) and selecting a specific operation

1. Click the Action (CallOperation) icon in the icon bar, and click in the Activity diagram to insert
it.

2. Enter the name of the Action, e.g. "collectAccountInfo", and press Enter to confirm.
3. Click the Browse button to the right of the operation field in the Properties tab. This opens the "Select

Operation" dialog box in which you can select the specific operation.

82

© 2018-2024 Altova GmbH

Behavioral Diagrams 343UML Diagrams

Altova UModel 2024 Enterprise Edition

4. Navigate to the specific operation that you want to insert, and click OK to confirm.

In this example, the operation "collectAccountInfos" is in the BankView class.

344 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.1.1.2 Creating branches and merges

A branch has a single incoming flow and multiple outgoing guarded flows. Only one of the outgoing flows can
be traversed, so the guards should be mutually exclusive.

In this example the (BankView) references are to be validated:

· branch1 has the guard "reference missing", which transitions to the abort activity
· branch2 has the guard "valid", which transitions to the collectAccountInfos activity.

Creating a branch (alternate flow)

1. Click the DecisionNode icon in the title bar, and insert it in the Activity diagram.

2. Click the ActivityFinalNode icon which represents the abort activity, and insert it into the
Activity diagram.

3. Click the "Validate References" activity to select it, then click the right-hand handle, ControlFlow, and
drag the resulting connector onto the "DecisionNode" element. The element is highlighted when you
can drop the connector.

4. Click the "DecisionNode" element, click the right-hand connector, ControlFlow, and drop it on the
"collectAccountInfos" action. Please see "Inserting an Action (CallOperation " for more information.342

© 2018-2024 Altova GmbH

Behavioral Diagrams 345UML Diagrams

Altova UModel 2024 Enterprise Edition

5. Enter the guard condition "valid", in the guard field of the Properties tab.

6. Click the DecisionNode element and drag from the right-hand handle, ControlFlow, and drop it on the
"ActivityFinalNode" element. The guard condition on this transition is automatically defined as "else".
Double click the guard condition in the diagram to change it e.g. "reference missing".

Note: UModel does not validate, or check, the number of Control/Object Flows in a diagram.

346 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Creating a merge

1. Click the MergeNode icon in the icon bar, then click in the Activity diagram to insert it.

2. Click the ControlFlow (ObjectFlow) handles of the actions that are to be merged, and drop the arrow(s)
on the "MergeNode" symbol.

9.1.1.3 Activity Diagram elements

 Action (CallBehavior)
Inserts a CallBehaviorAction element which directly invokes a specific behavior. Selecting an existing
behavior using the behavior combo box, e.g. HandleDisplayException, displays a rake symbol within the
element.

 Action (CallOperation)
Inserts a CallOperationAction which indirectly invokes a specific behavior as a method. Please see "Inserting
an action (CallOperation) " for more information.

342

© 2018-2024 Altova GmbH

Behavioral Diagrams 347UML Diagrams

Altova UModel 2024 Enterprise Edition

 Action (OpaqueAction)
A type of action used to specify implementation information. Can be used as a placeholder until you decide
which specific action type you want to use.

 Action (ValueSpecificationAction)
A type of action that evaluates(/generates) a specific value at the output pin. (Defined by the specific properties,
e.g. upperBound.)

 AcceptEventAction
Inserts the Accept Event action which waits for the occurrence of an event which meets specific conditions.

 AcceptEventAction (TimeEvent)
Inserts an AcceptEventAction, triggered by a time event, which specifies an instant of time by an expression
e.g. 1 sec. since last update.

 SendSignalAction
Inserts the SendSignalAction, which creates a signal from its inputs and transmits the signal to the target
object, where it may cause the execution of an activity.

348 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 DecisionNode
Inserts a Decision Node which has a single incoming transition and multiple outgoing guarded transitions.
Please see "Creating a branch " for more information.

 MergeNode
Inserts a Merge Node which merges multiple alternate transitions defined by the Decision Node. The Merge
Node does not synchronize concurrent processes, but selects one of the processes.

 InitialNode
The beginning of the activity process. An activity can have more than one initial node.

 ActivityFinalNode
The end of the activity process. An activity can have more that one final node, all flows in the activity stop when
the "first" final node is encountered.

344

© 2018-2024 Altova GmbH

Behavioral Diagrams 349UML Diagrams

Altova UModel 2024 Enterprise Edition

 FlowFinalNode
Inserts the Flow Final Node, which terminates a flow. The termination does not affect any other flows in the
activity.

 ForkNode
Inserts a vertical Fork node. Used to divide flows into multiple concurrent flows.

 ForkNode (Horizontal)
Inserts a horizontal Fork node. Used to divide flows into multiple concurrent flows.

 JoinNode
Inserts a vertical Fork node. A Join node synchronizes multiple flows defined by the Fork node.

 Join Node (horizontal)
Inserts a horizontal Fork node. A Join node synchronizes multiple flows defined by the Fork node.

 InputPin
Inserts an input pin onto a Call Behavior, or Call Operation action. Input pins supply input values that are used
by an action. A default name, "argument", is automatically assigned to an input pin.

The input pin symbol can only be placed onto those activity elements where the mouse pointer changes to the

hand symbol . Dragging the symbol repositions it on the element border.

 OutputPin
Inserts an output pin action. Output pins contain output values produced by an action. A name corresponding
to the UML property of that action e.g. result, is automatically assigned to the output pin.

350 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The output pin symbol can only be placed onto those activity elements where the mouse pointer changes to

the hand symbol . Dragging the symbol repositions it on the element border.

Exception Pin
An OutputPin can be changed to an Exception pin by clicking the pin and selecting "isExceptionPin" from the
Properties pane.

 ValuePin
Inserts a Value Pin which is an input pin that provides a value to an action, that does not come from an
incoming object flow. It is displayed as an input pin symbol, and has the same properties as an input pin.

 ObjectNode
Inserts an object node which is an abstract activity node that defines object flow in an activity. Object nodes
can only contain values at runtime that conform to the type of the object node.

 CentralBufferNode
Inserts a Central Buffer Node which acts as a buffer for multiple in- and out flows from other object nodes.

 DataStoreNode
Inserts a Data Store Node which is a special "Central Buffer Node" used to store persistent (i.e. non transient)
data.

 ActivityPartition (horizontal)
Inserts a horizontal Activity Partition, which is a type of activity group used to identify actions that have some
characteristic in common. This often corresponds to organizational units in a business model.

© 2018-2024 Altova GmbH

Behavioral Diagrams 351UML Diagrams

Altova UModel 2024 Enterprise Edition

Double clicking a label allows you to edit it directly; pressing Enter orients the text correctly.

Please note that Activity Partitions are the UML 2.0 update to the "swimlane" functionality of previous UML
versions.

· Elements placed within a ActivityPartition become part of it when the boundary is highlighted.
· Objects within an ActivityPartition can be individually selected using Ctrl+Click, or by dragging the

marquee inside the boundary.
· Click the ActivityPartition boundary, or title, and drag to reposition it.

 ActivityPartition (vertical)
Inserts a vertical Activity Partition, which is a type of activity group used to identify actions that have some
characteristic in common. This often corresponds to organizational units in a business model.

 ActivityPartition (2 Dimensional)
Inserts a two dimensional Activity Partition, which is a type of activity group used to identify actions that have
some characteristic in common. Both axes have editable labels.

352 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To remove the Dim1, Dim2 dimension labels:

1. Click the dimension label you want to remove e.g. Dim1
2. Double click in the Dim1 entry in the Properties tab, delete the Dim1 entry, and press Enter to confirm.

Note that Activity Partitions can be nested:

1. Right click the label where you want to insert a new partition.
2. Select New | ActivityPartition.

© 2018-2024 Altova GmbH

Behavioral Diagrams 353UML Diagrams

Altova UModel 2024 Enterprise Edition

 ControlFlow
A Control Flow is an edge, i.e. an arrowed line, that connects two activities/behaviours, and starts an activity
after the previous one has been completed.

 ObjectFlow
A Object Flow is an edge, i.e. an arrowed line, that connects two actions/object nodes, and starts an activity
after the previous one has been completed. Objects or data can be passed along an Object Flow.

 ExceptionHandler
An Exception Handler is an element that specifies what action is to be executed if a specified exception occurs
during the execution of the protected node.

354 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

An Exception Handler can only be dropped on an Input Pin of an Action.

 Activity
Inserts an Activity into the activity diagram.

 ActivityParameterNode
Inserts an Activity Parameter node onto an activity. Clicking anywhere in the activity places the parameter node
on the activity boundary.

© 2018-2024 Altova GmbH

Behavioral Diagrams 355UML Diagrams

Altova UModel 2024 Enterprise Edition

 StructuredActivityNode
Inserts a Structured Activity Node which is a structured part of the activity, that is not shared with any other
structured node.

 ExpansionRegion
An expansion region is a region of an activity having explicit input and outputs (using ExpansionNodes). Each
input is a collection of values.

356 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The expansion region mode is displayed as a keyword, and can be changed by clicking the "mode" combo box
in the Properties tab. Available settings are:parallel, iterative, or stream.

 ExpansionNode
Inserts an Expansion Node onto an Expansion Region. Expansion nodes are input and output nodes for the
Expansion Region, where each input/output is a collection of values. The arrows into, or out of, the expansion
region, determine the specific type of expansion node.

 InterruptableActivityRegion
An interruptible region contains activity nodes. When a control flow leaves an interruptible region all flows and
behaviors in the region are terminated.

To add an interrupting edge:

1. Make sure that an Action element is present in the InterruptableActivityRegion, as well as an outgoing
Control Flow to another action:

2. Right click the Control Flow arrow, and select New | InterruptingEdge.

© 2018-2024 Altova GmbH

Behavioral Diagrams 357UML Diagrams

Altova UModel 2024 Enterprise Edition

Note: You can also add an InterrupingEdge by clicking the InterruptableActivityRegion, right clicking in the
Properties window, and selecting Add InterruptingEdge from the pop-up menu.

9.1.2 State Machine Diagram

The State Machine Diagram models the behavior of a system by describing the various states an object may
be in, and the transitions between those states. They are generally used to describe the behavior of an object
spanning several use cases.

Two types of processes can achieve this:

1. Actions, which are associated to transitions, are short-term processes that cannot be interrupted (for
example, internal error /notify admin in the diagram below)

2. State Activities (behaviors), which are associated to states, are longer-term processes that may be
interrupted by other events (for example, listen for incoming connections, in the diagram below).

A state machine can have any number of State Machine Diagrams (or State Diagrams) in UModel.

358 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Sample State Machine diagram

The State machine diagram illustrated above is available in the following sample UModel project: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Bank_MultiLanguage.ump.

9.1.2.1 Inserting state machine diagram elements

To insert state machine diagram elements:

1. Click the specific state machine diagram icon in the State Machine Diagram toolbar.

© 2018-2024 Altova GmbH

Behavioral Diagrams 359UML Diagrams

Altova UModel 2024 Enterprise Edition

2. Click in the State Diagram to insert the element. To insert multiple elements of the selected type, hold
down the Ctrl key and click in the diagram window.

Dragging existing elements into the state machine diagram
Most elements occurring in other state machine diagrams can be inserted into an existing state machine.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text
box, or press Ctrl+F to search for any element).

2. Drag the element(s) into the state diagram.

9.1.2.2 Creating states, activities and transitions

To add a simple state:

1. Click the State toolbar icon () , and then click inside the diagram.
2. Enter the name of the state and press Enter to confirm.

To add an activity to a state:

· Right-click the state element, select New, and then one of the entries from the context menu.

The Entry, Exit, and Do activities are associated with one of the following possible behaviors: "Activity",
"Interaction", and "StateMachine". Therefore, the options available in the context menu are:

· Do: Activity
· Do: Interaction
· Do: StateMachine
· Entry: Activity
· Entry: Interaction

360 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· Entry: StateMachine
· Exit: Activity
· Exit: Interaction
· Exit: StateMachine

These options originate in the UML specification. Namely, each of these internal actions are behaviors, and, in
the UML specification, three classes derive from the "Behavior" class: Activity, StateMachine, and Interaction.
In the generated code, it does not make a difference which particular behavior (Activity, StateMachine, or
Interaction) has been selected.

You can select one action from the Do, Entry and Exit action categories. Activities are placed in their own
compartment in the state element, though not in a separate region. The type of activity that you select is used
as a prefix for the activity e.g. entry / store current time.

To delete an activity:

· Click the respective activity in the state element and press the Del key.

To create a transition between two states:

1. Click the Transition handle of the source state (on the right of the element).
2. Drag-and-drop the transition arrow onto the target state.

© 2018-2024 Altova GmbH

Behavioral Diagrams 361UML Diagrams

Altova UModel 2024 Enterprise Edition

The Transition properties are now visible in the Properties tab. Clicking the "kind" combo box, allows
you to define the transition type: external, internal or local.

Transitions can have an event trigger, a guard condition and an action in the form eventTrigger [guard
condition] /activity.

To automatically create operations from transitions:

Activating the "Toggle automatic creation of operations in target by typing operation names" icon ,
automatically creates the corresponding operation in the referenced class, when creating a transition and
entering a name e.g. myOperation().

Note: Operations can only be created automatically when the state machine is inside a class or interface.

To automatically create operations from activities:

1. Right click the State and select the specific action/activity, e.g. New | Entry:Activity.
2. Enter the name of the activity making sure to finish with the open/close brackets "()", e.g. entry /

OnEntryCooler().

362 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The new element is also visible in the Model Tree. Scrolling down the Model Tree, you will notice that
the OnEntryCooler operation has been added to the parent class AirConditionController.

Note: Operations are automatically added for: Do:Activity, Entry:Activity, Exit:Activity, as well as guard
condition activities and effects (on transitions).

© 2018-2024 Altova GmbH

Behavioral Diagrams 363UML Diagrams

Altova UModel 2024 Enterprise Edition

To create a transition trigger:

1. Right-click a previously created transition (arrow).
2. Select New | Trigger.

An "a" character appears in the transition label above the transition arrow, if it is the first trigger in the
state diagram. Triggers are assigned default values of the form alphabetic letter, source state -> target
state.

3. Double-click the new character and enter the transition properties in the form eventTrigger [guard
condition] / activity.

Transition property syntax
The text entered before the square brackets is the trigger; the text between brackets is the guard
condition, and the text after the slash—the activity. Manipulating this string automatically creates
or deletes the respective elements in the Model Tree.

Note: To see the individual transition properties, right-click the transition (arrow) and select "Select in Model
Tree". The event, activity and constraint elements are all shown below the selected transition.

Adding an Activity diagram to a transition
UModel has the unique capability of allowing you to add an Activity diagram to a transition, to describe the
transition in more detail.

1. Right-click a transition arrow in the diagram, and select New | Activity Diagram. This inserts an
Activity diagram window into the diagram at the position of the transition arrow.

2. Click the inserted window to make it active. You can now use the scroll bars to scroll within the
window.

364 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Double-click the Action window to switch into the Activity diagram and further define the transition, e.g.
change the Action name to "Database logon". Note that a new Activity Diagram tab has now been
added to the project. You can add any activity modeling elements to the diagram, please see "Activity
Diagram " for more information.

4. Click the State Machine Diagram tab to switch back to see the updated transition.

340

© 2018-2024 Altova GmbH

Behavioral Diagrams 365UML Diagrams

Altova UModel 2024 Enterprise Edition

5. Drag the Activity window to reposition it in the diagram, and click the resize handle if necessary.

Dragging the Activity window between the two states displays the transition in and out of the activity.

366 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.1.2.3 Composite states

 Composite state
This type of state contains a second compartment comprised of a single region. Any number of states may be
placed within this region.

To add a region to a composite state:

· Right-click the composite state and select New | Region from the context menu. A new region is
added to the state. Regions are divided by dashed lines.

To delete a region:

· Click the region you want to delete in the composite state and press the Del key.

Deleting a region of an orthogonal state reverts it back to a composite state; deleting the last region of a
composite state changes it back to a simple state.

To place a state within a composite state:

· Click the state element you want to insert (e.g. Logging in User), and drop it into the region
compartment of the composite state.

The region compartment is highlighted when you can drop the element. The inserted element is now
part of the region, and appears as a child element of the region in the Model Tree pane.

© 2018-2024 Altova GmbH

Behavioral Diagrams 367UML Diagrams

Altova UModel 2024 Enterprise Edition

Moving the composite state moves all contained states along with it.

 Orthogonal state
This type of state contains a second compartment comprised of two or more regions, where the separate
regions indicate concurrency.

Right clicking a state and selecting New | Region allows you add new regions.

To show/hide region names:

· Click the Styles tab, scroll to the "Show region names on states" entry, and select true/false.

 Submachine state
This state is used to hide details of a state machine. This state does not have any regions but is associated to
a separate state machine.

To define a submachine state:

1. Having selected a state, click the submachine combo box in the Properties tab. A list containing the
currently defined state machines appears.

2. Select the state machine that you want this submachine to reference.

368 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

A hyperlink icon automatically appears in the submachine. Clicking it opens the referenced state
machine, "BankServer" in this case.

To add entry / exit points to a submachine state:

· The state which the point is connected to, must itself reference a submachine State Machine (visible in
the Properties tab).

· This submachine must contain one or more Entry and Exit points

1. Click the ConnectionPointReference icon in the title bar, then click the submachine state that
you want to add the entry/exit point to.

2. Right-click in the Properties tab and select Add entry. Please note that another Entry, or Exit Point
has to exist elsewhere in the diagram to enable this pop-up menu.

This adds an EntryPoint row to the Properties tab, and changes the appearance of the
ConnectionPointReference element.

© 2018-2024 Altova GmbH

Behavioral Diagrams 369UML Diagrams

Altova UModel 2024 Enterprise Edition

3. Use the same method to insert an ExitPoint, by selecting "Add exit" from the context menu.

9.1.2.4 Generating code from State Machine diagrams

UModel can generate executable code from State Machine diagrams (C++, C#, Java, VB.NET). Almost all of
the State Machine diagram elements and features are supported:

· State
· CompositeState, with any hierarchical level
· OrthogonalState, with any number of regions
· Region
· InitialState
· FinalState
· Transition
· Guard
· Trigger
· Call-Event
· Fork
· Join
· Choice
· Junction
· DeepHistory
· ShallowHistory
· Entry/exit/do actions
· Effects

State Machine code generation is integrated into the "normal" round-trip engineering process. This means that
State Machine code can be automatically updated on every forward-engineering process.

370 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The screenshot above shows the AirCondition State Machine diagram which is available in the ..
\StateMachineCodeGeneration directory under ...\UModelExamples. A separate directory exists for each
of the code generation languages supported by UModel.

Each directory contains an AirCondition and Complex folder, which contains the respective UModel project,
programming language project files, as well as the generated source files. The Complex.ump project file
contains almost all of the modeling elements and functionality that UModel supports when generating code
from State Machine diagrams.

Each directory also contains a test application, e.g. TestSTMAirCondition.sln for C#, allowing you to work with
the generated source files immediately.

© 2018-2024 Altova GmbH

Behavioral Diagrams 371UML Diagrams

Altova UModel 2024 Enterprise Edition

To generate code from a State Machine diagram:

· Right-click in the State Machine diagram and select "Generate State Machine code", or
· Select the menu option Project | Generate State Machine Code

The default settings are shown above. Click OK to generate the code.

372 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

State Machine code is automatically updated when you start the forward engineering process. You can
however change this setting by clicking on the State Machine diagram background and clicking the "Automatic
Update Code" check box.

Changes should not be made manually in the generated code, as these changes are not reflected in the State
Machine diagram during the reverse-engineering process.

Clicking the icon of the Automatic Update field, opens the Generate State Machine Code dialog box,
allowing you to change the code generation settings.

To perform a syntax check on a State Machine diagram:

· Right-click the diagram and selecting Check State Machine Syntax from the context menu.

9.1.2.5 Working with state machine code

The parent class of the state machine (i.e. the "controller class", or "context class") is the one, and only,
"interface" between the state machine user and the state machine implementation.

The controller class provides methods which can be used from "outside" to change the states (e.g. after
external events occur).

The state machine implementation however, calls controller class methods ("callbacks") to inform the state
machine user about state changes (OnEntry, OnExit, ...), transition effects, and the possibility to override and
implement methods for conditions (guards).

UModel can automatically create simple operations (without any parameter) for entry/exit/do behaviors,
transition effects, ... when the corresponding option is turned on (also see Creating states, activities and
transitions). These methods can be changed to whatever you want in UModel (add parameters, set them as
abstract, etc.).

A state machine (i.e. its controller class) can be instantiated several times. All instances work independently of
each other.

· The UML State machine execution is designed for the "Run-to-completion execution model".
· UML state machines assume that processing of each event is completed before the next event is

processed.

359

© 2018-2024 Altova GmbH

Behavioral Diagrams 373UML Diagrams

Altova UModel 2024 Enterprise Edition

· This also means no entry/exit/do action or transition effect may directly trigger a new transition/state
change.

Initialization
· Every region of a state machine has to have an initial state.
· The code generated by UModel automatically initializes all regions of the state machine (or when the

Initialize() method of the controller class is called).

· If OnEntry events are not wanted during initialization, you can call the Initialize() method manually

and ignore OnEntry events during the startup.

Getting the current state(s)
UModel supports composite states as well as orthogonal states, so there is not just one current state—every
region (in any hierarchy level) can have one current state.

The AirCondition.ump example shows how to walk through the regions to the current state(s):

TreeNode rootNode = m_CurrentStateTree.Nodes.Add(m_STM.getRootState().getName());
UpdateCurrentStateTree(m_STM.getRootState(), rootNode);

private void UpdateCurrentStateTree(AirCondition.AirConditionController.IState state,

TreeNode node)
{
 foreach (AirCondition.AirConditionController.IRegion r in state.getRegions())

 {
 TreeNode childNode = node.Nodes.Add(r.getName() + " : " +
r.getCurrentState().getName());
 UpdateCurrentStateTree(r.getCurrentState(), childNode);
 }
}

Example 1 - a simple transition

The corresponding operation is automatically generated in UModel

Generated method in code:

private class CTestStateMachine : IState

{
 …

374 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 public bool MyEvent1()

 {
 …
 }
}

Notes:

· The state machine user should call the generated method "MyEvent1" when the corresponding event
occurs (outside the state machine).

· The return parameter of these event-methods provides information about whether the event caused a
state change (i.e. if it had any effect on the state machine) or not. For example, if "State1" is active
and event "MyEvent1()" occurs, the current state changes to "State2" and "MyEvent1()" returns true. If
"State2" is active and "MyEvent1()" occurs, nothing changes in the state machine and MyEvent1()
returns false.

Example 2 - a simple transition with an effect

The corresponding operation is automatically generated in UModel

Generated method in code:

private class CTestStateMachine : IState

{
 …
 // Override to handle entry/exit/do actions, transition effects,...:

 public virtual void OnState1State2Effect() {}

}

Notes:

· "OnState1State2Effect()" will be called by the state machine implementation, whenever the transition
between "State1" and "State2" is fired.

· To react to this effect, "OnState1State2Effect()" should be overridden in a derived class of
"CTestStateMachine".

· "CTestStateMachine:: OnState1State2Effect()" can also be set to abstract, and you will get compiler
errors until the method is overridden.

© 2018-2024 Altova GmbH

Behavioral Diagrams 375UML Diagrams

Altova UModel 2024 Enterprise Edition

· When "OnState1State2Effect()" is not abstract, and the "Generate debug messages" option is active,
UModel will generate following debug output:

// Override to handle entry/exit/do actions, transition effects,...:

public virtual void OnState1State2Effect() {OnDebugMessage("ACTION:

OnState1State2Effect");}

Example 3 - a simple transition with an effect and parameter

The corresponding operation is automatically generated in UModel

Generated method in code:

private class CTestStateMachine : IState

{
 …
 // Additional defined operations of the controller class:

 public virtual void OnState1State2Effect(String text)

 {
 }
}

Notes:

· To effect operations (automatically created by UModel) parameters can be added manually (UModel
cannot know the required type).

· In this sample, the parameter "text:String" has been added to the Effect method in TestController. A
proper argument has to be specified when calling this method (here: "1 => 2").

· Another possibility would be: e.g. to call static methods ("MyStatic.OnState1State2Effect("1 => 2")"),
or methods of singletons ("getSingleton().OnState1State2Effect("1 => 2")").

376 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Example 4 - entry/exit/do actions

The corresponding operations are automatically generated in UModel

Generated method in code:

private class CTestStateMachine : IState

{
 …
 // Override to handle entry/exit/do actions, transition effects,...:

 public virtual void OnExitState3() {}

 public virtual void OnEntryState4() {}

 public virtual void OnDoState4() {}

}

Notes:

· States can have entry/exit/do behaviors. UModel automatically creates the corresponding operations to
handle them.

· When "MyEvent2()" occurs in the sample above, the state machine implementation calls
"OnExitState3()". If "MyEvent2" would have an Effect, it would be subsequently called, then
"OnEntryState4" and "OnDoState4" would be called.

· Normally, these methods should be overridden. When they are not abstract and the "Generate debug
messages" option is active, UModel provides default debug output as described in Example 2.

· These methods can also have parameters as shown in Example 3.

Example 5 - guards
Transitions can have guards, which determine if the transition really can fire.

© 2018-2024 Altova GmbH

Behavioral Diagrams 377UML Diagrams

Altova UModel 2024 Enterprise Edition

The corresponding operation is automatically generated in UModel

Generated method in code:

private class CTestStateMachine : IState

{
 …
 // Additional defined operations of the controller class:

 public virtual bool CanGoState6()

 {
 return true; // Override!

 }
}

Notes:

· If "State5" is the active state and "MyEvent2" occurs, the state machine implementation will call
"CanGoState6" and, depending on its result, the transition will fire or not.

· Normally, these methods should be overridden. When they are not abstract and the "Generate debug
messages" option is active, UModel provides default debug output as described in Example 2.

· These methods also can have parameters as shown in Example 3.
· Multiple transitions with the same event, but having different guards, are possible. The order in which

the different guards are polled is undefined. If a transition does not have a guard, or the guard is "else",
it will be considered as the last (i.e., only when all other transition guards return false, will this one will
fire). For example, in the diagram below, it is undefined whether CanGoState6() or CanGoState7() is
called first. The third transition will only fire if CanGoState6() and CanGoState7() return false.

378 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Additional constructs and functionality can be found in the AirCondition.ump and Complex.ump samples.

9.1.2.6 State Machine Diagram elements

 InitialState (pseudostate)
The beginning of the process.

 FinalState
The end of the sequence of processes.

 EntryPoint (pseudostate)
The entry point of a state machine or composite state.

 ExitPoint (pseudostate)
The exit point of a state machine or composite state.

 Choice
This represents a dynamic conditional branch, where mutually exclusive guard triggers are evaluated (OR
operation).

 Junction (pseudostate)
This represents an end to the OR operation defined by the Choice element.

 Terminate (pseudostate)
The halting of the execution of the state machine.

© 2018-2024 Altova GmbH

Behavioral Diagrams 379UML Diagrams

Altova UModel 2024 Enterprise Edition

 Fork (pseudostate)
Inserts a vertical Fork bar. Used to divide sequences into concurrent subsequences.

 Fork horizontal (pseudostate)
Inserts a horizontal Fork bar. Used to divide sequences into concurrent subsequences.

 Join (pseudostate)
Joins/merges previously defined subsequences. All activities have to be completed before progress can
continue.

 Join horizontal (pseudostate)
Joins/merges previously defined subsequences. All activities have to be completed before progress can
continue.

 DeepHistory
A pseudostate that restores the previously active state within a composite state.

 ShallowHistory
A pseudostate that restores the initial state of a composite state. All pseudostate elements can be changed to
a different "type", by changing the kind combo box entry in the Properties tab.

380 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 ConnectionPointReference
A connection point reference represents a usage (as part of a submachine state) of an entry/exit point defined
in the state machine reference by the submachine state.

To add Entry or Exit points to a connection point reference:

· The state which the point is connected to, must itself reference a submachine State Machine (visible in
the Properties tab).

· This submachine must contain one or more Entry and Exit points

 Transition
A direct relationship between two states. An object in the first state performs one or more actions and then
enters the second state depending on an event and the fulfillment of any guard conditions. Transitions have an
event trigger, guard condition(s), an action (behavior), and a target state. The supported event subelements are:

· ReceiveSignalEvent
· SignalEvent
· SendSignalEvent
· ReceiveOperationEvent
· SendOperationEvent
· ChangeEvent.

 Toggle automatic creation of operations in target by typing operation names
Activating the "Toggle automatic creation of operations in target by typing operation names" icon, automatically
creates the corresponding operation in the referenced class, when creating a transition and entering a name
myOperation().

Note: Operations can only be created automatically when the state machine is inside a class or interface.

9.1.3 Protocol State Machine

Altova website: UML Protocol State Machine diagrams

Protocol State Machines are used to show a sequence of events that an object responds to, without having to
show the specific behavior. The required sequence of events, and the resulting changes in the state of the
object, are modeled in this diagram.

Protocol State Machines are most often used to describe complex protocols, e.g. database access through a
specific interface, or communication protocols such as TCP/IP.

Protocol State Machines are created in the same way as State Machine diagrams, but have fewer modeling
elements. Protocol-Transitions between states can have pre- or post conditions which define what must be true
for a transition to another state to occur, or what the resulting state must be, once the transition has taken
place.

https://www.altova.com/umodel/state-machine-diagrams

© 2018-2024 Altova GmbH

Behavioral Diagrams 381UML Diagrams

Altova UModel 2024 Enterprise Edition

9.1.3.1 Inserting Protocol State Machine elements

Using the toolbar icons:

1. Click the Protocol State Machine icon in the toolbar.
2. Click in the Protocol State Machine Diagram to insert the element. To insert multiple elements of the

selected type, hold down the Ctrl key and click in the diagram window.

382 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Dragging existing elements into the Protocol State Machine diagram
Most elements occurring in other Protocol State Machine diagrams, can be inserted into an existing diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text
box, or press Ctrl+F to search for any element).

2. Drag the element(s) into the Protocol State Machine diagram.

To insert a simple state:

1. Click the State icon in the icon bar and click in the Protocol State Machine diagram to insert it.
2. Enter the name of the state and press Enter to confirm. Simple states do not have any regions or any

other type of substructure.

To create a Protocol Transition between two states:

1. Click the Transition handle of the source state (on the right of the element), or use the Protocol
Transition icon in the icon bar.

2. Drag-and-drop the transition arrow onto the target state. The text cursor is automatically set for you to
enter the pre and/or post condition. Please make sure to use the square brackets [] and slash
character when entering the conditions directly.

Entering the pre/post conditions in the Properties window automatically inserts the square brackets
and slash character into the diagram.

For information about how to create and insert composite state elements and submachine states, see
Composite states 366

© 2018-2024 Altova GmbH

Behavioral Diagrams 383UML Diagrams

Altova UModel 2024 Enterprise Edition

9.1.3.2 Protocol State Machine Diagram elements

 State
A simple state element with one compartment.

 Composite state
This type of state contains a second compartment comprised of a single region. Any number of states may be
placed within this region.

 Orthogonal state
This type of state contains a second compartment comprised of two or more regions, where the separate
regions indicate concurrency. Right clicking a state and selecting New | Region allows you add new regions.

 Submachine state
This state is used to hide details of a state machine. This state does not have any regions but is associated to
a separate state machine.

 InitialState (pseudostate)
The beginning of the process.

 FinalState
The end of the sequence of processes.

 EntryPoint (pseudostate)
The entry point of a state machine or composite state.

 ExitPoint (pseudostate)
The exit point of a state machine or composite state.

 Choice
This represents a dynamic conditional branch, where mutually exclusive guard triggers are evaluated (OR
operation).

384 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 Junction (pseudostate)
This represents an end to the OR operation defined by the Choice element.

 Terminate (pseudostate)
The halting of the execution of the state machine.

 Fork (pseudostate)
Inserts a vertical Fork bar. Used to divide sequences into concurrent subsequences.

 Fork horizontal (pseudostate)
Inserts a horizontal Fork bar. Used to divide sequences into concurrent subsequences.

 Join (pseudostate)
Joins/merges previously defined subsequences. All activities have to be completed before progress can
continue.

 Join horizontal (pseudostate)
Joins/merges previously defined subsequences. All activities have to be completed before progress can
continue.

 ConnectionPointReference
A connection point reference represents a usage (as part of a submachine state) of an entry/exit point defined
in the state machine reference by the submachine state.

To add Entry or Exit points to a connection point reference:

· The state which the point is connected to, must itself reference a submachine State Machine (visible in
the Properties tab).

· This submachine must contain one or more Entry and Exit points

 Protocol Transition
A direct relationship between two states. An object in the first state performs one or more operations and then
enters the second state depending on an event and the fulfillment of any pre- or post conditions.

Please see Inserting Protocol State Machine elements for more information.382

© 2018-2024 Altova GmbH

Behavioral Diagrams 385UML Diagrams

Altova UModel 2024 Enterprise Edition

9.1.4 Use Case Diagram

Please see the Use Cases section in the tutorial for more information on how to add use case elements to
the diagram.

9.1.5 Communication Diagram

Altova website: UML Communication diagrams

Communication diagrams display the interactions i.e. message flows, between objects at run-time, and show
the relationships between the interacting objects. Basically, they model the dynamic behavior of use cases.

Communication diagrams are designed in the same way as sequence diagrams, except that the notation is laid
out in a different format. Message numbering is used to indicate message sequence and nesting.

UModel allows you to generate Communication diagrams from Sequence diagrams and vice versa, in one
simple action see "Generating Sequence diagrams " for more information.

21

388

https://www.altova.com/umodel/communication-diagrams

386 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.1.5.1 Inserting Communication Diagam elements

Using the toolbar icons:

1. Click the specific communication icon in the Communication Diagram toolbar.

2. Click in the Communication diagram to insert the element. To insert multiple elements of the selected
type, hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the Communication Diagram
Elements occurring in other diagrams, e.g. classes, can be inserted into a Communication diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text
box, or press Ctrl+F to search for any element).

2. Drag the element(s) into the Communication diagram.

Lifeline
The lifeline element is an individual participant in an interaction. UModel allows you to insert other elements into
the sequence diagram, e.g. classes. Each of these elements then appear as a new lifeline. You can redefine
the lifeline colors/gradient using the "Header Gradient" combo boxes in the Styles tab.

To create a multiline lifeline, press Ctrl+Enter to create a new line.

© 2018-2024 Altova GmbH

Behavioral Diagrams 387UML Diagrams

Altova UModel 2024 Enterprise Edition

To insert a Communication lifeline:

1. Click the Lifeline icon in the title bar, then click in the Communication diagram to insert it.

2. Enter the lifeline name to change it from the default name, Lifeline1, if necessary.

Messages
A Message is a modeling element that defines a specific kind of communication in an interaction. A
communication can be e.g. raising a signal, invoking an Operation, creating or destroying an instance. The
message specifies the type of communication as well as the sender and the receiver.

 Message (Call)

 Message (Reply)

 Message (Creation)

 Message (Destruction)

To insert a message:

1. Click the specific message icon in the toolbar.
2. Drag and drop the message line onto the receiver objects.

Lifelines are highlighted when the message can be dropped.

388 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Note: Holding down the Ctrl key allows you to insert a message with each click.

To insert additional messages:

1. Right-click an existing communication link and select New | Message.

· The direction in which you drag the arrow defines the message direction. Reply messages can point in
either direction.

· Having clicked a message icon and holding down Ctrl allows you to insert multiple messages by
repeatedly clicking and dragging in the diagram tab.

Message numbering
The Communication diagram uses the decimal numbering notation, which makes it easy to see the hierarchical
structure of the messages in the diagram. The sequence is a dot-separated list of sequence numbers followed
by a colon and the message name.

Generating Sequence diagrams from Communication diagrams
UModel allows you to generate Communication diagrams from Sequence diagrams and vice versa, in one
simple action:

· Right-click anywhere in a Communication diagram and select Generate Sequence Diagram from the
context menu.

© 2018-2024 Altova GmbH

Behavioral Diagrams 389UML Diagrams

Altova UModel 2024 Enterprise Edition

9.1.6 Interaction Overview Diagram

Altova website: UML Interaction Overview diagrams

Interaction Overview Diagrams are a variant of Activity diagrams and give an overview of the interaction between
other interaction diagrams such as Sequence, Activity, Communication, or Timing diagrams. The method of
constructing a diagram is similar to that of Activity diagram and uses the same modeling elements: start/end
points, forks, joins etc.

https://www.altova.com/umodel/interaction-overview-diagrams

390 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Two types of interaction elements are used instead of activity elements: Interaction elements and Interaction
use elements.

Interaction elements are displayed as iconized versions of a Sequence, Communication, Timing, or Interaction
Overview diagram, enclosed in a frame with the "SD" keyword displayed in the top-left frame title space.

Interaction occurrence elements are references to existing Interaction diagrams with "Ref" enclosed in the
frame's title space, and the occurrence's name in the frame.

9.1.6.1 Inserting Interaction Overview elements

Using the toolbar icons
1. Click the specific icon in the Interaction Overview Diagram toolbar.

© 2018-2024 Altova GmbH

Behavioral Diagrams 391UML Diagrams

Altova UModel 2024 Enterprise Edition

2. Click in the diagram to insert the element. To insert multiple elements of the selected type, hold down
the Ctrl key and click in the diagram window.

Dragging existing elements into the Interaction Overview Diagram
Elements occurring in other diagrams, e.g. Sequence, Activity, Communication, or Timing diagrams can be
inserted into a Interaction Overview diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text box,
or press Ctrl+F, to search for any element).

2. Drag the element(s) into the diagram.

Inserting an Interaction element

1. Click the CallBehaviorAction (Interaction) icon in the icon bar, and click in the Interaction
Overview diagram to insert it.

The Collect Account Information sequence diagram is automatically inserted if you are using the
Bank_Multilanguage.ump example file from the ...\UModelExamples folder. The first sequence
diagram, found in the model tree, is selected by default.

2. To change the default interaction element: Click the behavior/diagram combo box in the Properties
tab. A list of all the possible elements that can be inserted is presented.

392 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Click the element you want to insert to e.g. Connect to BankAPI.

As this is also a sequence diagram, the Interaction element appears as an iconized version of the
sequence diagram.
If you select <ref> BankAPI, then the Interaction element occurrence is displayed.

© 2018-2024 Altova GmbH

Behavioral Diagrams 393UML Diagrams

Altova UModel 2024 Enterprise Edition

Inserting an Interaction element occurrence

1. Click the CallBehaviorAction (InteractionUse) icon in the icon bar, and click in the Interaction
Overview diagram to insert it.

Collect Account Information is automatically inserted as a Interaction occurrence element, if you are
using the Bank_Multilanguage.ump example file from the ...\UModelExamples folder. The first
existing sequence diagram is selected per default.

2. To change the Interaction element, double-click the behavior combo box in the Properties tab. A list
of all the possible elements that can be inserted is presented.

3. Select the occurrence you want to insert.

Note: All elements inserted using this method appear in the form shown in the screenshot above i.e. with
"ref" in the frame's title space.

 DecisionNode
Inserts a Decision Node which has a single incoming transition and multiple outgoing guarded transitions.
Please see "Creating a branch " for more information.

 MergeNode
Inserts a Merge Node which merges multiple alternate transitions defined by the Decision Node. The Merge
Node does not synchronize concurrent processes, but selects one of the processes.

 InitialNode
The beginning of the activity process. An interaction can have more than one initial node.

 ActivityFinalNode
The end of the interaction process. An interaction can have more that one final node, all flows stop when the
"first" final node is encountered.

344

394 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 ForkNode
Inserts a vertical Fork node. Used to divide flows into multiple concurrent flows.

 ForkNode (Horizontal)
Inserts a horizontal Fork node. Used to divide flows into multiple concurrent flows.

 JoinNode
Inserts a vertical Fork node. A Join node synchronizes multiple flows defined by the Fork node.

 Join Node (horizontal)
Inserts a horizontal Fork node. A Join node synchronizes multiple flows defined by the Fork node.

 AddDurationConstraint
A Duration defines a ValueSpecification that denotes a duration in time between a start and endpoint. A
duration is often an expression representing the number of clock ticks, which may elapse during this duration.

 ControlFlow
A Control Flow is an edge, i.e. an arrowed line, that connects two behaviours, and starts an interaction after the
previous one has been completed.

9.1.7 Sequence Diagram

Altova website: UML Sequence diagrams

UModel supports the standard Sequence diagram defined by UML, and allows easy manipulation of objects
and messages to model use case scenarios. The sequence diagrams shown in the following sections are
available in the Bank_Java.ump, Bank_CSharp.ump and Bank_MultiLanguage.ump samples, in the ...
\UModelExamples folder supplied with UModel.

You can model sequence diagrams manually, or, alternatively, generate them from reverse-engineered source
code, as described in Generating Sequence Diagrams from Source Code . The UModel API also provides
means to generate or model a sequence diagram programmatically, see How to Create Sequence Diagrams
.

409

822

https://www.altova.com/umodel/sequence-diagrams.html

© 2018-2024 Altova GmbH

Behavioral Diagrams 395UML Diagrams

Altova UModel 2024 Enterprise Edition

9.1.7.1 Inserting Sequence Diagram Elements

A sequence diagram models runtime dynamic object interactions, using messages. Sequence diagrams are
generally used to explain individual use case scenarios.

396 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· Lifelines are the horizontally aligned boxes at the top of the diagram, together with a dashed vertical
line representing the object's life during the interaction. Messages are shown as arrows between the
lifelines of two or more objects.

· Messages are sent between sender and receiver objects, and are shown as labeled arrows. Messages
can have a sequence number and various other optional attributes: argument list etc. Conditional,
optional, and alternative messages are all supported.

See also:

· Lifeline
· Combined Fragment
· Interaction Use
· Gate
· State Invariant
· Messages

Sequence diagram and other UModel elements, can be inserted into a sequence diagram using several
methods.

397

399

402

402

403

403

© 2018-2024 Altova GmbH

Behavioral Diagrams 397UML Diagrams

Altova UModel 2024 Enterprise Edition

Using the toolbar icons
1. Click the specific sequence diagram icon in the Sequence Diagram toolbar.
2. Click in the Sequence diagram to insert the element. To insert multiple elements of the selected type,

hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the sequence diagram
Most classifier types, as well as elements occurring in other sequence diagrams, can be inserted into an
existing sequence diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text
box, or press Ctrl+F to search for any element).

2. Drag the element(s) into the sequence diagram.

9.1.7.1.1 Lifeline

The lifeline element is an individual participant in an interaction. UModel also allows you to insert other
elements into the sequence diagram, e.g. classes and actors. Each of these elements appear as a new lifeline
once they have been dragged into the diagram pane from the Model Tree tab.

The "lifeline" label appears in a bar at the top of the sequence diagram. Labels can be repositioned and resized
in the bar, with changes taking immediate effect in the diagram tab. You can also redefine the label
colors/gradient using the "Header Gradient" combo boxes in the Styles tab.

To create a multiline lifeline, press Ctrl+Enter to create a new line.

Most classifier types can be inserted into the sequence diagram. The "represents" field in the Properties tab
displays the element type that is acting as the lifeline. Dragging typed properties onto a sequence diagram
also creates a lifeline.

398 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Execution Specification (Object activation)
An execution specification (activation) is displayed as a box (rectangle) on the object lifeline. An activation is
the execution of a procedure and the time needed for any nested procedures to execute. Activation boxes are
automatically created when a message is created between two lifelines.

A recursive, or self message (one that calls a different method in the same class) creates stacked activation
boxes.

To display/hide activation boxes:

· Click the Styles tab and scroll to the bottom of the list.

The "Show Execution Specifications" combo box allows you to show/hide the activation boxes in the
sequence diagram.

Lifeline attributes
The destruction check box allows you to add a destruction marker, or stop, to the lifeline without having to use
a destruction message.

The selector field allows you to enter an expression that specifies the particular part represented by the lifeline,
if the ConnectableElement is multivalued, i.e. has a multiplicity greater than one.

Goto lifeline element
Right clicking a lifeline allows you to select Goto XXX, where XXX is the specific lifeline type that you clicked.
The element will then be visible in the Model Tree window.

© 2018-2024 Altova GmbH

Behavioral Diagrams 399UML Diagrams

Altova UModel 2024 Enterprise Edition

9.1.7.1.2 Combined Fragment

Combined fragments are subunits, or sections of an interaction. The interaction operator visible in the
pentagon at top left, defines the specific kind of combined fragment. The constraint thus defines the specific
fragment, e.g. loop fragment, alternative fragment etc. used in the interaction.

The combined fragment icons in the icon bar allow you to insert a specific combined fragment: seq, alt or loop.
Clicking the interactionOperator combo box also allows you to define the specific interaction fragment.

400 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

InteractionOperators

Weak
sequencing seq

The combined fragment represents weak sequencing between the
behaviours of the operands.

Alternatives
 alt

Only one of the defined operands will be chosen, the operand must have
a guard expression that evaluates to true.

If one of the operands uses the guard "else", then this operand is
executed if all other guards return false. The guard expression can be
entered immediately upon insertion, will appear between the two square
brackets.

The InteractionConstraint is actually the guard expression between the
square brackets.

Option
 opt

Option represents a choice where either the sole operand is executed, or
nothing happens.

Break
 break

The break operator is chosen when the guard is true, the rest of the
enclosing fragment is ignored.

Parallel par Indicates that the combined fragment represents a parallel merge of
operands.

Strict
sequencing

 strict The combined fragment represents a strict sequencing between the
behaviours of the operands.

© 2018-2024 Altova GmbH

Behavioral Diagrams 401UML Diagrams

Altova UModel 2024 Enterprise Edition

Loop
 loop The loop operand will be repeated by the number of times defined in the

guard expression.

Having selected this operand, you can directly edit the expression (in the
loop pentagon) by double clicking.

Critical Region critical The combined fragment represents a critical region. The sequence(s)
may not be interrupted/interleaved by any other processes.

Negative neg Defines that the fragment is invalid, and all others are considered to be
valid.

Assert assert Designates the valid combined fragment, and its sequences. Often used
in combination with consider, or ignore operands.

Ignore ignore Defines which messages should be ignored in the interaction. Often used
in combination with assert, or consider operands.

Consider consider Defines which messages should be considered in the interaction.

Adding InteractionOperands to a combined fragment
1. Right-click the combined fragment and select New | InteractionOperand. The text cursor is

automatically set for you to enter the guard condition.
2. Enter the guard condition for the InteractionOperand e.g. !passwordOK and press Enter to confirm.

Use Ctrl+Enter to create a multi-line InteractionOperand.

3. Use the same method to add the second interaction operand with the guard condition "else". Dashed
lines separate the individual operands in the fragment.

Deleting InteractionOperands
1. Double-click the guard expression in the combined fragment element, of the diagram (not in the

Properties tab).
2. Delete the guard expression completely, and press Enter to confirm. The guard expression/interaction

operand is removed and the combined fragment is automatically resized.

402 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.1.7.1.3 Interaction Use

The InteractionUse element is a reference to an interaction element. This element allows you to share
portions of an interaction between several other interactions.

Clicking the "refersTo" combo box, allows you to select the interaction that you want to refer to. The name of
the interaction use you select appears in the element.

Note: You can also drag an existing Interaction Use element from the Model Tree into the diagram tab.

9.1.7.1.4 Gate

A gate is a connection point which allows messages to be transmitted into, and out of, interaction
fragments. Gates are connected using messages.

1. Insert the gate element into the diagram.
2. Create a new message and drag from the gate to a lifeline, or drag from a lifeline and drop onto a gate.

This connects the two elements. The square representing the gate is now smaller.

© 2018-2024 Altova GmbH

Behavioral Diagrams 403UML Diagrams

Altova UModel 2024 Enterprise Edition

9.1.7.1.5 State Invariant

A StateInvariant is a condition, or constraint applied to a lifeline. The condition must be fulfilled for the
lifeline to exist.

To define a StateInvariant:

1. Click the State invariant icon, then click a lifeline, or an object activation to insert it.
2. Enter the condition/constraint you want to apply, e.g. accountAmount > 0, and press Enter to

confirm.

9.1.7.1.6 Messages

Messages are sent between sender and receiver lifelines, and are shown as labeled arrows. Messages can
have a sequence number and various other optional attributes: argument list etc. Messages are displayed from
top to bottom, i.e. the vertical axis is the time component of the sequence diagram.

· A call is a synchronous, or asynchronous communication which invokes an operation that allows
control to return to the sender object. A call arrow points to the top of the activation that the call
initiates.

404 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· Recursion, or calls to another operation of the same object, are shown by the stacking of activation
boxes (Execution Specifications).

To insert a message:

1. Click the specific message icon in the Sequence Diagram toolbar.
2. Click the lifeline, or activation box of the sender object.
3. Drag and drop the message line onto the receiver objects lifeline or activation box. Object lifelines are

highlighted when the message can be dropped.

· The direction in which you drag the arrow defines the message direction. Reply messages can point in
either direction.

· Activation box(es) are automatically created, or adjusted in size, on the sender/receiver objects. You
can also manually size them by dragging the sizing handles.

· Depending on the message numbering settings you have enabled, the numbering sequence is updated.
· Having clicked a message icon and holding down Ctrl key, allows you to insert multiple messages by

repeatedly clicking and dragging in the diagram tab.

To delete a message:

1. Click the specific message to select it.
2. Press the Del. key to delete it from the model, or right click it and select "Delete from diagram". The

message numbering and activation boxes of the remaining objects are updated.

"Go to operation" for call messages:
The operations referenced by call messages can be found in sequence and communication diagrams.

1. Right-click a call message and select "Go to Operation".

The display changes and the connect operation is displayed in the Model Tree tab.

© 2018-2024 Altova GmbH

Behavioral Diagrams 405UML Diagrams

Altova UModel 2024 Enterprise Edition

Note: Static operation names are shown as underlined in sequence diagrams.

To position dependent messages:

· Click the respective message and drag vertically to reposition it.

The default action when repositioning messages is to move all dependent messages related to the active one.
Using Ctrl+Click allows you to select multiple messages.

To position messages individually:

1. Click the Toggle dependent message movement icon to deselect it.
2. Click the message you want to move and drag to move it.

Only the selected message moves during dragging. You can position the message anywhere in the vertical
axis between the object lifelines.

To automatically create reply messages:

1. Click the "Toggle automatic creation of replies for messages" icon .
2. Create a new message between two lifelines. A reply message is automatically inserted for you.

Message numbering
UModel supports different methods of message numbering: nested, simple and none.

406 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· None removes all message numbering.

· Simple assigns a numerical sequence to all messages from top to bottom i.e. in the order that
they occur on the time axis.

· Nested uses the decimal notation, which makes it easy to see the hierarchical structure of the
messages in the diagram. The sequence is a dot-separated list of sequence numbers followed by a
colon and the message name.

There are two methods of selecting the numbering scheme:

· Click the respective icon in the icon bar.
· Use the Styles tab to select the scheme.

To select the numbering scheme using the Styles tab:

1. Click the Styles tab and scroll down to the Show Message Numbering field.
2. Click the combo box and select the numbering option you want to use. The numbering option you

select is immediately displayed in the sequence diagram.

Note: The numbering scheme might not always correctly number all messages, if ambiguous traces exist. If
this happens, adding return messages will probably clear up any inconsistencies.

Message replies
Message reply icons are available to create reply messages, and are displayed as dashed arrows.

Reply messages are also generally implied by the bottom of the activation box when activation boxes are
present. If activation boxes have been disabled (Styles tab | Show Execution Specifics=false), then reply
arrows should be used for clarity.

Activating the "toggle reply messages" icon, automatically creates syntactically correct reply messages
when creating a call message between lifelines/activations boxes.

© 2018-2024 Altova GmbH

Behavioral Diagrams 407UML Diagrams

Altova UModel 2024 Enterprise Edition

Creating objects with messages

1. Messages can create new objects. This is achieved using the Message Creation icon .
2. Drag the message arrow to the lifeline of an existing object to create that object. This type of message

ends in the middle of an object rectangle, and often repositions the object box vertically.

Sending messages to specific class methods/operations in sequence diagrams
Having inserted a class from the Model Tree into a sequence diagram, you can then create a message from a
lifeline to a specific method of the receiver class (lifeline) using UModel's syntax help and autocompletion
functions.

1. Create a message between two lifelines, the receiving object being a class lifeline (Bank). As soon as
you drop the message arrow, the message name is automatically highlighted.

2. Enter a character using the keyboard e.g. "b". A pop-up window containing a list of the existing class
methods is opened.

3. Select an operation from the list, and press Enter to confirm e.g. collectAccountInfos.
4. Press the space bar and press Enter to select the parenthesis character that is automatically

supplied. A syntax helper now appears, allowing you to enter the parameter correctly.

408 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Creating operations in referenced classes

Activating the Toggle automatic creation of operations in target by typing operation names icon,
automatically creates the corresponding operation in the referenced class, when creating a message and
entering a name e.g. myOperation().

Note: Operations can only be created automatically when the lifeline references a class or interface.

Message icons

 Message (Call)

 Message (Reply)

 Message (Creation)

 Message (Destruction)

 Asynchronous Message (Call)

 Asynchronous Message (Reply)

 Asynchronous Message (Destruction)

 Toggle dependent message movement

 Toggle automatic creation of replies for messages

 Toggle automatic creation of operations in target by typing operation names

© 2018-2024 Altova GmbH

Behavioral Diagrams 409UML Diagrams

Altova UModel 2024 Enterprise Edition

9.1.7.2 Generate Sequence Diagrams from Source Code

This example shows you how to generate a Sequence diagram from a method. The project containing this
method will be reverse-engineered from Java source code. You can find the Java source code at the following
path: C:\Users\<user>\Documents\Altova\UModel2024\UModelExamples\OrgChart.zip. First, unzip the
OrgChart.zip archive to the same location (for example, right-click the archive in Windows Explorer and select
Extract All).

1. On the Project menu, click Import Source Directory, and select the directory unzipped previously.
2. Go through the wizard steps to import the source code as a Java project. For more information about

this step, see Reverse Engineering (from Code to Model) .
3. Having imported the code, right-click the main method of the OrgChartTest class in the Model Tree

and select Generate Sequence Diagram from Code... from the context menu.

This opens the Sequence Diagram Generation dialog box in which you define the generation settings.

72

410 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

4. Select the presentation and layout options, and then click OK to generate the diagram. The settings
shown above produce the sequence diagram below.

© 2018-2024 Altova GmbH

Behavioral Diagrams 411UML Diagrams

Altova UModel 2024 Enterprise Edition

Sequence diagram generation options
The table below lists the generation options pertaining to Sequence diagrams.

Option Purpose

Diagram owner You can set this option when generating a diagram
for the first time. For existing diagrams, this
information is read-only.

412 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Option Purpose

Click the Ellipsis button to select the owner package
of the diagram. Otherwise, the option [autoselect]
places the diagram in the default package.

Automatically update diagram when model is updated
from code

When you perform reverse engineering (from code to
model), sequence diagrams are re-generated
automatically in the model, provided that you have
selected the option Automatically update diagram
when model is updated from code when
generating the diagram for the first time.

For existing diagrams, you can change this option as
follows:

1. Select the Sequence diagram in the Model
Tree or in the Diagram Tree.

2. In the Properties window, select the update
on reverse engineering check box.

If you select the use for forward engineering
check box, the synchronization from model to code
will generate code based on the sequence diagram,
when you perform forward engineering (from model to
code), see also Generate Code from Sequence
Diagram .

If the two "engineering" check boxes are missing, it
is likely that this diagram is just a fragment of a
bigger diagram, or perhaps you have created the
diagram from a non reverse-engineered operation.

Show code in notes Select this check box to generate the diagram with
notes (callouts) that contain program code.

Also show code of messages displayed directly
below

Even when it is possible to show a piece of code as
UML Message on the diagram, this option still
displays the code of that message as a note.

Add notes on separate layer Assigns code notes to a "Code Annotations" layer.

415

© 2018-2024 Altova GmbH

Behavioral Diagrams 413UML Diagrams

Altova UModel 2024 Enterprise Edition

Option Purpose

Use special color for non-displayable invocations Assigns a color of your choice to non-displayable
invocations.

Show empty Combined Fragments Keeps the Combined Fragment blocks on the
diagram, even if they don't contain anything.

Shown unknown invocations When selected, this option also displays messages
for operations or constructors which could not be
resolved (that is, not found in the model).

Split into smaller diagrams where appropriate Automatically splits sequence diagrams into smaller
sub-diagrams, and automatically generates
hyperlinks between them for easy navigation.

Maximum invocation depth Defines the call depth to be used in the diagram. For
example, if method1() calls method2() which calls
method3(), and the invocation depth is set to 2, then
only method2 is shown, and method3 is no longer
shown.

Type names to ignore Lets you define a comma delimited list of types that
should not appear in the sequence diagram when it is
generated.

Operation names to ignore Lets you define a comma delimited list of operations
that should not appear in the generated sequence
diagram. Adding the operation names to the list
causes the complete operation to be ignored.
Prepending a "+" character to the operation in the list
(for example, +InitComponent) causes the
operation calls to be shown in the diagram, but
without their content.

Use dedicated Lifeline for static calls If there are static methods calls, and if there is
already an instance of that object on the diagram,
messages are normally drawn to that existing lifeline.
With this option enabled, the diagram generator uses
a dedicated new lifeline just for static method calls
for that classifier.

399

414 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.1.7.2.1 Generate Multiple Sequence Diagrams

You can also create multiple sequence diagram models from multiple operations, as follows:

1. Select the menu option Project | Generate Sequence diagrams from Code.

2. Select the operations that you want to generate a sequence diagram for and click OK. (Use the Select
All Public and Select All buttons where necessary.)

3. Optionally, select the Include Getters and Setters check box to generate sequence diagrams for
C#/VB.NET getters and setters.

4. Click OK. This opens a dialog box where you can specify the sequence diagram generation options
.

5. Click OK. A sequence diagram is generated for each selected operation, and UModel automatically
opens it.

Creating multiple Sequence diagrams will likely take longer if your project is large. Note that only the first
10 diagrams will be opened automatically by UModel; all the rest will be generated without being opened.

9.1.7.2.2 Generate Sequence Diagrams from Getters/Setters

You can also generate a sequence diagram from getter/setter properties (in C#, VB .NET), as follows:

1. Right-click an Operation with a GetAccessor/SetAccessor stereotype.

411

© 2018-2024 Altova GmbH

Behavioral Diagrams 415UML Diagrams

Altova UModel 2024 Enterprise Edition

2. Select Generate Sequence Diagram from Code (Getter/Setter) from the context menu. This opens
a dialog box where you can specify the sequence diagram generation options .

3. Click OK to generate the Sequence Diagram.

9.1.7.3 Generate Code from Sequence Diagram

UModel can create code from a sequence diagram which is linked to at least one operation. Code generation
from sequence diagrams is available for:

· VB.NET, C# and Java
· UModel standalone, Eclipse, and Visual Studio editions
· All three UModel editions

Creating code from Sequence diagrams is possible by either:

· Starting from a reverse engineered operation, see Generating Sequence Diagrams from source
code ,

· By creating a new sequence diagram from scratch, which is linked to an operation, by right-clicking
the operation (in the Model Tree) and selecting Create sequence diagram for code .

When using a reverse engineered sequence diagram as basis, ensure that the option "Show code in
notes" is selected when reverse engineering the code, so you do not lose any code when you start the
forward-engineering process again. This is due to the fact that UML is not able to display all the language
features of VB.NET, Java and C# on the sequence diagram, and those code sections are therefore shown
as code notes.

411

409

418

416 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To add plain text as code when creating a sequence diagram:

1. Attach a note to a sequence diagram lifeline.
2. Type in the code which should be written into the final source code. Click the Is Code check box (in

the Properties pane) for that note, to make it accessible.

See Adding code to sequence diagrams for an example.

If a Sequence Diagram is to be used for code engineering automatically every time code engineering is started:

1. Select the diagram in the Model Tree or Diagram Tree window.
2. Select the Use for forward engineering check box in the Properties window.

Old code will always be lost when forward engineering code from a sequence diagram, because it will be
overwritten with the new code.

To generate code using the Project menu:

1. Select the menu option Project | Generate Code from Sequence Diagrams. You are now prompted
to select the specific Sequence Diagram(s). Clicking the "Select All" button selects all the Sequence
Diagrams in the UModel project.

2. Click OK to generate the code. The Messages window shows the status of the code generation
process.

418

© 2018-2024 Altova GmbH

Behavioral Diagrams 417UML Diagrams

Altova UModel 2024 Enterprise Edition

To generate code using the Model Tree:

· Right click a Sequence Diagram and select Generate Code from Sequence diagram.

To generate a Sequence Diagram containing code of an operation:

1. Click into the empty space of the Sequence Diagram, that contains code of an operation.
2. Select Generate Code from Sequence diagram.

This command starts the forward-engineering process at this point.

418 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To create a Sequence diagram for code (engineering):

· In the Model Tree, right-click an operation and select Create Sequence diagram for code.

You will then be prompted if you want to use the new diagram for forward engineering.

The result is a new Sequence Diagram containing the lifeline of that class.

9.1.7.3.1 Adding code to sequence diagrams

Program code can be generated from new, and reverse-engineered sequence diagrams, but only for a sequence
diagram linked to the "main operation".

When reverse-engineering code, standard sequence diagram elements, e.g. CombinedFragments, are
"mapped/assigned" to coding elements (e.g. "if" statements, loops, etc.).

© 2018-2024 Altova GmbH

Behavioral Diagrams 419UML Diagrams

Altova UModel 2024 Enterprise Edition

For those programming statements that have no corresponding sequence diagram elements, e.g. "i = i+1",
UModel makes use of "code" notes to add code to diagrams. These notes must then be linked to the lifeline.

Note that UModel does not check, or parse, these code fragments. It is up to you to make sure that the code
fragments are correct and will compile.

To add code to a sequence diagram:

1. Click the Note icon then click the model element where you want to insert it, e.g.
CombinedFragment.

2. Enter the code fragment, e.g. return.
3. Click the Node Link handle of the inserted note and drop the cursor on the lifeline.
4. Activate the "Is Code" check box in the Properties tab to include this code fragment when generating

code.

When selecting a note on a sequence diagram, which can be used for code generation, the property "is code"
is available in the Properties window. Clicking the check box, allows you to switch between "ordinary" notes
and code generation notes.

Ordinary notes:

Code generation notes
 - shown with a darker dog-ear

Code updates occur automatically on every forward engineering process if the "Use for forward engineering"
check box is active. If changes were made to the sequence diagram, the code of the operation is always
overwritten.

The sequence diagram shown below was generated by right clicking the OnCommand operation and selecting
Generate sequence diagram from code. The C# code of this example is available in the C:
\Users\<user>\Documents\Altova\UModel2024\UModelExamples\IDEPlugIn\Styles\ folder. Use the option
Project | Import Source Project, to import the project.

420 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The code shown below is generated from the sequence diagram.

Public void OnCommand(int nID, object pUModel)

{
 //Generated by UModel. This code will be overwritten when you re-run code generation.

 if (!m_bPlugINVersionOK)

 {
 return;

 }

© 2018-2024 Altova GmbH

Behavioral Diagrams 421UML Diagrams

Altova UModel 2024 Enterprise Edition

 if (nID == 3 || nID == 6)

 {
 OnSetStyles((IApplication)pUModel, "red");
 }

 if (nID == 4 || nID == 7)

 {
 OnSetStyles((IApplication)pUModel, "green");
 }
 GC.Collect();

}

9.1.8 Timing Diagram

Altova website: UML Timing diagrams

Timing diagrams depict the changes in state, or condition, of one or more interacting objects over a given period
of time. States, or conditions, are displayed as timelines responding to message events, where a lifeline
represents a Classifier Instance or Classifier Role.

A Timing diagram is a special form of a sequence diagram. The difference is that the axes are reversed i.e. time
increases from left to right, and lifelines are shown in separate vertically stacked compartments.

Timing diagrams are generally used when designing embedded software or real-time systems.

There are two different types of timing diagram: one containing the State/Condition timeline as shown above,
and the other, the General value lifeline, shown below.

https://www.altova.com/umodel/timing-diagrams

422 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.1.8.1 Inserting Timing Diagram elements

Using the toolbar icons
1. Click the specific timing icon in the Timing Diagram toolbar.

2. Click in the Timing Diagram to insert the element. To insert multiple elements of the selected type,
hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the timing machine diagram
Elements occurring in other diagrams, e.g. classes, can be inserted into an Timing Diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text
box, or press Ctrl+F to search for any element).

2. Drag the element(s) into the state diagram.

9.1.8.2 Lifeline

The lifeline element is an individual participant in an interaction, and is available in two different
representations:

1. State/Condition lifeline

2. General Value lifeline

To create a multiline lifeline, press Ctrl+Enter to create a new line.

© 2018-2024 Altova GmbH

Behavioral Diagrams 423UML Diagrams

Altova UModel 2024 Enterprise Edition

To insert a State Condition (StateInvariant) lifeline and define state changes:

1. Click the Lifeline (State/Condition) icon in the title bar, then click in the Timing Diagram to
insert it.

2. Enter the lifeline name to change it from the default name, Lifeline1, if necessary.
3. Place the mouse cursor over a section of one of the timelines and click left. This selects the line.
4. Move the mouse pointer to the position you want a state change to occur, and click again. Note that

you will actually see the double headed arrow when you do this. A red box appears at the click
position and divides the line at this point.

5. Move the cursor to the right hand side of the line and drag the line upwards.

Note that lines can only be moved between existing states of the current lifeline.

Any number of state changes can be defined per lifeline. Once the red box appears on a line, clicking
anywhere else in the diagram deletes it.

To add a new state to the lifeline:

· Right-click the lifeline and select New | State/Condition (StateInvariant). A new State e.g. State3 is
added to the lifeline.

424 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To move a state within a lifeline:

1. Click the state label that you want to move.
2. Drag it to a different position in the lifeline.

To delete a state from a lifeline:

· Click the state and press the Del. key, or alternatively, right click and select Delete.

To switch between timing diagram types:

· Click the "toggle notation" icon at the bottom right of the lifeline.

This changes the display to the General Value lifeline, the cross-over point represents a state/value
change.

Note: Clicking the Lifeline (General Value) icon inserts the lifeline as shown above. You can switch
between the two representations at any time.

To add a new state to the General value lifeline:

1. Right-click the lifeline and select New | State/Condition (StateInvariant).
2. Edit the new name e.g. State3, and press Enter to confirm.

A new State is added to the lifeline.

© 2018-2024 Altova GmbH

Behavioral Diagrams 425UML Diagrams

Altova UModel 2024 Enterprise Edition

Grouping lifelines
Placing or stacking lifelines automatically positions them correctly and preserves any tick marks that might
have been added. Messages can also be created between separate lifelines by dragging the respective
message object.

9.1.8.3 Tick Mark

 The TickMark is used to insert the tick marks of a timing ruler scale onto a lifeline.

To insert a TickMark:

1. Click the tick mark icon and click on the lifeline to insert it.

2. Insert multiple tick marks by holding down the Ctrl key and repeatedly clicking at different positions on
the lifeline border.

3. Enter the tick mark label in the field provided for it. Drag tick marks to reposition them on the lifeline.

426 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To evenly space tick marks on a lifeline:

1. Use the marquee, by dragging in the main window, to mark the individual tick marks.

2. Click the Space Across icon in the icon bar.

9.1.8.4 Event/Stimulus

The Event/Stimulus ExecutionEvent is used to show the change in state of an object caused by the
respective event or stimulus. The received events are annotated to show the event causing the change in
condition or state.

To insert an Event/Stimulus:

1. Click the Event/Stimulus icon, then click the specific position in the timeline where the state change
takes place.

2. Enter a name for the event, in this example the event is "Code".

Note that the event properties are visible in the Properties tab.

© 2018-2024 Altova GmbH

Behavioral Diagrams 427UML Diagrams

Altova UModel 2024 Enterprise Edition

9.1.8.5 DurationConstraint

A DurationConstraint defines a ValueSpecification that denotes a duration in time between a start and
endpoint. A duration is often an expression representing the number of clock ticks, which may elapse during
this duration.

To insert an DurationConstraint:

1. Click the DurationConstraint icon, then click the specific position on the lifeline where the constraint
is to be displayed. The default minimum and maximum values, "d..t", are automatically supplied.
These values can be edited by double clicking the time constraint, or by editing the values in the
Properties window.

2. Use the handles to resize the object if necessary.

To change the orientation of the DurationConstraint:

· Click the "Flip" icon to orient the constraint vertically.

428 UML Diagrams Behavioral Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.1.8.6 TimeConstraint

A TimeConstraint is generally shown as graphical association between a TimeInterval and the construct
that it constrains. Typically, this is graphical association between an EventOccurrence and a TimeInterval.

To insert a TimeConstraint:

· Click the TimeConstraint icon, then click the specific position on the lifeline where the constraint is to
be displayed.

The default minimum and maximum values are automatically supplied, "d..t" respectively. These values
can be edited by double clicking the time constraint, or by editing the values in the Properties window.

9.1.8.7 Message

A Message is a modeling element that defines a specific kind of communication in an Interaction. A
communication can be e.g. raising a signal, invoking an Operation, creating or destroying an Instance. The
Message specifies the type of communication defined by the dispatching ExecutionSpecification, as well as
the sender and the receiver.

Use the following toolbar buttons to add specific message types:

 Message (Call)

 Message (Reply)

© 2018-2024 Altova GmbH

Behavioral Diagrams 429UML Diagrams

Altova UModel 2024 Enterprise Edition

 Async message (Call)

Messages are sent between sender and receiver timelines, and are shown as labeled arrows.

To insert a message:

1. Click the specific message icon in the toolbar.
2. Click anywhere on the timeline sender object e.g. Idle.
3. Drag and drop the message line onto the receiver objects timeline e.g. NoCard. Lifelines are

highlighted when the message can be dropped.

Notes:

· The direction in which you drag the arrow defines the message direction. Reply messages can point in
either direction.

· Having clicked a message icon and holding down Ctrl key, allows you to insert multiple messages by
repeatedly clicking and dragging in the diagram tab.

To delete a message:

1. Click the specific message to select it.
2. Press the Del key to delete it from the model, or right click it and select "Delete from diagram".

430 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.2 Structural Diagrams

These diagrams depict the structural elements that make up a system or function. Both the static, e.g. Class
diagram, and dynamic, e.g. Object diagram, relationships are presented.

 Class Diagram

 Component Diagram

 Composite Structure Diagram

 Deployment Diagram

 Object Diagram

 Package Diagram

 Profile Diagram

9.2.1 Class Diagram

This section includes tasks and concepts applicable to Class Diagrams, as follows:

· Customizing Class Diagrams
· Overriding Base Class Operations and Implementing Interface Operations
· Creating Getter and Setter Methods
· Ball and Socket Notation
· Adding Raised Exceptions to Methods of a Class
· Adding Receptions to a Class
· Generating Class Diagrams

For a basic introduction to Class Diagrams, see Class Diagrams in the tutorial section of this
documentation.

9.2.1.1 Customizing Class Diagrams

Expanding / hiding class compartments in a UML diagram
There are several methods of expanding the various compartments of class diagrams.

· Click on the + or - buttons of the currently active class to expand/collapse the specific compartment.

· Use the marquee (drag on the diagram background) to mark multiple classes, then click the
expand/hide button. You can also use Ctrl+Click to select multiple classes.

· Press Ctrl+A to select all classes, then click the expand/collapse button, on one of the classes, to
expand/collapse the respective compartments.

Expanding / collapsing class compartments in the Model Tree
In the Model Tree classes are subelements of packages and you can affect either the packages or the classes.

· Click the package / class you want to expand and:

§ Press the * key to expand the current package/class and all sub-elements

§ Press the + key to open the current package/class.

454

430

437

437

439

440

441

442

30

© 2018-2024 Altova GmbH

Structural Diagrams 431UML Diagrams

Altova UModel 2024 Enterprise Edition

To collapse the packages/classes, press the - keyboard key.

Note that you can use the standard keyboard keys, or the numeric keypad keys to achieve this.

Changing the visibility type icons

Clicking the visibility icon to the left of an operation , or property , opens a drop-down list enabling you to
change the visibility status. You can also change the type of visibility symbols that you want to see.

· Click a class in the diagram window, click the Styles tab and scroll down the list until you find the
Show Visibility entry.

You can choose between the UModel type shown above, or the UML conformant symbols shown
below.

Showing or hiding node content (class attributes, operations, slots)
In class diagrams, you can show or hide specific members of a class, such as attributes or operations. You
can show or hide not only individual members but also multiple members of the same type according to their
visibility. For example, you can hide only those class attributes that have private visibility. Showing or hiding is
also supported for object slots (InstanceSpecifications) in Object diagrams.

To show or hide class members or object slots:

1. Right-click a class (for example, SavingsAccount from the example Bank_MultiLanguage.ump
project) and select Show/Hide Node content from the context menu.

2. Select or clear the check box next to the members you want to show or hide, respectively.

432 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To show or hide multiple members based on their visibility, use the check boxes in the Element Styles group.
For example, clearing the protected check box in the Show Attributes group hides all protected attributes of
the class.

Note: Tagged values of hidden elements are also hidden when you select the hide option.

After you confirm your preferences with OK and close the dialog box, any hidden members on the diagram are
replaced by the ellipsis ... symbol. To open the dialog box again, double-click the ellipsis.

The When new elements are added and not hidden by Element Styles option allows you to define what
will be made visible when new elements are added to the class. This applies not only to elements added
manually in the diagram or in the Model Tree, but also to those added automatically during the code
engineering process. The valid values for this option are as follows:

Show elements When a new member is added to the class, show it on the
diagram. Nevertheless, if any of the options set under
"Element styles" dictate that the element must be hidden,
hide it.

© 2018-2024 Altova GmbH

Structural Diagrams 433UML Diagrams

Altova UModel 2024 Enterprise Edition

Hide elements (except those added to this
node)

Here, the term "node" refers to the current instance of the
class on the diagram. (Recall that the same class can be
added multiple times on the same diagram, see
Renaming, Moving, and Copying Elements .)

When two or more instances of the same class exist on
the diagram, and when a new member is added to this
instance of the class, then hide the member in all
instances of the class but show it for the current instance.

For an example of how the options above are useful, open the Bank_MultiLanguage.ump example project,
and find the "Hierarchy of Account" class diagram.

Next, create a new instance of the SavingsAccount class, as follows:

1. Right-click the SavingsAccount class in the diagram and select Copy.
2. Right-click an empty area in the same diagram and select Paste in this diagram only from the

context menu.

There are now two instances of the SavingsAccount class on the diagram.

Next, set different visibility options in each of the instances:

1. Right-click the left instance of the class, select Show/Hide Node content, and then select the Show
elements option.

2. Right-click the right instance of the class, select Show/Hide Node content, and then select the Hide
elements (except those added to this node) option.

Next, add a new property to the left instance (select the class and press F7). As illustrated below, the new
property (Property1) is visible in the left instance but not visible in the right instance. This happens because
the right-side instance of the class has the the Hide elements (except those added to this node) option
enabled.

111

434 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Finally, add a new property to the right-side instance of the class. As illustrated below, the new property
(Property2) is visible in both instances. This happens because the left-side instance is configured to show new
elements, while the right-side instance is the current instance where the property is added, so the new property
is shown unconditionally.

Showing or hiding .NET compartments
To display .NET properties in their own compartment, select the "Show .NET properties in own compartment"
option in the Styles tab.

© 2018-2024 Altova GmbH

Structural Diagrams 435UML Diagrams

Altova UModel 2024 Enterprise Edition

Showing .NET properties as associations
To display .NET properties as associations, right-click a C# property as shown below, and select Show | All
.NET Properties as Associations from the context menu.

Changing the syntax coloring of operations/properties
UModel automatically enables syntax coloring, but lets you customize it to suit your needs. The default
settings are shown below.

436 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To change the default syntax coloring options (shown below):

1. Switch to the Styles tab and scroll the SC prefixed entries.
2. Change one of the "SC color" entries e.g. "SC Type" to "red".

To disable syntax coloring:

1. Switch to the Styles tab and change the Use Syntax Coloring entry to false.
2. Use the Attribute Color, or Operation Color entries in the Styles tab to customize these items in

the class.

© 2018-2024 Altova GmbH

Structural Diagrams 437UML Diagrams

Altova UModel 2024 Enterprise Edition

9.2.1.2 Overriding Base Class Operations and Implementing Interface
Operations

UModel gives you the ability to override the base-class operations, or implement interface operations of a class.
This can be done from the Model Tree, Favorites tab, or in Class diagrams.

1. Right-click one of the derived classes in the class diagram, e.g. CheckingAccount, and select
Override/Implement Operations. This opens the dialog box shown below.

2. Select the Operations that you want to override and confirm with OK. The "Select undefined..." buttons
select those method types in the window at left.

Note: When the dialog box is opened, operations of base classes and implemented interfaces that have the
same signature as existing operations, are automatically checked (i.e. active).

9.2.1.3 Creating Getter and Setter Methods

During the modeling process it is often necessary to create get/set methods for existing attributes. UModel
supplies you with two separate methods to achieve this:

· Drag and drop an attribute into the operation compartment
· Use the context menu to open a dialog box allowing you to manage get/set methods

438 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To create getter/setter methods using drag and drop:

· Drag an attribute from the Attribute compartment and drop it in the Operations compartment.

A pop-up menu appears at this point allowing you to decide what type of get/set method you want to
create.

Selecting the first item creates a get and set method for interestRate:float.

To create getter/setter methods using the context menu:

1. Right-click the class title, e.g. SavingsAccount, and select the context menu option Create
Getter/Setter Operations. The Create Getters/Setters dialog box opens displaying all attributes
available in the currently active class.

© 2018-2024 Altova GmbH

Structural Diagrams 439UML Diagrams

Altova UModel 2024 Enterprise Edition

2. Use the buttons to select the items as a group, or click the getter/setter check boxes individually.

Note: You can also right-click a single attribute and use the same method to create an operation for it.

9.2.1.4 Ball and Socket Notation

UModel supports the ball and socket notation of UML. Classes that require an interface display a "socket" and
the interface name, while classes that implement an interface display the "ball".

In the shots shown above, Class2 realizes Interface1, which is used by classes 1, 3, and 4. The usage icons
were used to create the usage relationship between the classes and the interface.

To switch between the standard and ball-and-socket view:

· Click the Toggle Interface notation icon at the base of the interface element.

440 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.2.1.5 Adding Raised Exceptions to Methods of a Class

To add raised Exceptions to methods of a class:

1. Click the method of the class you want to add the raised exception to in the Model Tree window, e.g.
getBalance of the Account class.

2. Right-click the Properties window and select Add Raised Exception from the pop-up menu. This adds
the raised exceptions field to the Properties window, and automatically selects the first entry in the
list.

3. Select an entry from the list, or enter your own into the field.

© 2018-2024 Altova GmbH

Structural Diagrams 441UML Diagrams

Altova UModel 2024 Enterprise Edition

9.2.1.6 Adding Receptions to a Class

In addition to operations and properties, you can add Reception elements to a class.

To add a Reception to a class:

· Right-click the class on the diagram and select New | Reception from the context menu.

Receptions appear in a separate compartment on the Class diagram, similar to properties and operations, for
example:

Receptions share the same styles as operations. This means that, whenever you change the style of
operations, the changes affect Receptions also. For more information, see Changing the Style of Elements .121

442 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.2.1.7 Generating Class Diagrams

As an alternative to designing class diagrams directly in UModel, you can generate them automatically when
importing source code or binaries into UModel projects (see Importing Source Code and Importing Java, C#
and VB.NET Binaries). When following the import wizard, make sure that:

1) The Enable diagram generation check box is selected on the "Import Source Project", "Import Binary
Types", or "Import Source Directory" dialog box.

Import Source Project dialog box

2) The Generate single diagram and/or the Generate diagram per package options are selected on the
"Content Diagram Generation" dialog box.

196

212

© 2018-2024 Altova GmbH

Structural Diagrams 443UML Diagrams

Altova UModel 2024 Enterprise Edition

Content Diagram Generation dialog box

Once the import operation is finished, any generated class diagrams are available under "Class Diagrams" in
the Diagram Tree.

444 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Diagram Tree

9.2.2 Composite Structure Diagram

Altova website: UML Composite Structure diagrams

The Composite Structure Diagram has been added in UML 2.0 and is used to show the internal structure,
including parts, ports and connectors, of a structured classifier, or collaboration.

https://www.altova.com/umodel/composite-structure-diagrams

© 2018-2024 Altova GmbH

Structural Diagrams 445UML Diagrams

Altova UModel 2024 Enterprise Edition

9.2.2.1 Inserting Composite Structure Diagram elements

Using the toolbar icons
1. Click the specific Composite Structure diagram icon in the toolbar.

2. Click in the Composite Structure diagram to insert the element. To insert multiple elements of the
selected type, hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the Composite Structure diagram
Most elements occurring in other Composite Structure diagrams, can be inserted into an existing Composite
Structure diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text box,
or press Ctrl+F to search for any element).

2. Drag the element(s) into the Composite Structure diagram.

446 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 Collaboration
Inserts a collaboration element which is a kind of classifier/instance that communicates with other instances to
produce the behavior of the system.

 CollaborationUse
Inserts a Collaboration use element which represents one specific use of a collaboration involving specific
classes or instances playing the role of the collaboration. A collaboration use is shown as a dashed ellipse
containing the name of the occurrence, a colon, and the name of the collaboration type.

When creating dependencies between collaboration use elements, the "type" field must be filled to be able to
create the role binding, and the target collaboration must have at least one part/role.

 Part (Property)
Inserts a part element which represents a set of one or more instances that a containing classifier owns. A Part
can be added to collaborations and classes.

 Port
Inserts a port element which defines the interaction point between a classifier and its environment, and can be
added on parts with a defined type.

 Class
Inserts a Class element, which is the actual classifier that occurs in that particular use of the collaboration.

 Connector
Inserts a Connector element which can be used to connect two or more instances of a part, or a port. The
connector defines the relationship between the objects and identifies the communication between the roles.

 Dependency (Role Binding)
Inserts the Dependency element, which indicates which connectable element of the classifier or operation,
plays which role in the collaboration.

© 2018-2024 Altova GmbH

Structural Diagrams 447UML Diagrams

Altova UModel 2024 Enterprise Edition

9.2.3 Component Diagram

Please see the Component Diagrams section in the tutorial for more information on how to add component
elements to the diagram.

9.2.4 Deployment Diagram

Please see the Deployment Diagrams section in the tutorial for more information on how to add nodes and
artifacts to the diagram.

52

58

448 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.2.5 Object Diagram

Please see the Object Diagrams section in the tutorial for more information on how to add new
objects/instances to the diagram.

9.2.6 Package Diagram

Package diagrams display the organization of packages and their elements, as well as their corresponding
namespaces. UModel additionally allows you to create a hyperlink and navigate to the respective package
content.

Packages are depicted as folders and can be used on any of the UML diagrams, although they are mainly used
on use-case and class diagrams.

45

© 2018-2024 Altova GmbH

Structural Diagrams 449UML Diagrams

Altova UModel 2024 Enterprise Edition

Automatic Package Dependency diagram generation
You can generate a package dependency diagram for any package that already exists in the Model Tree.

Dependency links between packages are created if there are any references between the modeling elements of
those packages. E.g. Dependencies between classes, derived classes, or if attributes have types that are
defined in a different package.

To generate a package dependency diagram:

1. Right click a package in the Model Tree, e.g. altova, and select Show in new Diagram | Package
Dependencies.... This opens the New Package Dependency Diagram dialog box.

2. Select the specific options you need and click OK to confirm.

450 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

A new diagram is generated and displays the package dependencies of the altova package.

9.2.6.1 Inserting Package Diagram elements

Using the toolbar icons
1. Click the specific icon in the Package Diagram toolbar.

2. Click in the diagram to insert the element. To insert multiple elements of the selected type, hold down
the Ctrl key and click in the diagram window.

Dragging existing elements into the Package Diagram
Elements occurring in other diagrams, e.g. other packages, can be inserted into a Package diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text box,
or press Ctrl+F to search for any element).

2. Drag the element(s) into the diagram.

 Package
Inserts the package element into the diagram. Packages are used to group elements and also to provide a
namespace for the grouped elements. Being a namespace, a package can import individual elements of other
packages, or all elements of other packages. Packages can also be merged with other packages.

 Profile
Inserts the Profile element, which is a specific type of package that can be applied to other packages.

The Profiles package is used to extend the UML meta model. The primary extension construct is the
Stereotype, which is itself part of the profile. Profiles must always be related to a reference meta model such
as UML, they cannot exist on their own.

© 2018-2024 Altova GmbH

Structural Diagrams 451UML Diagrams

Altova UModel 2024 Enterprise Edition

 Dependency
Inserts the Dependency element, which indicates a supplier/client relationship between modeling elements, in
this case packages, or profiles.

 PackageImport
Inserts an <<import>> relationship which shows that the elements of the included package will be imported into
the including package. The namespace of the including package gains access to the included namespace; the
namespace of the included package is not affected.

Note: Elements defined as "private" within a package, cannot be merged or imported.

 PackageMerge
Inserts a <<merge>> relationship which shows that the elements of the merged (source) package will be
imported into the merging (target) package, including any imported contents of the merged (source) package.

If the same element exists in the target package then these elements' definitions will be expanded by those
from the target package. Updated or added elements are indicated by a generalization relationship back to the
source package.

Note: Elements defined as "private" within a package, cannot be merged or imported.

 ProfileApplication
Inserts a Profile Application which shows which profiles have been applied to a package. This is a type of
package import that states that a Profile is applied to a Package.

The Profile extends the package it has been applied to. Applying a profile, using the ProfileApplication icon,
means that all stereotypes that are part of it, are also available to the package.

Profile names are shown as dashed arrows from the package to the applied profile, along with the <<apply>>
keyword.

9.2.6.2 Generating Package Diagrams

You can instruct UModel to generate package diagrams when importing source code or binaries into the
UModel project (see Importing Source Code and Importing Java, C# and VB.NET Binaries). When
following the import wizard, make sure that:

1) The Enable diagram generation check box is selected on the "Import Source Project", "Import Binary
Types", or "Import Source Directory" dialog box.

196 212

452 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Import Source Project dialog box

2) The Generate diagram option is selected on the "Package Dependency Diagram Generation" dialog box.

© 2018-2024 Altova GmbH

Structural Diagrams 453UML Diagrams

Altova UModel 2024 Enterprise Edition

Package Dependency Diagram Generation dialog box

Once the import operation is finished, any generated package diagrams are available under "Package
Diagrams" in the Diagram Tree.

454 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Diagram Tree

9.2.7 Profile Diagram

Altova website: UML profile diagrams

In UML, profiles are a way to extend UML to a specific platform or domain. Unlike a package, a profile is in the
meta-model and consists of "meta" building blocks that extend or constrain something. This is possible with
the help of the following extension mechanisms included into a profile: stereotypes, tagged values, and
constraints.

In UModel, the profile diagram is where you can conveniently create your own stereotypes, tagged values and
constraints bundled as a custom profile. Profiles enable you to extend or adapt UML to your specific domain or
customize the appearance of elements in your modeling projects. For example, you may want to define custom
styles or add custom icons for UML elements such as classes, interfaces, and so on.

Importantly, the profile diagram is where you can apply a profile to a package. For example, the profile diagram
below illustrates a ProfileApplication relationship between the package BankView and the Java profile built
into UModel. You can find this diagram in the following sample project: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\BankView_Java.ump; it is called
"Apply Java Profile".

https://www.altova.com/umodel/profile-diagrams

© 2018-2024 Altova GmbH

Structural Diagrams 455UML Diagrams

Altova UModel 2024 Enterprise Edition

Profile diagram

The applied Java profile means that any class or interface that is part of the BankView package (or will be
added to this package in future) must look like a Java class or interface and all its members must exhibit
behavior specific to that language. For example:

· All Java data types that exist in the profile are available for selection from a drop-down list when you
design a class in a class diagram, see also Class Diagrams .

· All Java-specific stereotypes defined in the profile, such as «annotations», «final», «static»,
«strictfp», and so on, are visible as properties in the Properties window when you select an element.

This chapter describes how you can extend UModel projects by means of custom profiles and stereotypes. For
information about using the UModel built-in profiles, see Applying UModel Profiles and Stereotypes and
Tagged Values .

9.2.7.1 Creating and Applying Custom Profiles

The instructions below show you how to create a custom UModel profile and apply it to a package. This is
typically required if you need to create and apply stereotypes beyond those included in the default UModel
profiles. For information about applying the default UModel profiles, see Applying UModel Profiles .

To create a custom profile:

1. Right-click the package where you would like to create the new profile, (for example, "Root"), and
select New element | Profile from the context menu.

2. Create all the elements that should be part of this profile, such as stereotypes, data types, and so on.
You can do this either in the Model Tree window or from a profile diagram. For example, to create a
new stereotype in the model, right-click the profile and select New element | Stereotype from the
context menu. See also Creating Stereotypes .

3. Optionally, create a profile diagram (right-click the profile and select New diagram | Profile diagram
from the context menu). To add all the required elements to the diagram, use the standard UModel
menu commands and toolbars, see How to Model... .

If you would like to create the profile from a profile diagram, make sure that the diagram is owned by

30

159

145

159

456

107

456 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

(created under) a profile, or by a package inside a profile.

In addition, if you would like to reuse the profile across multiple UModel projects, do the following:

1. Share any packages that you want to make reusable. (Right-click the package or the profile itself, and
select Subproject | Share package from the context menu.)

2. Save the project to a directory from where you can later include it as a subproject, see Including
Subprojects .

So far, you have created a profile but have not added (or applied) it to any package. By applying a profile to a
package, you make all of the extension mechanisms of that profile (such as stereotypes, data types, and so
on) available to elements of the package.

To apply a custom profile to a package:

1. Create a new UModel project, or open an existing one.
2. Do one of the following:

a. Create your custom profile in the existing project, as shown above.
b. Include a custom profile from an existing project using the menu command Project | Include

Subproject. Note that either the entire profile or its packages under must be shared in order to be
reusable, see Sharing Packages and Diagrams .

3. Right-click the profile and select New diagram | Profile diagram from the context menu.
4. Add some package(s) and the custom profile to the diagram.

5. Draw a ProfileApplication relationship from the package to the profile. For example, the profile
diagram below illustrates a ProfileApplication relationship between the package BankView and the
Java profile built into UModel. As illustrated below, profile applications are shown as dashed arrows
from the package to the applied profile, along with the <<apply>> keyword.

9.2.7.2 Creating Stereotypes

When you model projects using any of the UModel built-in profiles (such as C#, Java, VB.NET, XML schema,
database, and so on), you shouldn't typically need to create any custom stereotypes. Instead, you can just
apply the existing stereotypes to your model's elements, as described in Applying Stereotypes .

163

165

147

© 2018-2024 Altova GmbH

Structural Diagrams 457UML Diagrams

Altova UModel 2024 Enterprise Edition

However, if you would like to add custom icons to elements or customize their appearance based on the
applied stereotype, this can be achieved by creating custom stereotypes. Note the following prerequisites:

· Stereotypes must be owned by a profile or a package inside a profile. Therefore, in order to create a
stereotype, you must create a profile first (or a package inside an existing profile).

· After creating the profile, you must apply it to the package where you need to use the custom
stereotypes, as described in Creating and Applying Profiles .

Once you have created a profile, you can start adding stereotypes to it. This can be done either directly in the
Model Tree window, or from a profile diagram. If you would like to create stereotypes from a profile diagram,
make sure that the diagram is owned by (created under) a profile, or by a package inside a profile, as shown
below.

To create a stereotype:

1. If you haven't done so already, create a profile, see Creating and Applying Custom Profiles .
2. Optionally, right-click the profile and select New diagram | Profile diagram from the context menu.

This creates a new profile diagram under the current profile—it will help you visualize in one place all
the stereotypes, data types, and other elements that you will subsequently add to the profile.

3. Right-click the profile in the Model Tree window, and select New element | Stereotype from the
context menu.

455

455

458 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

4. Optionally, set the stereotype properties in the Properties window. For example, if you set the
stereotype's metaclass to "Class", the stereotype will apply to classes only. Likewise, you can set a

custom icon for the stereotype by clicking the Ellipsis button next to icon file name.

Notes
· If the image path is relative, it must be relative to the UModel project's folder.
· To use custom icons with transparent background, set their background color to RGB value

82,82,82.
· To display stereotypes for association relationships, set the Show MemberEnd stereotypes

property to "true" in the Styles window.

Adding stereotype attributes (properties)
The stereotype created above is very simple and does not have any attributes (properties) associated with it. It
is, however, possible to add properties to a stereotype. Such properties will become tagged values when this
stereotype is applied to some element in future.

To add attributes (properties) to a stereotype:

1. Click the stereotype in the Model Tree window or on the diagram.
2. Do one of the following

a. Right-click the stereotype and select New | Property from the context menu.
b. Press F7.

© 2018-2024 Altova GmbH

Structural Diagrams 459UML Diagrams

Altova UModel 2024 Enterprise Edition

You can set the data type of each property from the Properties window, by selecting a value from the type list.
Any data type previously defined in the same profile as the stereotype is available for selection. If the profile
doesn't contain any data types yet, you can define one by right-clicking the profile diagram, and selecting New
| Data type from the context menu.

To set the default value of a property, enter that value in the default field of the Properties window. For
example, the stereotype property illustrated below has "0" as default value:

The data type of a stereotype attribute (property) can also be an enumeration, see Example: Creating and
Applying Stereotypes .

9.2.7.3 Example: Creating and Applying Stereotypes

This example provides a step-by-step demo of the stereotype creation process. It shows you how to achieve
the following goals:

· Create a stereotype
· Create stereotype attributes (properties) that become tagged values when applied to an element
· Define a stereotype attribute as an enumeration
· Set a default value for a stereotype attribute
· Apply the stereotype to elements in the model.

The example is accompanied by a sample project file called StereotypesDemo.ump, available at the following
path: C:\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Tutorial. If you follow the
instructions below literally, you will create a similar project.

459

460 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Create a new profile
As mentioned above, a stereotype must be owned by a profile; therefore, let's first create a profile.

1. Create a new UModel project.
2. Right-click the "Root" package and add a new profile by selecting New element | Profile from the

context menu.
3. Rename the new profile to "DemoProfile".

Create a stereotype
For the scope of this tutorial, you will create a stereotype with two attributes: "Usability" and "IsObsolete". The
"IsObsolete" attribute will be defined as an enumeration. The enumeration will consist of two values, "Yes" and
"No", where "No" is the default value.

1. Right-click the profile and select New element | Stereotype from the context menu. A new
stereotype has been added to the profile.

2. Rename the new stereotype to "Info".
3. Right-click the stereotype and select New element | Property from the context menu. This adds a

new property.
4. Rename the new property to "Usability".

5. Repeat the steps above to create a new property called "IsObsolete".

© 2018-2024 Altova GmbH

Structural Diagrams 461UML Diagrams

Altova UModel 2024 Enterprise Edition

6. Right-click the "DemoProfile" and select New Element | Enumeration from the context menu.
Rename the enumeration to "YesNoEnum".

7. Right-click the enumeration and select New Element | EnumerationLiteral from the context menu.
Rename the enumeration literal to "Yes".

8. Repeat the step above and create an enumeration literal called "No".

9. Click the "IsObsolete" property and change its type to YesNoEnum. Also, set the default property to
"No"

462 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Create a new package
In order to illustrate how the custom stereotype can be used, let's create a simple package containing only one
class.

1. Right-click the "Root" package and add a new package by selecting New element | Package from
the context menu.

2. Rename the new package to "DemoPackage".
3. Add a class to the package (in this example, "DemoClass".

Apply the profile to a package
As you recall from Step 1, the stereotype was created inside a profile. In this step, we apply the profile to a
package, so that the stereotype becomes "visible" to the package.

1. Right-click the "DemoProfile" in the Model Tree window and select New diagram | Profile diagram
from the context menu.

2. Drag both the "DemoPackage" package and the "DemoProfile" profile from the Model Tree window into
the diagram.

3. Click the ProfileApplication toolbar button, and draw a ProfileApplication relationship from the
package to the profile.

© 2018-2024 Altova GmbH

Structural Diagrams 463UML Diagrams

Altova UModel 2024 Enterprise Edition

Apply the stereotype to classes
You can now apply the stereotype to a class.

1. Right-click the "DemoPackage" and select New diagram | Class diagram from the context menu.
2. Drag the class "DemoClass" onto the diagram.
3. Click the class and select the «Info» stereotype in the Properties window. Notice that the

"IsObsolete" property is pre-filled with its default value.

4. Enter a value for the "Usability" property ("75%", in this example).

The class on the diagram now has a "Tagged values" section which displays the stereotype attributes and their
values. You can change these values either from the Properties window, or directly from the diagram.

464 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.2.7.4 Example: Customizing Icons and Styles

This example shows you how to customize the appearance of a class in UModel with the help of stereotypes.
After following this example, you will learn how to add custom icons to elements and change the style of all
elements that use the same stereotype.

The class that will be customized in this example is in the StereotypesDemo.ump project, available at the
following path: C:\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Tutorial. This is a
simple demo project which includes a custom profile under which we will create the stereotype. For an example
that shows you how to create profiles and stereotypes from scratch, see Example: Creating and Applying
Stereotypes .

Let's first create the stereotype to be used for styling:

1. Open the StereotypesDemo.ump project.
2. Right-click the "DemoProfile" profile in the model tree, and select New Element | Stereotype from the

context menu.
3. Rename the stereotype to "StylingStereotype".

To add a custom image to the stereotype, click the stereotype, and then click the Ellipsis button next to
icon file name property in the Properties window. Select the following sample image: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Tutorial\class.bmp.

459

© 2018-2024 Altova GmbH

Structural Diagrams 465UML Diagrams

Altova UModel 2024 Enterprise Edition

Next, click the Styles tab of the Properties window. Select Styles of Elements with this Stereotype from the
top list, and change the Header Font Size property to "16".

Finally, apply the stereotype to a class.

1. Open the class diagram "ClassDiagram1". You will find this diagram under the "DemoPackage" in the
Model Tree view.

2. Click the "DemoClass" class, and then select the «StylingStereotype» check box in the Properties
window.

466 UML Diagrams Structural Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The appearance of the class on the diagram is now changed according to the applied stereotype:

Remarks
The demo project contains a profile diagram, "ProfileDiagram1". In this diagram, notice that the "DemoProfile"

is applied to the "DemoPackage" with a ProfileApplication relationship. This makes the stereotype
available to the package, see also Creating and Applying Custom Profiles .

You have now learned how to change the appearance of elements using stereotypes. You can use the same
technique in other projects. Just keep in mind that the profile where you create the stereotype must be applied
to the target package, as shown above.

455

© 2018-2024 Altova GmbH

Additional Diagrams 467UML Diagrams

Altova UModel 2024 Enterprise Edition

9.3 Additional Diagrams

The additional diagram kinds supported by UModel Enterprise Edition are as follows:

 XML Schema diagrams

 Business Process Modeling Notation

 SysML diagrams

 Database diagrams

9.3.1 XML Schema Diagrams

Altova website: XML Schemas in UML

UModel supports the import and generation of W3C XML schemas as well as their forward and reverse
engineering. In case of XML Schemas, "forward and reverse engineering" means that you can import a schema
(or multiple schemas from a directory) into UModel, view or modify the model, and write the changes back to
the schema file. When you synchronize data from the model to a schema file, the schema file is always
overwritten by the model.

Note: The XML Schema must be valid before it can be imported into UModel. XML Schemas are not validated
when you create or import them in UModel, or when you run a project syntax check. Nevertheless,
UModel checks whether the XML schema is well-formed when importing it.

XML Schema diagrams display schema components in UML notation. For example, simple types are shown in
UModel as data types with the «simpleType» stereotype. Complex types are shown as classes with the
«complexType» stereotype. Various schema details are represented as Tagged Values , while schema
annotations are represented as comments. For a mapping table that illustrates how all the XML schema
components map to UModel elements, see XML Schema Mappings .

467

529

146

278

https://www.altova.com/umodel#xml_uml

468 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Example XML Schema diagram

9.3.1.1 Importing XML Schemas

You can import either a single schema file into UModel, or all schemas from a directory. If a schema includes
or imports other schemas, these are imported into the model as well.

To import a single XML Schema:

1. Select the menu command Project | Import XML Schema file.
2. Click Browse and select the source schema to import. For the scope of this example, you can use

the following schema: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Tutorial\OrgChart.xsd.

3. To generate diagrams from the schema, make sure that the Enable diagram generation check box
is selected and click Next.

© 2018-2024 Altova GmbH

Additional Diagrams 469UML Diagrams

Altova UModel 2024 Enterprise Edition

4. To create a separate diagram for each global component in the schema like in this example, select the
Generate diagrams for XSD globals option. To open all generated diagrams after import, select
Open diagrams. Options from the "Style" group let you define the compartments that appear by
default in diagrams for each schema component. The Show schema details as tagged values
option displays the schema details as Tagged Values .

5. Click Next. To generate a Package dependency diagram like the one in this example, select the
Generate Diagram check box.

146

470 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

6. Click Finish.

Once UModel completes importing the schema, a new package called All Schemas is created and set
automatically as the "XSD Namespace Root". The OrgChart.xsd schema used in this example imports types
from another namespace, more specifically, from the ipo.xsd schema. Consequently, both schemas appear in
the Model Tree window after import, under their respective namespaces:

© 2018-2024 Altova GmbH

Additional Diagrams 471UML Diagrams

Altova UModel 2024 Enterprise Edition

If you have selected the Generate diagrams for XSD globals check box, all XSD global components
generate an XML Schema diagram, and the diagrams appear under the respective namespace packages, like
the "Address (complexType)" diagram in the image above.

To import multiple XML Schemas:

1. Select the menu command Project | Import XML Schema directory.

472 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2. To import schemas from all subdirectories of the selected directory, select the Process all
subdirectories check box. The rest of the import process is the same as described above for a single
XML schema.

Changing the display of tagged values
After importing an XML schema, certain schema details may appear as tagged values on the diagram, if you
have selected the Show Schema Details as Tagged Values option during the import.

© 2018-2024 Altova GmbH

Additional Diagrams 473UML Diagrams

Altova UModel 2024 Enterprise Edition

You can configure whether such details are to be shown or hidden from the diagram. To do this, right-click the
element and select Tagged Values | <option> from the context menu. You can configure the display of
tagged values not only individually for each element, but also globally at project level. For more information, see
Showing or Hiding Tagged Values .

9.3.1.2 Modeling XML Schemas

New XML Schema projects in UModel have the structure illustrated below. This structure is created
automatically the first time when you add an XML Schema diagram to a new UModel project.

The "Root" and "Component View" packages are common to any UModel Project and cannot be deleted.
"Root" is the topmost level under which any other packages are added, and "Component View" is used for code
engineering (in this case, importing or generating schema files).

The "XSDNamespaceRoot" package includes all the namespaces used by your schema(s). To turn a package
into an XSD Namespace Root, right-click it and select Code Engineering | Set as XSD Namespace Root
from the context menu. If you import an existing XML schema into the project, this package is called "All
schemas" by default.

The "XSDTargetnamespace" package is an XML Schema namespace. Multiple such namespaces may exist
under the same XSD Namespace Root. To turn a package into a namespace, first select the package, and
then select the «namespace» property (stereotype) in the Properties window.

"XSDSchema" is a schema, or, in UML terms, a class with the «schema» property (stereotype) selected in the
Properties window.

XMLSchemaDiagram1 is the actual diagram that describes the schema's model. You can create XML
Schema diagrams under an XSD Namespace Root, under an XML Schema Namespace, or under an XML
Schema. In the example project illustrated above, the diagram is created under the XML schema.

The XSD Profile enables all the types and structures required to work with XML Schema in the project. If your
project does not have this profile, you will be prompted to include it whenever you create a new XML Schema
diagram. You can also add the XSD profile to a project explicitly, see Applying UModel Profiles .

149

159

474 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Creating XML Schema diagrams
To create a new XML schema diagram:

1. Do one of the following:
a. Right-click a package in the Model Tree Window and select XML Schema Diagram from the

context menu.
b. Right-click "Diagrams" or "XML Schema Diagrams" in the Diagram Tree Window and select

New Diagram | XML Schema diagram from the context menu. A dialog box opens asking you
to select the owner of the diagram. Select a package where the diagram should be stored, and
click OK.

2. If the current UModel project does not include the XSD profile, a dialog box opens asking you to
include it. Click OK to include the XSD profile into the current project, see also Applying UModel
Profiles .

Adding new XML Schema elements
To add XML schema elements to a diagram:

· Click a specific toolbar button, and then click inside the XML Schema diagram.

To insert multiple elements of the same type, hold down the Ctrl key and click multiple times in the diagram.

As stated above, XML Schema diagrams can be created at various levels in the project's structure. If the
diagram is at a level which does not allow placing a particular element, certain toolbar buttons are not
meaningful and they show a tooltip with information instead of adding the element.

The table below lists all the toolbar buttons and their purpose.

XSD Target Namespace Adds an XSD target namespace. Clicking this button is
meaningful if the diagram was created directly under an XSD
Namespace Root.

XSD Schema Adds an XML Schema Definition (XSD). Clicking this button is
meaningful if the diagram was created under an XSD target
namespace.

Element (global) Adds a global element to the diagram. When you add an
element, a property with the same name as the element is
automatically generated in the attributes compartment. Set the
property type to set the element's type.

Group Adds a named model group to the diagram.

Complex Type Adds a global complex type to the diagram. In UML terms, this
is a class that has the «global» and «complexType»

82

86

159

© 2018-2024 Altova GmbH

Additional Diagrams 475UML Diagrams

Altova UModel 2024 Enterprise Edition

stereotypes applied.

Complex Type with Simple
Content

Adds a global complex type with simple content. In UML terms,
this is a data type that has the «global», «complexType», and
«simpleContent» stereotypes applied.

Simple Type Adds a global simple type.

List Adds a list type.

Union Adds a union type.

Enumeration Adds an enumeration.

Attribute Adds an attribute.

Attribute group Adds an attribute group.

Notation Adds a notation type.

Import Adds an import relationship.

Include Adds an include relationship.

Redefine Adds a redefine relationship.

Restriction Adds a restriction relationship.

Extension Adds an extension relationship.

Substitution Adds a substitution relationship.

 Comment Adds a comment. Comments are converted to annotations when
you generate the schema file from the model. You can specify
the annotation type by selecting the required stereotype from the
Properties window.

Note Adds an explanatory note.

Note link Links a note to some other element on the diagram.

For step-by-step schema modeling instructions, see Example: Create and Generate an XML Schema .

9.3.1.3 Example: Create and Generate an XML Schema

This example shows you how to model a new XML Schema with UModel, step by step. After modeling the
schema visually using UML, you will generate the schema file. More specifically, you will learn how to create
and generate the product.xsd schema listed below.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.altova.com/umodel"

xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:prod="http://www.altova.com/umodel">

 <xs:simpleType name="SizeType">

475

476 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 <xs:restriction base="xs:integer">

 <xs:maxInclusive value="10"/>

 <xs:minInclusive value="1"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="ProductType">

 <xs:sequence>

 <xs:element name="number" type="xs:integer">

 </xs:element>

 <xs:element name="size" type="prod:SizeType">

 </xs:element>

 </xs:sequence>

 <xs:attribute name="createdAt" type="xs:date">

 </xs:attribute>

 </xs:complexType>

 <xs:element name="product" type="prod:ProductType">

 </xs:element>

</xs:schema>

product.xsd

As shown above, the product.xsd schema has two namespace declarations:

1. The default XML Schema namespace http://www.w3.org/2001/XMLSchema mapped to the "xs"
prefix.

2. The secondary namespace http://www.altova.com/umodel mapped to the "prod" prefix, which is
also the target namespace.

Also, the XML schema has a global product element, a complex type ProductType and a simple type
SizeType.

Declaring namespaces and file encoding
To proceed, create a new UModel project. Right-click the Root package, and select New Diagram | XML
Schema Diagram from the context menu. When prompted to include the UModel XSD Profile, click OK.

© 2018-2024 Altova GmbH

Additional Diagrams 477UML Diagrams

Altova UModel 2024 Enterprise Edition

In the Model Tree Window , rename "XMLSchemaDiagram1" to "MainDiagram". This is the diagram where
most schema components will be created, except for namespace declarations.

Next, rename "XSDTargetNamespace" to "http://www.altova.com/umodel" (recall that this is the required target
namespace). This declares the target namespace of the new schema.

The two "xmlns" namespaces and the UTF-8 encoding can be set as follows:

1. Select the XSDSchema schema in the Model Tree.
2. In the Properties window, right-click the xmlns property and select Add Tagged Value | xlmns.
3. Edit the xmlns and encoding properties as shown below.

Optionally, you can quickly generate a new XML Schema diagram at namespace level that presents the same
information visually, as follows:

1. In the Model Tree, right-click the namespace "http://www.altova.com/umodel" and select New
Diagram | XML Schema diagram from the context menu.

82

478 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2. When a message box with the following text appears: "Do you want to add the 'XML Schema Diagram'
to a new 'XSD Schema'?", click No.

3. Drag the XML Schema from the Model Tree into the diagram.

As shown above, the namespace and encoding are stored as Tagged Values and can be edited from the
diagram window as well.

Add a simple type
The following steps create the SizeType simple type to the XML schema. This is a type that restricts the base
xs:integer type; therefore, we will add the base type to the diagram as well, and create a restriction
relationship.

1. Double-click the MainDiagram in the Model Tree to open it.

2. Click the XSD Simple Type toolbar button, and then click inside the diagram.
3. Rename the newly added simple type to SizeType.

4. Click inside the Model Tree and press Ctrl+F. The Find dialog box appears. Start typing "integer" and
locate the integer type from the "XSDDataTypes" package of the "XSD Profile".

5. Drag the integer type into the diagram.

146

© 2018-2024 Altova GmbH

Additional Diagrams 479UML Diagrams

Altova UModel 2024 Enterprise Edition

6. Click the Restriction toolbar button and drag the cursor from SizeType to integer. This creates
the restriction relationship; see also Creating Relationships .

7. To define the minInclusive and maxInclusive values, select the simple type and edit the properties
with the same name in the Properties window.

135

480 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Add a complex type
The following steps add the ProductType complex type to the XML schema. All these steps take place in the
MainDiagram as well.

1. Click the XSD Complex Type toolbar button, and then click inside the diagram.
2. Rename the complex type to ProductType.
3. Right-click the complex type and select New | XSD Sequence from the context menu.

4. Drag the «sequence» class away from the complex type and into the diagram.

5. Right-click the sequence and select New | XSD Element (local).
6. Change the element's name to number and set the type to integer. The integer type is a base XML

Schema type from the XSD Profile. For instructions about setting an element's type, see Type
Autocompletion in Classes .

7. Using the same steps as above, create the element size of type SizeType. Note that SizeType is the
simple type created previously.

133

© 2018-2024 Altova GmbH

Additional Diagrams 481UML Diagrams

Altova UModel 2024 Enterprise Edition

8. Right-click the complex type on the diagram and select New | XSD Attribute (local) from the context
window.

9. Change the attribute's name to createdAt and the type to date.

Add an element
Now that all the required types of the schema have been defined, you can add a product element of type
ProductType, as follows:

1. Click the XSD Element (global) toolbar button, and then click inside the diagram. Notice that a
class with the «element» stereotype and a single property is added.

2. Rename the property to product and change its type to ProductType.

Completed design
The steps above conclude the design part of the schema. By now, your full schema design should look as
follows:

482 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Enable code engineering
To make it possible to generate a schema file from the model, let's now add a code engineering component
that provides the schema generation details. The code engineering component is similar to other UModel
project kinds, see also Adding a Code Engineering Component .

Right-click the "Component View" package in the Model Tree and add a new element of type Component.
Make sure to change the component's properties as shown below:

1. The use for code engineering property must be enabled.
2. The code language property of the code engineering component must be set to "XSD 1.0".
3. The project file property of the code engineering component must point to the schema file that is to

be generated (in this example, product.xsd).

170

© 2018-2024 Altova GmbH

Additional Diagrams 483UML Diagrams

Altova UModel 2024 Enterprise Edition

Note: If a project file property is missing, enter product.xsd in the directory property and press Enter. A
message box should now appear asking you to refer to a project file instead. Click Yes to confirm.

Finally, the XML Schema must be realized by the code engineering component, as described in Adding a Code
Engineering Component . For the scope of this example, the quickest way to create the
ComponentRealization relationship is as follows:

· In the Model Tree, drag the XSDSchema schema over the code engineering component
(Component1) and drop it when a tooltip appears such as the one below:

You can now generate the schema file. To do this, either press F12 or select the Project | Overwrite
Program Code from UModel project menu command. Note that merging is not supported in case of XML
Schemas; therefore, the dialog box shows a message in red to state this fact.

170

484 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The new XML schema will be generated in the same folder as your UModel project.

9.3.2 Business Process Modeling Notation 1.0 / 2.0

Altova website: Business Process modeling in UModel

BPMN is a standardized flow-chart notation which shows business processes as a workflow and is easily
understandable by all involved in the business process. UModel supports BPMN versions 1.0 and 2.0. Both
BPMN 1.0 and BPMN 2.0 diagrams can coexist in the same UModel project. Conversion from BPMN 1.0 to
BPMN 2.0 can be done at any time.

There are four basic element BPMN categories:

Flow objects Events, Activities (Tasks or Sub-Processes), Gateways

Connecting
objects

Sequence flow, Message Flow, Association

Swimlanes Pool, Lane

Artifacts Data Objects, Group, Text Annotation

Inserting BPMN diagrams and BPMN objects works in exactly the same way as inserting modeling elements in
UModel.

485

494

496

497

https://www.altova.com/umodel#bpmn

© 2018-2024 Altova GmbH

Additional Diagrams 485UML Diagrams

Altova UModel 2024 Enterprise Edition

Objects can be inserted using the icon bar; associations to other objects can be directly created by clicking on
the object "handles" and dragging the connector to the target object. Properties can be viewed and set using
the Properties Window .

Note that you can create multiple layers per BPMN diagram, see Adding Layers to Diagrams .

To convert BPMN 1.0 diagrams to BPMN 2.0 diagrams:

· Right-click in a BPMN 1.0 diagram and select the option Convert to BPMN 2.0 diagram. If more than
one BPMN 1.0 diagram exists in the same package, you will be prompted to convert all of those in that
package.

A second prompt appears, asking if you want to include the BPMN 2 Profile to the project. Clicking OK
converts the diagrams.

9.3.2.1 Flow objects

Flow objects are the graphical elements that define the behaviour of a business process. There are three Flow
Objects: Events, Activities and Gateways.

Events
An event is something that occurs during a business process and is represented by a circle. Events affect the
flow of the process and generally have a cause (trigger) and a result. There are three different types of events:
start, intermediate or end, where each group has its own drop-down combo box.

To insert an Event:

1. Click the combo box to open the drop-down list of the type of event you want insert.
2. Select the specific Event and click in the diagram tab to insert it.

88

131

486 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Start Event

Intermediate Event

Intermediate events can be attached to the boundary of a Task or Sub-Process, and show that the activity is to
be interrupted when the event is triggered.

End Event

© 2018-2024 Altova GmbH

Additional Diagrams 487UML Diagrams

Altova UModel 2024 Enterprise Edition

BMPN 2.0 Events

Start Events

Catching Events

488 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Throwing Events

End Events

Activity
Activities are actions that are performed during a business process, and are represented by rounded
rectangles. Process models can contain the following types of activity: Process, Sub-Process and Task.
Activities can occur singly or multiple times within a loop.

To insert an Activity:

1. Click the specific Task or Sub-Process icon of the icon bar.
2. Click in the diagram tab.

© 2018-2024 Altova GmbH

Additional Diagrams 489UML Diagrams

Altova UModel 2024 Enterprise Edition

Activity - Task
Tasks are activities that are included in a process. Tasks cannot be broken down into lower level subtasks,
they are atomic.

Loop Task

Multi Instance Task

Compensation Task

BPMN 2.0 Tasks

To define a Loop, Parallel, Sequential or Compensation marker:

· Right click the inserted task and select the specific marker, e.g. Show | Show BPMN Parallel
Marker.

490 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Note: You can also define the Marker in the Properties tab under the
"MultiInstanceLoopCharacteristics entry.

Activity - Sub-Process
A Sub-Process is a compound activity that is included in a process, and allows hierarchical business process
model development. A Sub-Process can be broken down into finer detail through various sub-activities.

A collapsed Sub-Process is displayed as a top-level element, where the details of the sub-process are not
visible. A "plus" icon in the element shows that an additional layer of complexity exists.

An expanded Sub-Process displays the details of the Sub-Process within its boundaries. Note that a
sequence flow cannot cross the boundary of a Sub-Process.

Gateway
Gateways are used to determine how Sequence Flows branch and merge within a process. Gateways are
always shown as a diamond (see table below).

Inclusive Gateway (OR)

Parallel Gateway (AND)

Data Based Exclusive Gateway (XOR)

Event Based Exclusive Gateway (XOR)

Complex Gateway (Decision/Merge)

BPMN 2.0 Gateways
The screenshot below shows supported BPMN 2.0 Gateways. UModel allows you to show an Exclusive
Gateway with or without an X. To see the icon with an X, set the value showXIcon of an Exclusive Gateway to
true.

493

491

© 2018-2024 Altova GmbH

Additional Diagrams 491UML Diagrams

Altova UModel 2024 Enterprise Edition

9.3.2.1.1 Expanded Sub Processes

Expanded versions of sub processes show the process detail within the element boundaries.

Expanded Sub-Process

Expanded Loop Sub-Process

Expanded Multi Instance Sub-Process

Expanded Ad Hoc Sub-Process

Expanded Compensation Sub-Process

492 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

BPMN 2.0 Expanded Sub Processes

To define a Loop, Parallel, Sequential or Compensation marker:

· Right-click the inserted task and select the specific marker, e.g. Show | Show BPMN Parallel
Marker.

© 2018-2024 Altova GmbH

Additional Diagrams 493UML Diagrams

Altova UModel 2024 Enterprise Edition

9.3.2.1.2 Collapsed Sub Processes

Collapsed versions of sub-processes hide the process detail. The specific type of Sub-Process is shown by the
icon within the Sub-Process element.

Collapsed Sub-Process

Collapsed Loop Sub-Process

Collapsed Multi Instance Sub-Process

Collapsed Ad Hoc Sub-Process

Collapsed Compensation Sub-Process

494 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

BPMN 2.0 Collapsed Sub Processes

To define a Loop, Parallel, Sequential or Compensation marker:

· Right-click the inserted task and select the specific marker, e.g. Show | Show BPMN Parallel
Marker.

9.3.2.2 Connecting objects

There are two ways of connecting objects: a Flow (using a sequence or message), and an Association.

Sequence Flow
A Sequence Flow shows the order that activities are performed within a Process.

© 2018-2024 Altova GmbH

Additional Diagrams 495UML Diagrams

Altova UModel 2024 Enterprise Edition

Conditional Flow
This type of Sequence Flow can have a conditional expression which is evaluated to determine if the flow will be
used or not. If the conditional flow originates from an activity, then a mini diamond is displayed at the origin of
the arrow.

Default Flow
This type of flow is used if all other conditional flows are "false" in Data-Base Exclusive, or Inclusive decisions.
A diagonal slash at the beginning of the arrow line is used as a visual indication, e.g. "Accepted" default flow.

Message Flow
A Message Flow shows the flow of messages between two participants (entities or roles), that can send and
receive them. Participants are shown as separate Pools in the diagram.

496 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Association
Associations are used to associate Text and non-Flow Object data with Flow Objects, and show how data are
input and output from Activities. The diagram below shows a Text annotation which provides the additional
information "User Activity" for the Task "Review Issue List".

To create an Association between a Data Object and a Flow control:

1. Click the Association handle of the Data Object (on the left of the object).
2. Drag the connector onto the Flow Control arrow which is highlighted when you can drop it.

Alternatively, click the Association icon and drag from the Data Object to the Flow Control.

9.3.2.3 Pools / Swimlanes

Pool
Pools are used to partition and organize activities. A business process may show the interaction between
various processes or participants. Each participant is represented by a rectangular box called a Pool. A
participant could be a business role or entity.

© 2018-2024 Altova GmbH

Additional Diagrams 497UML Diagrams

Altova UModel 2024 Enterprise Edition

· BPMN objects placed within a pool become part of it when the pool boundary is highlighted.
· Objects within a pool can be individually selected using Ctrl+Click, or by dragging the marquee inside

the pool.
· Click the pool boundary, or title, and drag to reposition it.

Lane
Pools can be further subdivided into Lanes, which categorize activities within a pool. Note that both horizontal
and vertical lanes can be defined.

To add a new lane to a pool:

· Right-click the header of an existing pool object and select New | Lane. This adds a new lane to the
pool. Each lane can be named separately, by double clicking in the name field.

Note: Right clicking in one of the lanes allows you to add any of the elements allowed to be placed in a pool
using the New option.

9.3.2.4 Artifacts

Artifacts allow you to show additional information about a Process i.e. how data, documents and other objects
are used and updated during the business process. Artifacts are not directly related to sequence, or message
flow, of the process.

Data Object
Data Objects are documents or other types of data, that show how data are used during a business process.
Data objects can be used to define the input and output of data to/from activities.

498 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To create an Association between a Data Object and a Flow control:

1. Click the Association handle of the Data Object (on the left of the object).
2. Drag the connector onto the Flow Control object which is highlighted when you can drop it.

Text Annotation
Text Annotations allow you to annotate various sections of a business process and are connected to the
specific object using an association.

Group
Groups are often used to highlight certain sections of a diagram, even across different pools. Groups cannot
connect to a sequence or message flow. Group objects are generally placed behind task or process objects in
the diagram.

© 2018-2024 Altova GmbH

Additional Diagrams 499UML Diagrams

Altova UModel 2024 Enterprise Edition

9.3.2.5 Choreography diagram

Choreography Diagrams specify the way business participants coordinate their interactions. They can also be
seen as a business contract between participants, where the focus lies on the exchange of information
(Messages) between the participants.

Business contracts are often in the form of a purchase order sent to a supplier, the confirmation by the supplier
to process the order, then the fulfilling of the order. Choreographies also have Activities ordered by Sequence
Flows.

Activities comprise of one or more interactions between the various participants. Interactions are often called
Message Exchange Patterns (MEP). A MEP is the "Activity" of a choreography, and can also be called a
Choreography Task.

9.3.2.5.1 Choreography Tasks

There are four types of choreography tasks that can be inserted into the diagram:

 Choreography Task

 Sub Choreography Task (collapsed)

 Sub Choreography Task (expanded)

 Call Choreography Task

To insert a choreography task:

1. Click the Task icon of the Task that you want to insert, e.g. Choreography Task, then click in the
Choreography Diagram.

500 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2. The screenshot shows the default view when the Task is inserted; the "Choreography Task" text is
automatically highlighted.

3. Enter text to rename the Choreography Task.
4. Click in the top band to enter the name of Participant A, and in the bottom band to name Participant

B. The Participant bands are shown as shaded/unshaded. The initiator of the Activity is the
unshaded Participant, which is Participant A when the Task is first inserted.

To add/associate messages to a Choreography Task:

1. Click the message icon in the icon bar, then click in the diagram to insert it.

2. Enter the name of the message, e.g. "I need to see the doctor".
3. Click the Association handle (on the left) and drag it to the Choreography Task you want to associate

it to.

To add a message to a line e.g. association:

1. Click the line that you want to add the message to.
2. Click the Message icon in the icon bar.
3. Click the same line again to attach it.

© 2018-2024 Altova GmbH

Additional Diagrams 501UML Diagrams

Altova UModel 2024 Enterprise Edition

The message is placed on top of the line and automatically attached to it.

To change the initiating Message / Participant:

· When inserting a Message, it will automatically be defined as the initiating message, i.e. it is
unshaded.

1. Click the Message and select false from the "initiating" combo box, in the Properties tab.

The message element is now shaded.

· When inserting a Choreography Task, Participant A is automatically defined as the Initiating
Participant.

1. Click the Choreography Task that contains the Participant you want to be the initiator.
2. Enter the name of the Participant you want to define as the initiator in the "InitiatingParticipantRef"

combo box, e.g. "Doctor / Office".

502 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The Doctor / Office band is now unshaded, showing that it is the Initiating Participant. The Patient band
is now shaded.

To add new Participants to a Choreography Task:

1. Click the Task you want to add the Participant to in the diagram window.

2. Right-click the participantsRefs field in the Properties tab and select Add Tagged Value |
participantRefs.

3. Enter the name of the new Participant e.g. Participant C.

© 2018-2024 Altova GmbH

Additional Diagrams 503UML Diagrams

Altova UModel 2024 Enterprise Edition

9.3.2.5.2 Tasks and Subprocesses

Click the Task drop-down icon to insert the specific Task.

Click the Collapsed Subprocess drop-down icon to insert the specific Collapsed Subprocess.

Use the Expanded Subprocess drop-down icon to insert the specific Expanded Subprocess.

9.3.2.5.3 Data Objects

Data is represented by five modeling elements and are inserted by clicking one of the following icons:

 Data Object
Represents information flowing through the process, such as emails, business documents, and so on. Data
objects provide information about what activities require to be performed and/or what they produce.

504 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 Data Output
Represents the result of the process.

 Data Input
Is an external input for the entire process. Can be read by an activity.

 Data Collection
Represents a collection of information, for example, a list of order items.

 Data Store
A place where the process can read or write data, for example, a database.

9.3.2.6 Collaboration diagram

Collaboration Diagrams specify the interactions between two or more processes.

A Collaboration generally consists of two or more pools which represent the participants in the collaboration.
Message exchanges between participants are shown by Message Flows that connect the two pools, or the
objects within the pools. Pools may also be empty, in this case they are black boxes.

All combinations of Pools, Processes, and a Choreography are allowed in a Collaboration diagram.

© 2018-2024 Altova GmbH

Additional Diagrams 505UML Diagrams

Altova UModel 2024 Enterprise Edition

9.3.2.6.1 Conversations

A Conversation is a simplified version of a Collaboration, and has access to the same modeling elements. A
Conversation defines a set of logically related message exchanges, where the message exchanges are related
to each another reflecting a distinct business scenario, e.g. a request followed by a response.

A Conversation has two other graphical elements not available in any other BPMN diagrams:

· Conversation node elements (Conversation, Sub-Conversation and Call-Conversation)
· Conversation links

 Conversation

 Sub-Conversation

 Call-Conversation

 Participant / Pool

 Conversation Link

506 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.3.2.6.2 Tasks and Subprocesses

Click the Task drop-down icon to insert the specific Task.

Click the Collapsed Subprocess drop-down icon to insert the specific Collapsed Subprocess.

© 2018-2024 Altova GmbH

Additional Diagrams 507UML Diagrams

Altova UModel 2024 Enterprise Edition

Use the Expanded Subprocess drop-down icon to insert the specific Expanded Subprocess.

9.3.2.6.3 Data Objects

Data is represented by five modeling elements and are inserted by clicking one of the following icons:

 Data Object
Represents information flowing through the process, such as emails, business documents, and so on. Data
objects provide information about what activities require to be performed and/or what they produce.

 Data Output
Represents the result of the process.

 Data Input
Is an external input for the entire process. Can be read by an activity.

 Data Collection
Represents a collection of information, for example, a list of order items.

 Data Store
A place where the process can read or write data, for example, a database.

508 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9.3.2.7 Standard Business Process diagram BPMN 2.0

Business Process diagrams cover a wide range of information and employ several different types of modeling,
to create Business Processes.

There are three types of Business Processes:

Private non-executable (internal) Business Processes:

· Non executable Processes are those where there is not enough detail for the process to execute;
generally during the development cycle.

Private executable (internal) Business Processes:

· Executable Processes are processes that are executable, due to the fact that they have been
completely modeled according to the BPMN 2.0 semantics.

© 2018-2024 Altova GmbH

Additional Diagrams 509UML Diagrams

Altova UModel 2024 Enterprise Edition

Public Processes:

· Define the interaction between a private process and a separate process, or participant. E.g. Doctor,
Patient interactions.

9.3.2.7.1 Tasks and Subprocesses

Click the Task drop-down icon to insert the specific Task.

Click the Collapsed Subprocess drop-down icon to insert the specific Collapsed Subprocess.

510 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Use the Expanded Subprocess drop-down icon to insert the specific Expanded Subprocess.

9.3.2.7.2 Data Objects

Data is represented by five modeling elements and are inserted by clicking one of the following icons:

 Data Object
Represents information flowing through the process, such as emails, business documents, and so on. Data
objects provide information about what activities require to be performed and/or what they produce.

 Data Output
Represents the result of the process.

 Data Input
Is an external input for the entire process. Can be read by an activity.

 Data Collection
Represents a collection of information, for example, a list of order items.

 Data Store
A place where the process can read or write data, for example, a database.

© 2018-2024 Altova GmbH

Additional Diagrams 511UML Diagrams

Altova UModel 2024 Enterprise Edition

9.3.3 SysML Diagrams

Altova website: Modeling SysML diagrams in UModel

SysML is a graphical modeling language that supports the analysis, specification, design, verification and
validation of systems such as hardware, software, data, procedures and others. In UModel, you can create
SysML diagrams from scratch, or you can import or export existing SysML models via XMI, see XMI - XML
Metadata Interchange .

The table below lists the diagrams available in SysML.

Kind Diagram Notes Abbreviation

Structure Block Definition
diagram

Modified from UML bdd

Internal Block
diagram

Modified from UML ibd

Package diagram Reused from UML pkg

Parametric diagram Specific to SysML par

Requirement Requirement diagram Specific to SysML req

Behavior Activity diagram Modified from UML act

Sequence diagram Reused from UML sd

State Machine
diagram

Reused from UML stm

Use Case diagram Reused from UML uc

As illustrated above, SysML diagrams can be broadly classified into structure, requirement, and behavior
diagrams. Furthermore, some of the SysML diagrams are reused from the UML, some are modified from the
UML, and some are specific to SysML only. The abbreviation indicated for each diagram appears by default in
the top-left corner of the Diagram Window , unless you choose to hide the diagram's heading.

Aside from the specifics of each diagram, designing SysML projects with UModel is not different from designing
standard UModel projects, see Creating, Opening, and Saving Projects . An example UModel project that
includes various SysML diagrams is available at the following path: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Bank_SysML.ump.

Creating SysML diagrams
To create SysML diagrams, your UModel project must include the SysML profile, which is a built-in UModel
profile. You will be prompted to include this profile when you add the first SysML diagram to your project, as
shown below. You can also add the SysML profile explicitly into your project, see Applying UModel Profiles .

631

512

515

521

520

523

524

525

526

527

97

153

159

https://www.altova.com/umodel#sysml

512 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To create a SysML diagram:

1. Do one of the following:
a. Right-click a package in the Model Tree Window and select New Diagram | SysML diagrams

| <diagram kind> from the context menu, where "diagram kind" is one of SysML diagram types.
b. Right-click "Diagrams" or "SysML Diagrams" in the Diagram Tree Window and select New

Diagram | <diagram kind> from the context menu, where "diagram kind" is one of SysML
diagram types. A dialog box opens asking you to select the owner of the diagram. Select a
package where the diagram should be stored, and click OK.

2. If the current UModel project does not include the SysML profile, a dialog box opens asking you to
include it. Click OK to include the SysML profile into the current project, see also Applying UModel
Profiles .

Note: If you selected the "root" package in step 1, SysML diagrams are created in their own "SysML"
package.

9.3.3.1 Block Definition Diagram

Block Definition Diagrams are based on the UML Class Diagrams , with restrictions and extensions as
defined by SysML. The Block Definition Diagram presents structural elements called "blocks", and their
relationships, such as associations, generalizations, and dependencies.

82

86

159

430

© 2018-2024 Altova GmbH

Additional Diagrams 513UML Diagrams

Altova UModel 2024 Enterprise Edition

Block Definition diagram

Blocks are fundamental units for describing structure in SysML; they are similar to classes in UML class
diagrams. Blocks may include components such as parts, operations, properties and ports. A property can be
specialized; for example, it can be a PartProperty, a ReferenceProperty, or a ValueProperty.

To create a block:

1. Create a new Block Definition diagram, see Creating SysML diagrams .
2. Do one of the following:

o Right-click an empty area in the diagram, and select New | Block from the context menu.

o Click the Block toolbar button and then click inside the diagram.

To add a property to a block:

· Right-click an existing block and select New | Property (or PartProperty, ReferenceProperty,
ValueProperty, as applicable) from the context menu.

511

514 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

A new compartment is added to the block, for example, "parts" for a PartProperty, or "values" for a
ValueProperty.

You can change at any time the specialization of an existing property (for example, you can convert a
PartProperty to a ValueProperty). To do this, first select the property on the diagram or in the Model Tree,
and then select the check box with an appropriate stereotype in the Properties window, for example:

To show block properties as nodes:

· Right-click a block and select Show | Show properties as nodes on node.

© 2018-2024 Altova GmbH

Additional Diagrams 515UML Diagrams

Altova UModel 2024 Enterprise Edition

To undo the action above, right-click a property (for example, Bus:Mhz in the image above), and select Delete
from diagram only from the context menu.

9.3.3.2 Internal Block Diagram

Internal Block Diagrams are based on the UML Composite Structure Diagrams , with restrictions and
extensions as defined by SysML. The Internal Block Diagram describes the internal structure of a block and
connections between its constituent parts, using ports, connectors, and flows. The typical way to create a new
Internal Block Diagram is as follows:

· Right-click an existing block in the Model Tree and select New Diagram | SysML Internal Block
Diagram from the context menu.

If you create a new Internal Block Diagram without right-clicking an existing block first, a new block is created
as well in the Model Tree, and the new diagram is nested under the block because it is assumed to describe it.
For example, in the model illustrated below, the "CardReader" diagram describes the "SampleATM" block.

444

516 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The "CardReader" diagram is available in the following demo project: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Bank_SysML.ump.

CardReader diagram

The cardreader and networksystem properties illustrated above have the type CardReader and

NetworkAdapter, respectively. These types exist in the same model and are blocks, which determines the
appearance of properties in the diagram. Note that you can set or change the type of a property from the type
drop-down list in the Properties Window .

Initial values
When a property has a type that is a "block" like in this example, it can be created with initial values. For
example, the property PartProperty1 in the CardReader diagram has the initial value of speed = 700KB/s.

To add initial values to a property:

1. Right-click the property and select New | Initial Values.
2. Double-click the placeholder and enter the values (for example, speed = 700KB/s).

88

© 2018-2024 Altova GmbH

Additional Diagrams 517UML Diagrams

Altova UModel 2024 Enterprise Edition

Standard ports

To add a standard port, click the Port toolbar button and then click on the diagram. The port is now added
to the diagram.

To attach the port to a block, drag it over the border of the block ("Camera", in this example) and drop it when
the border becomes highlighted. The port is now attached to the border of the block.

To change the port's name and type, first select the port on the diagram, and then change the name and type
properties of the Properties Window .

Flow ports

To create a flow port, click the FlowPort toolbar button, and then click the border of a block. The flow port
is now attached to the border of the block. You can also create and attach flow ports in two separate steps, as
shown above for standard ports.

You can change the port's name and type by editing the respective properties in the Properties window. Note
that flow ports have additional properties in the Properties window that let you specify the direction, for example
(in, out, inout).

88

518 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To create an atomic conjugated flow port:

1. Create a FlowSpecification (interface) in a Block Definition Diagram (BDD).

2. Click the flow port in the Internal Block Diagram (IBD).
3. In the Properties window, set the type property to the FlowSpecification created earlier.
4. In the Properties window, set the isConjugated property to true.

An atomic conjugated port is shown with a dark background.

Joining ports
You can join two ports as follows:

1. Click the Connector toolbar button.
2. Drag and drop from the first to the second port.
3. Drop the connector on the port, when the port object is highlighted in the diagram.

© 2018-2024 Altova GmbH

Additional Diagrams 519UML Diagrams

Altova UModel 2024 Enterprise Edition

Item flows
Item flows can be created between block associations, or on other connectors between parts of SysML
diagrams.

To create item flows, right-click an existing connector and select New | Item flow (left to right, or right to
left) from the context menu. An arrowhead is added to the connector, displaying the direction of the item flow.

Proxy ports and direction
In newer versions of SysML, proxy ports can show direction, similar to flow ports of older SysML versions. For
example, the diagram illustrated below consists of a block ("Antenna") with two proxy ports that show
direction.

Here is an example of how to add direction to proxy ports:

1. Add a block and two interface blocks to the diagram. In the example above, the block is "Antenna" and
the two interface blocks are "Transmitter" and "Receiver".

2. Select the "Transmitter" and press F7 to add a new flow property to it.
3. Add a proxy port to the block and change its type to "Transmitter" from the Properties window.
4. Select the flow property on the diagram and, from the Properties window, change the direction property

to out. Notice that the direction of the proxy port changes to reflect this fact.
5. Select the "Receiver" and press F7 to add a new flow property to it.
6. Add a second proxy port to the block and change its type to "Receiver" from the Properties window.

520 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

7. Select the flow property on the diagram and, from the Properties window, change the direction property
to in. Again, the direction of the proxy port changes to reflect this fact.

9.3.3.3 Parametric Diagram

The Parametric diagram is a diagram type specific to SysML that integrates engineering analysis with design
modeling. A parametric diagram is similar to an Internal Block Diagram , with the exception that only those
type of connectors may be shown which are connected to constraint parameters on at least one of their ends.

The Parametric diagram makes use of constraint blocks defined in a Block Definition Diagram to constrain the
properties of other blocks in the Parametric diagram. Constraint blocks are shown with rounded corners rather
than being square as an ordinary part.

Parametric diagram

The «constraint» stereotype on a block states that the block is a constraint block. In a Block Definition
diagram, parameters of the constraint are shown in a "parameters" compartment.

515

© 2018-2024 Altova GmbH

Additional Diagrams 521UML Diagrams

Altova UModel 2024 Enterprise Edition

9.3.3.4 Package Diagram

The Package diagram is used to organize model elements into packageable elements. In such diagrams, you
can also define dependencies between packages and model elements within the package. For example, the
diagram below illustrates the high-level organization of the model defined in the Bank_SysML.ump demo
project from the C:\Users\<username>\Documents\Altova\UModel2024\UModelExamples directory. The
links available for Requirements, Structure, and Use Cases point to the respective packages in the same
model, see also Hyperlinking Elements .

117

522 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Package diagram

The Package diagram illustrated above is just one of the ways to organize of a model; you can, of course,
organize a model by other aspects, for example, by system hierarchy or by diagram type.

In a package diagram, you can add various elements to the diagram in the standard way, by clicking the

respective toolbar buttons (such as Package , Profile , or View) and then clicking inside the
diagram. Note, however, that some package specializations may not have commands available as toolbar
buttons, in which case you can add them as follows:

1. Click the Package toolbar button and then click inside the diagram to add the new package.
2. In the Properties window, select the check box with the desired stereotype (for example,

«ModelLibrary»).

© 2018-2024 Altova GmbH

Additional Diagrams 523UML Diagrams

Altova UModel 2024 Enterprise Edition

In the package diagram above, Package2 has the «ModelLibrary» stereotype and Package3 has the
«View» stereotype. See also Applying Stereotypes .

9.3.3.5 Requirement Diagram

The Requirement diagram is a diagram type designed specifically for SysML. It integrates the behavior and
structure models of SysML with engineering analysis models, such as performance or reliability models. It
models text-based requirements and the relationship between requirements and other model elements that
satisfy or verify them.

147

524 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Requirement diagram

With Requirement diagrams, you may often need to create multiple lines of text, in order to maintain the size of
requirement blocks within reasonable limits.

To create multiple lines of text:

1. Double-click the text.
2. While holding the Ctrl key pressed, press Enter.

9.3.3.6 Activity Diagram

SysML activity diagrams express information about a system's dynamic behavior, such as the flow of objects
during system operation. Such diagrams express the order in which actions are performed, and which of the
structures performs a particular action. The flows themselves can be control flows or object flows. You can add
either kind of the flow through the respective toolbar buttons:

© 2018-2024 Altova GmbH

Additional Diagrams 525UML Diagrams

Altova UModel 2024 Enterprise Edition

Control flow

Object flow

The example Activity diagram illustrated below uses both flows. Control flows appear as dashed lines, while
object flows appear as uninterrupted lines.

SysML Activity diagram

The SysML Activity diagram is modified from UML, with SysML extensions. For general information about
designing UML Activity diagrams with UModel, see Activity Diagram .

9.3.3.7 Sequence Diagram

The SysML Sequence diagram also describes a system's dynamic behaviour, like the Activity diagram, but it is
more precise. It informs not only about the order of actions and which structures perform the actions, but also
provides information about the structures which invoke a particular action. For this reason, Sequence diagrams
tend to become complex unless they focus on a very specific scenario. The image below shows a fragment of a
SysML Sequence diagram from the Bank_SysML.ump example project.

340

526 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

SysML Sequence diagram

The SysML Sequence diagram follows the UML specification. Designing this diagram in UModel requires no
specific knowledge compared to the standard UML Sequence diagrams. For general information about the
latter, see Sequence Diagram .

9.3.3.8 State Machine Diagram

SysML State Machine diagrams express transitions among the states in a running system. SysML State
Machine diagrams express system behaviour, just like the Sequence and Activity diagrams of SysML.

394

© 2018-2024 Altova GmbH

Additional Diagrams 527UML Diagrams

Altova UModel 2024 Enterprise Edition

SysML State Machine diagram

The SysML State Machine diagram follows the UML specification. Designing this diagram in UModel requires
no specific knowledge compared to the standard UML State Machine diagrams. For general information about
the latter, see State Machine Diagram .

9.3.3.9 Use Case Diagram

The SysML Use Case diagram displays elements and relations that describe services provided by a system. It
also depicts various stakeholders (such as users or system operators) that consume services. In the
Bank_SysML.ump example project from the C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples directory, the following are
examples of services:

· A bank customer interacts with an ATM to withdraw cash
· A bank employee performs ATM maintenance
· A bank employee refills the ATM

357

528 UML Diagrams Additional Diagrams

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

SysML Use Case diagram

The SysML Use Case diagram follows the UML specification, and designing it is not different compared to the
standard Use Case diagram of the UML. For more information, see the Use Cases section in the tutorial.21

© 2018-2024 Altova GmbH

 529UModel and Databases

Altova UModel 2024 Enterprise Edition

10 UModel and Databases

You can import SQL databases into UModel in order to view their structure or modify it using UML (for a list of
supported databases, see Database Support). UModel can conveniently display the database structure in
UML Database diagrams similar to the one illustrated below.

The following database elements can be imported to the database model:

· Tables
· Check Constraints
· Primary / Foreign / Unique keys
· Indices
· Views
· Triggers
· Stored procedures
· Functions

Note: Views, Triggers, Stored procedures and Functions can only be imported, though not added, in UModel.

After importing the database structure in UModel, you can modify it and apply the changes to the actual
database, using the Merge Program Code from UModel project command. This creates a database change
script file which can be executed, or saved for later execution. Alternatively, if changes took place in the
database since the last synchronization, you can merge them into the model (or overwrite the model with the
changes).

For information about how database elements map to UModel elements, see Database Mappings .

16

287

530 UModel and Databases Modeling Databases in UModel

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

10.1 Modeling Databases in UModel

You can model databases in UModel in one of the following ways:

1. Without code engineering support. In this scenario, you model the database objects without
connecting to a real database (for example, you just want to create a diagram that illustrates the
potential structure of a database).

2. With code engineering support. In this scenario, you connect to a database, import its structure into
the model, and then view the database object definitions directly in UModel. Upon reading the database
structure, UModel can automatically generate database diagrams. Optionally, you can modify the
database objects in the model (for example, add a new table, or delete an existing one) and then
update the real database by means of scripts generated by UModel. Synchronization between your
database and the UModel project works in both directions, similar to how it works for programming
languages. You also have the option to synchronize only the changes (do a merge), or overwrite all
existing data (either the database from the model, or the model from the database).

In either of the cases above, your project must contain the Database profile available with UModel. This profile
provides all the required metadata (such as UML stereotypes) that enable you to view or design database
objects in UModel.

If you are using the code engineering approach, the Database profile and all the required code engineering
configuration will be added automatically to your project the first time when you import a database into the
model. Otherwise, you will need to include the Database profile manually.

To add the database profile to a UModel project manually:

1. Create a new UModel project or open an existing one, see Creating, Opening, and Saving Projects .
2. On the Project menu, click Include Subproject.

153

© 2018-2024 Altova GmbH

Modeling Databases in UModel 531UModel and Databases

Altova UModel 2024 Enterprise Edition

3. On the Basic tab, select DB Profile.ump, and then click OK to confirm.

Alternatively, do the following:

1. In the Diagram Tree Window , right-click Diagrams, and select New diagram | Database
Diagram.

2. When prompted, select a package where the new diagram should belong.
3. When prompted by UModel that the Database profile will be added to your project, click OK to confirm.

Now that the UModel DB profile has been added, you can start modeling your database objects. For example,
when you right-click inside a database diagram, the context menu provides options to create a new table.
Likewise, when you right-click a table, the context menu provides options to create a column, keys, indices,
and so on. For further information, see Designing Database Objects .

To establish a connection to a database and use the code engineering approach, see Importing SQL
Databases into UModel .

10.1.1 Importing SQL Databases into UModel

The instructions below show you how to import the structure of a database into UModel. You will also learn how
to generate a UML diagram that illustrates the database structure. The database used in this tutorial is a
sample Microsoft Access database; however, the steps are very similar for other database types supported by
UModel.

86

538

531

532 UModel and Databases Modeling Databases in UModel

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To import a database into UModel:

1. On the Project menu, click Import SQL Database.
2. If this is the first time you are importing a database into UModel, click New. Otherwise, you can select

an existing database connection from the Data Source list.

3. In this example, we are connecting to a local Microsoft Access database. Therefore, select Microsoft
Access (ADO) as database kind, and then click Next. Otherwise, follow the wizard steps to connect to
your preferred database. Depending on the database kind, you may need to install a database driver
before you can connect. For specific examples, see Database Connection Examples . 577

© 2018-2024 Altova GmbH

Modeling Databases in UModel 533UModel and Databases

Altova UModel 2024 Enterprise Edition

4. Browse for the following database file: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Tutorial\altova.mdb, and
then click Connect.

534 UModel and Databases Modeling Databases in UModel

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

5. Enter a descriptive name for your data source. The data source name set here will later be available for
selection when you want to connect to the same database again.

6. Select the database objects that you would like to import into the model. In this example, all user
tables are imported. Also, notice the option Overwrite Model according to Database is selected

© 2018-2024 Altova GmbH

Modeling Databases in UModel 535UModel and Databases

Altova UModel 2024 Enterprise Edition

(which means all elements in the project will be replaced with those imported from the database). For
existing projects, change this option to Merge Database into Model.

7. Click Next. Select the diagram generation options as shown below:

536 UModel and Databases Modeling Databases in UModel

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

8. Click Finish.

After the import, the project contains all the objects imported from the database (tables and their structure).
Two diagrams are also created, a database diagram that illustrates the database objects, and a package
dependency diagram.

© 2018-2024 Altova GmbH

Modeling Databases in UModel 537UModel and Databases

Altova UModel 2024 Enterprise Edition

A illustrated above, the data source ("tutorial_database" in this example) has become a package in the model.
The database itself ("altova") has also become a package that has both the «Database» stereotype and the
«namespace» stereotype. To view the properties of a package, click the package and then look at the
Properties window, for example:

Note: After a database import, UModel creates packages and applies stereotypes depending on the
database kind. The model above is illustrative of Access databases.

538 UModel and Databases Modeling Databases in UModel

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

All database tables become classes in the model, and get the «Table» stereotype. Notice also that, after the
import, the Database profile (DB Profile.ump) has been automatically added to the project.

At this stage, the project is configured for code engineering from database to model. That is, whenever you
want to update the UModel project with the latest database changes, run the following command:

· On the Project menu, click either Merge UModel Project from Program Code or Overwrite
UModel Project from Program Code.

If you intend to synchronize from the model to the database, see Configuring Roundtrip Engineering for
Databases .

10.1.2 Designing Database Objects

In UModel, you can create, edit, or delete database objects (such as tables, columns, foreign keys, and so on)
either from a Database diagram, or from the Model Tree window.

When viewing or designing database objects In UModel, keep in mind the following basic rules:

· Tables are classes with the «Table» stereotype.
· Columns are class properties.
· Primary, foreign, and unique keys are classes with the «PrimaryKey», «ForeignKey», «UniqueKey»

stereotypes, respectively.
· Check constraints are classes with the «CheckConstraint» stereotype.
· Indices are classes with the «Index» stereotype.

For an exhaustive table that illustrates how each database object maps to a UModel element, see Database
Mappings .

Adding tables
To add a table to the model, do one of the following:

1. Create a database diagram or open an existing one. To create a new Database diagram, right-click a
package in the Model Tree window, and select New diagram | Database diagram from the
context menu.

2. Do one of the following:
a. Right-click inside the diagram and select New | Table from the context menu.

b. Click the New Table toolbar button, and then click inside the diagram to add the table.

Note: You can add a table class anywhere in the model. However, as best practice and especially if you
intend to use code engineering, all table classes must belong under a package that has the
«Database» stereotype. Such a package is created automatically whenever you import an existing
database into the model, see Importing SQL Databases into UModel .

Adding other database objects
To add a column, index, foreign key, etc to a table, right-click the table on the diagram, and then select the
respective command from the context menu, for example:

543

287

82

531

© 2018-2024 Altova GmbH

Modeling Databases in UModel 539UModel and Databases

Altova UModel 2024 Enterprise Edition

Alternatively, click a toolbar button in the diagram's toolbar, and then click inside the target table.

To set column attributes such as "autoincrement", "nullable", "primary key", first click the column, and then
select the required checkbox (stereotype) in the Properties window:

You can also create the column and set all required attributes directly as you type. For example, to create a
primary, autoincrement column with the name "id" and type "int", do the following:

1. Select a table on the diagram and press F7.
2. Start typing <<PK, autoincrement>> id:int. As you type, UModel assists you to pick up the required

values automatically from a list.

540 UModel and Databases Modeling Databases in UModel

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Adding database relationships
You typically add relationships to illustrate foreign key dependencies between columns of different tables. For
example, let's assume that you have the following classes:

To add a foreign key relationship between the department_id column in the "employee" table and the id
column in the "department" table, do the following:

1. Right-click the "employee" table and select New | ForeignKey from the context menu. A new class
called "ForeignKey1" is added inside the "employee" class.

2. In the "ForeignKey1" class, change the first column entry to correspond to the owner column and table
(in this example, department_id:employee). Then change the second column entry to correspond to the
referenced column and table (in this example, id:department).

© 2018-2024 Altova GmbH

Modeling Databases in UModel 541UModel and Databases

Altova UModel 2024 Enterprise Edition

3. Click the Database Relationship Association toolbar button, and then drag from the
"ForeignKey1" class onto the "department" class.

4. Select the relationship line, and, in the Properties window, change the A :memberEndKind property
to memberEnd.

542 UModel and Databases Modeling Databases in UModel

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

5. Press F11 to check the project syntax for any errors (see below for more information).

Note: If necessary, you can add multiple column entries per "ForeignKeys" class. You can also add multiple
indices for the same table.

Checking project syntax
As you create or change database objects in UModel, it is good practice to periodically check the syntax of
your project for any potential design issues (for example, tables that do not have at least one column, missing
foreign key references, and so on). To check the project syntax, do one of the following:

· On the Project menu, click Check Project Syntax.
· Press F11.

UModel validates the project and displays any encountered problems in the Messages window, for example:

The two warnings in the image above indicate that no code will be generated for the "department" and
"employee" tables. You can ignore such warnings if you do not need code engineering support in your UModel
project. Otherwise, see Configuring Round-Trip Engineering for Databases .

543

© 2018-2024 Altova GmbH

Modeling Databases in UModel 543UModel and Databases

Altova UModel 2024 Enterprise Edition

10.1.3 Configuring Round-Trip Engineering for Databases

Whenever you import a database into UModel as shown in Importing SQL Databases into UModel , your
project becomes bound with the database, and you can synchronize elements either from the database into the
model, or vice versa.

If you want to synchronize only from the database into the model, there is no need for any extra configuration—
UModel takes care of all required mappings behind the curtains. For example, after each synchronization, new
database tables will become new classes in the model, changed database column definitions will be updated in
the model, and so on. All your database diagrams will also be updated automatically to reflect this.

However, if you make changes to the model and want to synchronize them back into the database, some
additional configuration might be necessary in the UModel project. This configuration may also be necessary if
you want to prevent the project (or certain tables) from synchronizing with the database.

A synchronization can either merge or overwrite changes—you can always configure this by running the
menu command Project | Synchronization Settings.

Note: Some database kinds do not allow changing the database structure by virtue of their design. For
example, renaming tables and columns is not supported by Microsoft Access databases. Likewise,
renaming columns is not supported in SQLite. Therefore, such changes in the model will not trigger a
database update, and UModel may display warnings in the Messages window.

Round-trip engineering for databases is very similar to round-trip engineering for program code—it revolves
around a component in the "Component View" package that binds your project to the real database.
Specifically, whenever you import the database for the first time, a code engineering component is generated
automatically under the "Component View" package. For example, if you followed all the steps in Importing

SQL Databases into UModel , then a component called tutorial_database was generated:

As stated before, each class in the model corresponds to a database table. For code engineering to be
possible, the code engineering component must realize all the classes (tables) from the model—notice all the

531

531

544 UModel and Databases Modeling Databases in UModel

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

ComponentRealization relationships in the image above. Classes that are not realized by this component will
not be part of code engineering. If you do not intend to ever update the database from the model, you do not
need to take any action—UModel will create all realizations automatically whenever you synchronize from
database to model.

However, if you intend to synchronize from the model to the database, each new class (table) that you add
must have a ComponentRealization relationship to the code engineering component. Otherwise, when you
attempt to update the database from the model, UModel displays a warning similar to the following: Table1
has no ComponentRealization to a component - no code will be generated.

The easiest way to create a ComponentRealization from a class to a component is to drag the class and
drop it onto the code engineering component. So, for example, if you created a new class (table), drag the

class (in the Model Tree window) onto the tutorial_database component to create the relationship. You
can also add or remove such relationships from a Component diagram (see Component Diagrams).

For a worked example, see Example: Update a Database from the Model .

10.1.4 Example: Update a Database from the Model

This example shows you how to update the structure of a database by means of scripts generated by UModel.
The database used in this example is a local Access database available at the following path: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\Tutorial\altova.mdb. In this
example, we will add a new table to the database in UModel, and then generate a SQL script that updates the
structure of the underlying Access database.

To proceed with this example, first import the database into the model, as shown in Importing SQL Databases
into UModel . As illustrated below, after import, your project will include the following:

· A code engineering component responsible for code generation in both directions (from model to
database, and vice versa). To view the code engineering component, expand the "Component View".

· A package that represents the structure of the imported database (for example, each database table is
a class).

· The Database Profile required to work with database modeling projects.

52

544

531

© 2018-2024 Altova GmbH

Modeling Databases in UModel 545UModel and Databases

Altova UModel 2024 Enterprise Edition

Add a table
Let's now add a new table to the database in the model.

1. Double-click the "Content of tutorial_database..." diagram.
2. Right-click inside the diagram and select New | Table from the context menu.
3. Enter a table name, for example, "Products".

4. Click the table and press F7 to add a new property (this will become a table column in the database).
5. Type <<PK, autoincrement>> id:int inside the property body.

6. Using the same steps as above, add a new column "title" of type "text".

546 UModel and Databases Modeling Databases in UModel

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Prepare the model for forward engineering
Before a table can be forward engineered from model to the database, it must belong to the correct
namespace. To do this, in the Model Tree window, make sure that the class "Products" is under the
"tutorial_database" namespace. If it is not, simply drag and drop it onto the "tutorial_database" namespace.
Your model should now look as follows:

As explained in Configuring Round-Trip Engineering for Databases , it is good practice to validate the project
syntax before attempting to update the database. If you press F11 to check the project syntax at this time, a
warning appears in the Messages window that table "Products" has no realization to a component.

You can quickly create a realization to a component as follows:

· In the Model Tree window, drag the class "Products" onto the "tutorial_database" component.

543

© 2018-2024 Altova GmbH

Modeling Databases in UModel 547UModel and Databases

Altova UModel 2024 Enterprise Edition

Generate the SQL script
If the project has no more errors or warnings when you press F11, you can proceed to generating the database
script:

1. On the Project menu, click Overwrite Program Code from UModel Project. ("Program Code" in
the context of databases means the database itself)

2. In the dialog box below, you can choose between merging the changes to the database, or overwriting
the database with the changes. For the scope of this example, we will select Overwrite Code
according to Model. Otherwise, depending on the case, you may want to choose Merge Model into
Code. For more information, see Code Synchronization Settings .229

548 UModel and Databases Modeling Databases in UModel

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Click OK. A database script is generated with the changes you made to the model.

At this stage, you have the following options:

© 2018-2024 Altova GmbH

Modeling Databases in UModel 549UModel and Databases

Altova UModel 2024 Enterprise Edition

· Open the script in Altova DatabaseSpy for review or execution. For more information about
DatabaseSpy, see https://www.altova.com/databasespy.

· Save the script to a file for storage or later execution.
· Click Execute and actually run the script against the database. Always take this action only if you

fully understand the consequences (namely, the fact that the database will be updated with immediate
effect).

https://www.altova.com/databasespy

550 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

10.2 Connecting to a Data Source

In the most simple case, a database can be a local file such as a Microsoft Access or SQLite database file. In
a more advanced scenario, a database may reside on a remote or network database server which does not
necessarily use the same operating system as the application that connects to it and consumes data. For
example, while UModel runs on a Windows operating system, the database from which you want to access
data (for example, MySQL) might run on a Linux machine.

To interact with various database types, both remote and local, UModel relies on the data connection interfaces
and database drivers that are already available on your operating system or released periodically by the major
database vendors. In the constantly evolving landscape of database technologies, this approach caters for
better cross-platform flexibility and interoperability.

The following diagram illustrates, in a simplified way, data connectivity options available between UModel
(illustrated as a generic client application) and a data store (which may be a database server or database file).

* Direct native connections are supported for SQLite, MySQL, MariaDB, PostgreSQL databases. To connect to
such databases, no additional drivers are required to be installed on your system.

As shown in the diagram above, UModel can access any of the major database types through the following
data access technologies:

· ADO (Microsoft® ActiveX® Data Objects), which, in its turn, uses an underlying OLE DB (Object
Linking and Embedding, Database) provider

· ADO.NET (A set of libraries available in the Microsoft .NET Framework that enable interaction with
data)

© 2018-2024 Altova GmbH

Connecting to a Data Source 551UModel and Databases

Altova UModel 2024 Enterprise Edition

· JDBC (Java Database Connectivity)
· ODBC (Open Database Connectivity)

Note: Some ADO.NET providers are not supported or have limited support. See ADO.NET Support Notes .

About data access technologies
The data connection interface you should choose largely depends on your existing software infrastructure. You
will typically choose the data access technology and the database driver which integrates tighter with the
database system to which you want to connect. For example, to connect to a Microsoft Access 2013
database, you would build an ADO connection string that uses a native provider such as the Microsoft Office
Access Database Engine OLE DB Provider. To connect to Oracle, on the other hand, you may want to
download and install the latest JDBC, ODBC, or ADO.NET interfaces from the Oracle website.

While drivers for Windows products (such as Microsoft Access or SQL Server) may already be available on
your Windows operating system, they may not be available for other database types. Major database vendors
routinely release publicly available database client software and drivers which provide cross-platform access to
the respective database through any combination of ADO, ADO.NET, ODBC, or JDBC. In addition to this,
several third party drivers may be available for any of the above technologies. In most cases, there is more than
one way to connect to the required database from your operating system, and, consequently, from UModel.
The available features, performance parameters, and the known issues will typically vary based on the data
access technology or drivers used.

10.2.1 Start Database Connection Wizard

UModel provides a Database Copnnection Wizard that guides you through the steps required to set up a
connection to a data source. Before you go through the wizard steps, be aware that for some database types it
is necessary to install and separately configure several database prerequisites, such as a database driver or
database client software. These are normally provided by the respective database vendors, and include
documentation tailored to your specific Windows version. For a list of database drivers grouped by database
type, see Database Drivers Overview .

To start the Database Connection Wizard (see screenshot below), do the following:

1. On the Project menu, click Import SQL Database.
2. Click New.

The Database Connection Wizard (screenshot below) is started. On the left hand side of the window, you can
select the most suitable from the following ways to connect to your database:

· Connection Wizard, which prompts you to choose your database type and then guides you through the
steps for connecting to a database of that type

· Select an existing connection
· Select a data access technology: ADO, ADO.NET, ODBC, or JDBC
· A native PostgreSQL connection

In the Connection Wizard pane (see screenshot below) databases can be sorted alphabetically by the name of
the database type or by recent usage. Select the option you want in the Sort By combo box. After you have
selected the database type to which you want to connect, click Next.

567

553

552 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The wizard will take you through the next steps according to the database type, connection technology (ADO,
ADO.NET, ODBC, JDBC), and driver that will be used. For examples applicable to each database type, see
Database Connection Examples .

Alternatively to using Connection Wizard, you can use one of the following database access technologies:

· Setting up an ADO Connection
· Setting up an ADO.NET Connection
· Setting up an ODBC Connection
· Setting up a JDBC Connection

577

556

561

568

571

© 2018-2024 Altova GmbH

Connecting to a Data Source 553UModel and Databases

Altova UModel 2024 Enterprise Edition

10.2.2 Database Drivers Overview

The following table lists common database drivers you can use to connect to a particular database through a
particular data access technology. Note that this list does not aim to be either exhaustive or prescriptive; you
can use other native or third party alternatives in addition to the drivers shown below.

Even though a number of database drivers might be already available on your Windows operating system, you
may still need to download an alternative driver. For some databases, the latest driver supplied by the database
vendor is likely to perform better than the driver that shipped with the operating system.

Database vendors may provide drivers either as separate downloadable packages, or bundled with database
client software. In the latter case, the database client software normally includes any required database drivers,
or provides you with an option during installation to select the drivers and components you wish to install.
Database client software typically consists of administration and configuration utilities used to simplify
database administration and connectivity, as well as documentation on how to install and configure the
database client and any of its components.

Configuring the database client correctly is crucial for establishing a successful connection to the database.
Before installing and using the database client software, it is strongly recommended to read carefully the
installation and configuration instructions of the database client; these may vary for each database version and
for each Windows version.

To understand the capabilities and limitations of each data access technology with respect to each database
type, refer to the documentation of that particular database product and also test the connection against your
specific environment. To avoid common connectivity issues, note the following:

· Some ADO.NET providers are not supported or have limited support. See ADO.NET Support Notes .
· When installing a database driver, it is recommended that it has the same platform as the Altova

application (32-bit or 64-bit). For example, if you are using a 32-bit Altova application on a 64-bit
operating system, install the 32-bit driver, and set up your database connection using the 32-bit driver,
see also Viewing the Available ODBC Drivers .

· When setting up an ODBC data source, it is recommended to create the data source name (DSN) as
System DSN instead of User DSN. For more information, see Setting up an ODBC Connection .

· When setting up a JDBC data source, ensure that JRE (Java Runtime Environment) or Java
Development Kit (JDK) is installed and that the CLASSPATH environment variable of the operating
system is configured. For more information, see Setting up a JDBC Connection .

· For the installation instructions and support details of any drivers or database client software that you
install from a database vendor, check the documentation provided with the installation package.

Database Interface Drivers

Firebird ADO.NET Firebird ADO.NET Data Provider (https://www.firebirdsql.org/en/additional-
downloads/)

JDBC Firebird JDBC driver (https://www.firebirdsql.org/en/jdbc-driver/)

ODBC Firebird ODBC driver (https://www.firebirdsql.org/en/odbc-driver/)

IBM DB2 ADO IBM OLE DB Provider for DB2

ADO.NET IBM Data Server Provider for .NET

567

570

568

571

https://www.firebirdsql.org/en/additional-downloads/
https://www.firebirdsql.org/en/additional-downloads/
https://www.firebirdsql.org/en/jdbc-driver/
https://www.firebirdsql.org/en/odbc-driver/

554 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Database Interface Drivers

JDBC IBM Data Server Driver for JDBC and SQLJ

ODBC IBM DB2 ODBC Driver

IBM DB2 for i ADO · IBM DB2 for i5/OS IBMDA400 OLE DB Provider
· IBM DB2 for i5/OS IBMDARLA OLE DB Provider
· IBM DB2 for i5/OS IBMDASQL OLE DB Provider

ADO.NET .NET Framework Data Provider for IBM i

JDBC IBM Toolbox for Java JDBC Driver

ODBC iSeries Access ODBC Driver

IBM Informix ADO IBM Informix OLE DB Provider

JDBC IBM Informix JDBC Driver

ODBC IBM Informix ODBC Driver

Microsoft
Access

ADO · Microsoft Jet OLE DB Provider
· Microsoft Access Database Engine OLE DB Provider

ADO.NET .NET Framework Data Provider for OLE DB

ODBC · Microsoft Access Driver

MariaDB ADO.NET In the absence of a dedicated .NET connector for MariaDB, use
Connector/NET for MySQL
(https://dev.mysql.com/downloads/connector/net/).

JDBC MariaDB Connector/J (https://downloads.mariadb.org/)

ODBC MariaDB Connector/ODBC (https://downloads.mariadb.org/)

Native
connection

Available. No drivers are required.

Microsoft SQL
Server

ADO · Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL)
· Microsoft OLE DB Provider for SQL Server (SQLOLEDB)
· SQL Server Native Client (SQLNCLI)

ADO.NET · .NET Framework Data Provider for SQL Server
· .NET Framework Data Provider for OLE DB

JDBC · Microsoft JDBC Driver for SQL Server (https://docs.microsoft.com/en-
us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server)

ODBC · ODBC Driver for Microsoft SQL Server (https://docs.microsoft.com/en-
us/SQL/connect/odbc/download-odbc-driver-for-sql-server)

MySQL ADO.NET · Connector/NET (https://dev.mysql.com/downloads/connector/net/)

JDBC Connector/J (https://dev.mysql.com/downloads/connector/j/)

https://dev.mysql.com/downloads/connector/net/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server
https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server
https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/j/

© 2018-2024 Altova GmbH

Connecting to a Data Source 555UModel and Databases

Altova UModel 2024 Enterprise Edition

Database Interface Drivers

ODBC Connector/ODBC (https://dev.mysql.com/downloads/connector/odbc/)

Native
connection

Available for MySQL 5.7 and later. No drivers are required.

Oracle ADO · Oracle Provider for OLE DB
· Microsoft OLE DB Provider for Oracle

ADO.NET Oracle Data Provider for .NET
(http://www.oracle.com/technetwork/topics/dotnet/index-085163.html)

JDBC · JDBC Thin Driver
· JDBC Oracle Call Interface (OCI) Driver
These drivers are typically installed during the installation of your Oracle
database client. Connect through the OCI Driver (not the Thin Driver) if you
are using the Oracle XML DB component.

ODBC · Microsoft ODBC for Oracle
· Oracle ODBC Driver (typically installed during the installation of your

Oracle database client)

PostgreSQL JDBC PostgreSQL JDBC Driver (https://jdbc.postgresql.org/download.html)

ODBC psqlODBC (https://odbc.postgresql.org/)

Native
connection

Available. No drivers are required.

Progress
OpenEdge

JDBC JDBC Connector (https://www.progress.com/jdbc/openedge)

ODBC ODBC Connector (https://www.progress.com/odbc/openedge)

SQLite Native
connection

Available. No drivers are required.

Sybase ADO Sybase ASE OLE DB Provider

JDBC jConnect™ for JDBC

ODBC Sybase ASE ODBC Driver

Teradata ADO.NET .NET Data Provider for Teradata
(https://downloads.teradata.com/download/connectivity/net-data-provider-for-
teradata)

JDBC Teradata JDBC Driver
(https://downloads.teradata.com/download/connectivity/jdbc-driver)

ODBC Teradata ODBC Driver for Windows
(https://downloads.teradata.com/download/connectivity/odbc-driver/windows)

https://dev.mysql.com/downloads/connector/odbc/
http://www.oracle.com/technetwork/topics/dotnet/index-085163.html
https://jdbc.postgresql.org/download.html
https://odbc.postgresql.org/
https://www.progress.com/jdbc/openedge
https://www.progress.com/odbc/openedge
https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://downloads.teradata.com/download/connectivity/jdbc-driver
https://downloads.teradata.com/download/connectivity/odbc-driver/windows

556 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

10.2.3 ADO Connection

Microsoft ActiveX Data Objects (ADO) is a data access technology that enables you to connect to a variety of
data sources through OLE DB. OLE DB is an alternative interface to ODBC or JDBC; it provides uniform
access to data in a COM (Component Object Model) environment. ADO is a precursor of the newer
ADO.NET and is still one of the possible ways to connect to Microsoft native databases such as Microsoft
Access or SQL Server, although you can also use it for other data sources.

Importantly, you can choose between multiple ADO providers, and some of them must be downloaded and
installed on your workstation before you can use them. For example, for connecting to SQL Server, the
following ADO providers are available:

· Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL)
· Microsoft OLE DB Provider for SQL Server (SQLOLEDB)
· SQL Server Native Client (SQLNCLI)

From the providers listed above, the recommended one is MSOLEDBSQL; you can download it from
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15.
Note that it must match the platform of UModel (32-bit or 64-bit). The SQLOLEDB and SQLNCLI providers are
considered deprecated and thus are not recommended.

The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) is known to have issues with parameter
binding of complex queries like Common Table Expressions (CTE) and nested SELECT statements.

To set up an ADO connection:

1. Start the database connection wizard .
2. Click ADO Connections.

561

551

https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

© 2018-2024 Altova GmbH

Connecting to a Data Source 557UModel and Databases

Altova UModel 2024 Enterprise Edition

3. Click Build.

4. Select the data provider through which you want to connect. The table below lists a few common
scenarios.

558 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To connect to this database... Use this provider...

Microsoft Access · Microsoft Office Access Database Engine OLE DB
Provider (recommended)

· Microsoft Jet OLE DB Provider

If the Microsoft Office Access Database Engine OLE DB
Provider is not available in the list, make sure that you have
installed either Microsoft Access or the Microsoft Access
Database Engine Redistributable (https://www.microsoft.com/en-
us/download/details.aspx?id=54920) on your computer.

SQL Server · Microsoft OLE DB Driver for SQL Server
(MSOLEDBSQL) - this is the recommended OLE DB
provider. In order for this provider to appear in the list, it
must be downloaded from https://docs.microsoft.com/en-
us/sql/connect/oledb/download-oledb-driver-for-sql-
server?view=sql-server-ver15 and installed.

· Microsoft OLE DB Provider for SQL Server
(OLEDBSQL)

· SQL Server Native Client (SQLNCLI)

Other database Select the provider applicable to your database.

If an OLE DB provider to your database is not available, install the
required driver from the database vendor (see Database Drivers
Overview). Alternatively, set up an ADO.NET, ODBC, or JDBC
connection.

If the operating system has an ODBC driver to the required
database, you could also use the Microsoft OLE DB Provider
for ODBC Drivers, or preferably opt for an ODBC connection .

5. Having selected the provider of choice, click Next and complete the wizard.

The subsequent wizard steps are specific to the provider you chose. For SQL Server, you will need to provide or
select the host name of the database server, the authentication method, the database name, as well as the
database username and password. For an example, see Connecting to Microsoft SQL Server (ADO) . For
Microsoft Access, you will be asked to browse for or provide the path to the database file. For an example, see
Connecting to Microsoft Access (ADO) .

The complete list of initialization properties (connection parameters) is available in the All tab of the connection
dialog box—these properties vary depending on the chosen provider and may need to be set explicitly in order
for the connection to be possible. The following sections provide guidance on configuring the basic initialization
properties for Microsoft Access and SQL Server databases:

· Setting up the SQL Server Data Link Properties
· Setting up the Microsoft Access Data Link Properties

553

568

599

596

559

560

https://www.microsoft.com/en-us/download/details.aspx?id=54920
https://www.microsoft.com/en-us/download/details.aspx?id=54920
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

© 2018-2024 Altova GmbH

Connecting to a Data Source 559UModel and Databases

Altova UModel 2024 Enterprise Edition

10.2.3.1 Connecting to an Existing Microsoft Access Database

This approach is suitable when you want to connect to a Microsoft Access database which is not password-
protected. If the database is password-protected, set up the database password as shown in Connecting to
Microsoft Access (ADO) .

To connect to an existing Microsoft Access database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select Microsoft Access (ADO), and then click Next.
3. Browse for the database file, or enter the path to it (either relative or absolute).
4. Click Connect.

10.2.3.2 Setting up the SQL Server Data Link Properties

When you connect to a Microsoft SQL Server database through ADO , you may need to set the following
connection properties in the All tab of the Data Link Properties dialog box.

Data Link Properties dialog box

596

551

556

560 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Property Notes

Integrated Security If you selected the SQL Server Native Client data provider on the
Provider tab, set this property to a space character.

Persist Security Info Set this property to True.

10.2.3.3 Setting up the Microsoft Access Data Link Properties

When you connect to a Microsoft Access database through ADO , you may need to set the following
connection properties in the All tab of the Data Link Properties dialog box.

Data Link Properties dialog box

Property Notes

Data Source This property stores the path to the Microsoft Access database file. To
avoid database connectivity issues, it is recommended to use the UNC
(Universal Naming Convention) path format, for example:

\\anyserver\share$\filepath

556

© 2018-2024 Altova GmbH

Connecting to a Data Source 561UModel and Databases

Altova UModel 2024 Enterprise Edition

Property Notes

Jet OLEDB:System Database This property stores the path to the workgroup information file. You
may need to explicitly set the value of this property before you can
connect to a Microsoft Access database.

If you cannot connect due to a "workgroup information file" error, locate
the workgroup information file (System.MDW) applicable to your user
profile, and set the property value to the path of the System.MDW file.

Jet OLEDB:Database Password If the database is password-protected, set the value of this property to
the database password.

10.2.4 ADO.NET Connection

ADO.NET is a set of Microsoft .NET Framework libraries designed to interact with data, including data from
databases. To connect to a database from UModel through ADO.NET, Microsoft .NET Framework 4 or later is
required. As shown below, you connect to a database through ADO.NET by selecting a .NET provider and
supplying a connection string.

A .NET data provider is a collection of classes that enables connecting to a particular type of data source (for
example, a SQL Server, or an Oracle database), executing commands against it, and fetching data from it. In
other words, with ADO.NET, an application such as UModel interacts with a database through a data provider.
Each data provider is optimized to work with the specific type of data source that it is designed for. There are
two types of .NET providers:

1. Supplied by default with Microsoft .NET Framework.

562 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2. Supplied by major database vendors, as an extension to the .NET Framework. Such ADO.NET
providers must be installed separately and can typically be downloaded from the website of the
respective database vendor.

Note: Certain ADO.NET providers are not supported or have limited support. See ADO.NET Support
Notes .

To set up an ADO.NET connection:

1. Start the database connection wizard .
2. Click ADO.NET Connections.
3. Select a .NET data provider from the list.

The list of providers available by default with the .NET Framework appears in the "Provider" list.
Vendor-specific .NET data providers are available in the list only if they are already installed on
your system. To become available, vendor-specific .NET providers must be installed into the GAC
(Global Assembly Cache), by running the .msi or .exe file supplied by the database vendor.

4. Enter a database connection string. A connection string defines the database connection information,
as semicolon-delimited key/value pairs of connection parameters. For example, a connection string
such as Data Source=DBSQLSERV;Initial Catalog=ProductsDB;User

ID=dbuser;Password=dbpass connects to the SQL Server database ProductsDB on server

DBSQLSERV, with the user name dbuser and password dbpass. You can create a connection string by
typing the key/value pairs directly into the "Connection String" dialog box. Another option is to create it
with Visual Studio (see Creating a Connection String in Visual Studio).

The syntax of the connection string depends on the provider selected from the "Provider" list. For
examples, see Sample ADO.NET Connection Strings .

567

551

563

566

© 2018-2024 Altova GmbH

Connecting to a Data Source 563UModel and Databases

Altova UModel 2024 Enterprise Edition

5. Click Connect.

10.2.4.1 Creating a Connection String in Visual Studio

In order to connect to a data source using ADO.NET, a valid database connection string is required. The
following instructions show you how to create a connection string from Visual Studio.

To create a connection string in Visual Studio:

1. On the Tools menu, click Connect to Database.
2. Select a data source from the list (in this example, Microsoft SQL Server). The Data Provider is filled

automatically based on your choice.

564 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Click Continue.

© 2018-2024 Altova GmbH

Connecting to a Data Source 565UModel and Databases

Altova UModel 2024 Enterprise Edition

4. Enter the server host name and the user name and password to the database. In this example, we are
connecting to the database ProductsDB on server DBSQLSERV, using SQL Server authentication.

5. Click OK.

If the database connection is successful, it appears in the Server Explorer window. You can display the Server
Explorer window using the menu command View | Server Explorer. To obtain the database connection string,
right-click the connection in the Server Explorer window, and select Properties. The connection string is now
displayed in the Properties window of Visual Studio. Note that, before pasting the string into the "Connection
String" box of UModel, you will need to replace the asterisk (*) characters with the actual password.

566 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

10.2.4.2 Sample ADO.NET Connection Strings

To set up an ADO.NET connection, you need to select an ADO.NET provider from the database connection
dialog box and enter a connection string (see also Setting up an ADO.NET Connection). Sample ADO.NET
connection strings for various databases are listed below under the .NET provider where they apply.

.NET Data Provider for Teradata
This provider can be downloaded from Teradata website
(https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata). A sample connection
string looks as follows:

Data Source=ServerAddress;User Id=user;Password=password;

.NET Framework Data Provider for IBM i
This provider is installed as part of IBM i Access Client Solutions - Windows Application Package. A sample
connection string looks as follows:

DataSource=ServerAddress;UserID=user;Password=password;DataCompression=True;

For more information, see the ".NET Provider Technical Reference" help file included in the installation package
above.

.NET Framework Data Provider for MySQL
This provider can be downloaded from MySQL website (https://dev.mysql.com/downloads/connector/net/). A
sample connection string looks as follows:

Server=127.0.0.1;Uid=root;Pwd=12345;Database=test;

See also: https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-
string.html

.NET Framework Data Provider for SQL Server
A sample connection string looks as follows:

Data Source=DBSQLSERV;Initial Catalog=ProductsDB;User ID=dbuser;Password=dbpass

See also: https://msdn.microsoft.com/en-us/library/ms254500(v=vs.110).aspx

IBM DB2 Data Provider 10.1.2 for .NET Framework 4.0

Database=PRODUCTS;UID=user;Password=password;Server=localhost:50000;

561

https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-string.html
https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-string.html
https://msdn.microsoft.com/en-us/library/ms254500(v=vs.110).aspx

© 2018-2024 Altova GmbH

Connecting to a Data Source 567UModel and Databases

Altova UModel 2024 Enterprise Edition

Note: This provider is typically installed with the IBM DB2 Data Server Client package. If the provider is
missing from the list of ADO.NET providers after installing IBM DB2 Data Server Client package, refer
to the following technical note: https://www-01.ibm.com/support/docview.wss?uid=swg21429586.

See also:
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/d
oc/DB2ConnectionClassConnectionStringProperty.html

Oracle Data Provider for .NET (ODP.NET)
The installation package which includes the ODP.NET provider can be downloaded from the Oracle website
(see http://www.oracle.com/technetwork/topics/dotnet/downloads/index.html). A sample connection string
looks as follows:

Data Source=DSORCL;User Id=user;Password=password;

Where DSORCL is the name of the data source which points to an Oracle service name defined in the
tnsnames.ora file, as described in Connecting to Oracle (ODBC) .

To connect without configuring a service name in the tnsnames.ora file, use a string such as:

Data Source=(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=host)(PORT=port)))

(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=MyOracleSID)));User

Id=user;Password=password;

See also: https://docs.oracle.com/cd/B28359_01/win.111/b28375/featConnecting.htm

10.2.4.3 ADO.NET Support Notes

The following table lists known ADO.NET database drivers that are currently not supported or have limited
support in UModel.

Database Driver Support notes

All databases .Net Framework Data Provider
for ODBC

Limited support. Known issues exist with
Microsoft Access connections. It is
recommended to use ODBC direct
connections instead.

.Net Framework Data Provider
for OleDb

Limited support. Known issues exist with
Microsoft Access connections. It is
recommended to use ADO direct connections
instead.

Firebird Firebird ADO.NET Data Provider Limited support. It is recommended to use
ODBC or JDBC instead.

Informix IBM Informix Data Provider for Not supported. Use DB2 Data Server

611

https://www-01.ibm.com/support/docview.wss?uid=swg21429586
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/doc/DB2ConnectionClassConnectionStringProperty.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/doc/DB2ConnectionClassConnectionStringProperty.html
http://www.oracle.com/technetwork/topics/dotnet/downloads/index.html
https://docs.oracle.com/cd/B28359_01/win.111/b28375/featConnecting.htm

568 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Database Driver Support notes

.NET Framework 4.0 Provider instead.

IBM DB2 for i (iSeries) .Net Framework Data Provider
for i5/OS

Not supported. Use .Net Framework Data
Provider for IBM i instead, installed as part
of the IBM i Access Client Solutions -
Windows Application Package.

Oracle .Net Framework Data Provider
for Oracle

Limited support. Although this driver is
provided with the .NET Framework, its usage
is discouraged by Microsoft, because it is
deprecated.

PostgreSQL - No ADO.NET drivers for this vendor are
supported. Use a native connection instead.

Sybase - No ADO.NET drivers for this vendor are
supported.

10.2.5 ODBC Connection

ODBC (Open Database Connectivity) is a widely used data access technology that enables you to connect to
a database from UModel. It can be used either as primary means to connect to a database, or as an alternative
to native, OLE DB, or JDBC-driven connections.

To connect to a database through ODBC, first you need to create an ODBC data source name (DSN) on the
operating system. This step is not required if the DSN has already been created, perhaps by another user of
the operating system. The DSN represents a uniform way to describe the database connection to any ODBC-
aware client application on the operating system, including UModel. DSNs can be of the following types:

· System DSN
· User DSN
· File DSN

A System data source is accessible by all users with privileges on the operating system. A User data source is
available to the user who created it. Finally, if you create a File DSN, the data source will be created as a file
with the .dsn extension which you can share with other users, provided that they have installed the drivers used
by the data source.

Any DSNs already available on your machine are listed by the database connection dialog box when you click
ODBC connections on the ODBC connections dialog box.

© 2018-2024 Altova GmbH

Connecting to a Data Source 569UModel and Databases

Altova UModel 2024 Enterprise Edition

ODBC Connections dialog box

If a DSN to the required database is not available, the UModel database connection wizard will assist you to
create it; however, you can also create it directly on your Windows operating system. In either case, before you
proceed, ensure that the ODBC driver applicable for your database is in the list of ODBC drivers available to the
operating system (see Viewing the Available ODBC Drivers).

To connect by using a new DSN:

1. Start the database connection wizard .
2. On the database connection dialog box, click ODBC Connections.
3. Select a data source type (User DSN, System DSN, File DSN).

To create a System DSN, you need administrative rights on the operating system, and UModel
must be run as administrator.

4. Click Add .
5. Select a driver, and then click User DSN or System DSN (depending on the type of the DSN you want

to create). If the driver applicable to your database is not listed, download it from the database vendor
and install it (see Database Drivers Overview).

6. On the dialog box that pops up, fill in any driver specific connection information to complete the setup.

For the connection to be successful, you will need to provide the host name (or IP address) of the database
server, as well as the database username and password. There may be other optional connection parameters—
these parameters vary between database providers. For detailed information about the parameters specific to

570

551

553

570 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

each connection method, consult the documentation of the driver provider. Once created, the DSN becomes
available in the list of data source names. This enables you to reuse the database connection details any time
you want to connect to the database. Note that User DSNs are added to the list of User DSNs whereas
System DSNs are added to the list of System DSNs.

To connect by using an existing DSN:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Choose the type of the existing data source (User DSN, System DSN, File DSN).
4. Click the existing DSN record, and then click Connect.

To build a connection string based on an existing .dsn file:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Select Build a connection string, and then click Build.
4. If you want to build the connection string using a File DSN, click the File Data Source tab. Otherwise,

click the Machine Data Source tab. (System DSNs and User DSNs are known as "Machine" data
sources.)

5. Select the required .dsn file, and then click OK.

To connect by using a prepared connection string:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Select Build a connection string.
4. Paste the connection string into the provided box, and then click Connect.

10.2.5.1 Available ODBC Drivers

You can view the ODBC drivers available on your operating system in the ODBC Data Source Administrator.
You can access the ODBC Data Source Administrator (Odbcad32.exe) from the Windows Control Panel,
under Administrative Tools. On 64-bit operating systems, there are two versions of this executable:

· The 32-bit version of the Odbcad32.exe file is located in the C:\Windows\SysWoW64 directory
(assuming that C: is your system drive).

· The 64-bit version of the Odbcad32.exe file is located in the C:\Windows\System32 directory.

Any installed 32-bit database drivers are visible in the 32-bit version of ODBC Data Source Administrator, while
64-bit drivers—in the 64-bit version. Therefore, ensure that you check the database drivers from the relevant
version of ODBC Data Source Administrator.

551

551

551

© 2018-2024 Altova GmbH

Connecting to a Data Source 571UModel and Databases

Altova UModel 2024 Enterprise Edition

ODBC Data Source Administrator

If the driver to your target database does not exist in the list, or if you want to add an alternative driver, you will
need to download it from the database vendor (see Database Drivers Overview). Once the ODBC driver is
available on your system, you are ready to create ODBC connections with it (see Setting up an ODBC
Connection).

10.2.6 JDBC Connection

JDBC (Java Database Connectivity) is a database access interface which is part of the Java software platform
from Oracle. JDBC connections are generally more resource-intensive than ODBC connections but may provide
features not available through ODBC.

Prerequisites
· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either

Oracle JDK or an open source build such as Oracle OpenJDK. UModel will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of UModel (32-bit, 64-bit) matches that of the JRE/JDK.
· The JDBC drivers from the database vendor must be installed. These may be JDBC drivers installed as

part of a database client installation, or JDBC libraries (.jar files) downloaded separately, if available
and supported by the database, see also Database Connection Examples .

553

568

757

577

572 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· The CLASSPATH environment variable must include the path to the JDBC driver (one or several .jar files)
on your Windows operating system. When you install some database clients, the installer may
configure this variable automatically. See also Configuring the CLASSPATH .

Connecting to SQL Server via JDBC with Windows credentials
If you connect to SQL Server through JDBC with Windows credentials (integrated security), note the following:

· The sqljdbc_auth.dll file included in the JDBC driver package must be copied to a directory that is on
the system PATH environment variable. There are two such files, one for the x86 and one for x64
platform. Make sure that you add to the PATH the one that corresponds to your JDK platform.

· The JDBC connection string must include the property integratedSecurity=true.

For further information, refer to Microsoft JDBC driver for SQL Server documentation,
https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url.

Setting up a JDBC connection
1. Start the database connection wizard .
2. Click JDBC Connections.
3. Optionally, enter a semicolon-separated list of .jar file paths in the "Classpaths" text box. The .jar

libraries entered here will be loaded into the environment in addition to those already defined in the
CLASSPATH environment variable. When you finish editing the "Classpaths" text box, any JDBC drivers
found in the source .jar libraries are automatically added to the "Driver" list (see the next step).

574

551

https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url

© 2018-2024 Altova GmbH

Connecting to a Data Source 573UModel and Databases

Altova UModel 2024 Enterprise Edition

4. Next to "Driver", select a JDBC driver from the list, or enter a Java class name. Note that this list
contains any JDBC drivers configured through the CLASSPATH environment variable (see Configuring the
CLASSPATH), as well as those found in the "Classpaths" text box.

The JDBC driver paths defined in the CLASSPATH variable, as well as any .jar file paths entered
directly in the database connection dialog box are all supplied to the Java Virtual Machine (JVM).
The JVM then decides which drivers to use in order to establish a connection. It is recommended
to keep track of Java classes loaded into the JVM so as not to create potential JDBC driver
conflicts and avoid unexpected results when connecting to the database.

5. Enter the username and password to the database in the corresponding boxes.
6. In the Database URL text box, enter the JDBC connection URL (string) in the format specific to your

database type. The following table describes the syntax of JDBC connection URLs (strings) for
common database types.

Database JDBC Connection URL

Firebird jdbc:firebirdsql://<host>[:<port>]/<database path or

alias>

IBM DB2 jdbc:db2://hostName:port/databaseName

IBM DB2 for i jdbc:as400://[host]

IBM Informix jdbc:informix-
sqli://hostName:port/databaseName:INFORMIXSERVER=myserver

MariaDB jdbc:mariadb://hostName:port/databaseName

Microsoft SQL Server jdbc:sqlserver://hostName:port;databaseName=name

MySQL jdbc:mysql://hostName:port/databaseName

Oracle jdbc:oracle:thin:@hostName:port:SID

jdbc:oracle:thin:@//hostName:port/service

Oracle XML DB jdbc:oracle:oci:@//hostName:port:service

PostgreSQL jdbc:postgresql://hostName:port/databaseName

Progress OpenEdge jdbc:datadirect:openedge://host:port;databaseName=db_name

Sybase jdbc:sybase:Tds:hostName:port/databaseName

Teradata jdbc:teradata://databaseServerName

Note: Syntax variations to the formats listed above are also possible (for example, the database URL may
exclude the port or may include the username and password to the database). Check the
documentation of the database vendor for further details.

7. Click Connect.

574

574 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

10.2.6.1 Configuring the CLASSPATH

The CLASSPATH environment variable is used by the Java Runtime Environment (JRE) or the Java Development
Kit (JDK) to locate Java classes and other resource files on your operating system. When you connect to a
database through JDBC, this variable must be configured to include the path to the JDBC driver on your
operating system, and, in some cases, the path to additional library files specific to the database type you are
using.

The following table lists sample file paths that must be typically included in the CLASSPATH variable.
Importantly, you may need to adjust this information based on the location of the JDBC driver on your system,
the JDBC driver name, as well as the JRE/JDK version present on your operating system. To avoid connectivity
problems, check the installation instructions and any pre-installation or post-installation configuration steps
applicable to the JDBC driver installed on your operating system.

Database Sample CLASSPATH entries

Firebird C:\Program Files\Firebird\Jaybird-2.2.8-JDK_1.8\jaybird-full-
2.2.8.jar

IBM DB2 C:\Program Files (x86)\IBM\SQLLIB\java\db2jcc.jar;C:\Program
Files (x86)\IBM\SQLLIB\java\db2jcc_license_cu.jar;

IBM DB2 for i C:\jt400\jt400.jar;

IBM Informix C:\Informix_JDBC_Driver\lib\ifxjdbc.jar;

Microsoft SQL Server C:\Program Files\Microsoft JDBC Driver 4.0 for SQL
Server\sqljdbc_4.0\enu\sqljdbc.jar

MariaDB <installation directory>\mariadb-java-client-2.2.0.jar

MySQL <installation directory>\mysql-connector-java-version-bin.jar;

Oracle ORACLE_HOME\jdbc\lib\ojdbc6.jar;

Oracle (with XML DB) ORACLE_HOME\jdbc\lib\ojdbc6.jar;ORACLE_HOME\LIB\xmlparserv2.jar;

ORACLE_HOME\RDBMS\jlib\xdb.jar;

PostgreSQL <installation directory>\postgresql.jar

Progress OpenEdge %DLC%\java\openedge.jar;%DLC%\java\pool.jar;

Note: Assuming the Progress OpenEdge SDK is installed on the machine, %
DLC% is the directory where OpenEdge is installed.

Sybase C:\sybase\jConnect-7_0\classes\jconn4.jar

Teradata <installation directory>\tdgssconfig.jar;<installation

directory>\terajdbc4.jar

© 2018-2024 Altova GmbH

Connecting to a Data Source 575UModel and Databases

Altova UModel 2024 Enterprise Edition

· Changing the CLASSPATH variable may affect the behavior of Java applications on your machine. To
understand possible implications before you proceed, refer to the Java documentation.

· Environment variables can be user or system. To change system environment variables, you need
administrative rights on the operating system.

· After you change the environment variable, restart any running programs for settings to take effect.
Alternatively, log off or restart your operating system.

To configure the CLASSPATH on Windows 7:

1. Open the Start menu and right-click Computer.
2. Click Properties.
3. Click Advanced system settings.
4. In the Advanced tab, click Environment Variables,
5. Locate the CLASSPATH variable under user or system environment variables, and then click Edit. If

the CLASSPATH variable does not exist, click New to create it.
6. Edit the variable value to include the path on your operating system where the JDBC driver is located.

To separate the JDBC driver path from other paths that may already be in the CLASSPATH variable,
use the semi-colon separator (;).

To configure the CLASSPATH on Windows 10:

1. Press the Windows key and start typing "environment variables".
2. Click the suggestion Edit the system environment variables.
3. Click Environment Variables.
4. Locate the CLASSPATH variable under user or system environment variables, and then click Edit. If

the CLASSPATH variable does not exist, click New to create it.
5. Edit the variable value to include the path on your operating system where the JDBC driver is located.

To separate the JDBC driver path from other paths that may already be in the CLASSPATH variable,
use the semi-colon separator (;).

10.2.7 SQLite Connection

SQLite is a file-based, self-contained database type, which makes it ideal in scenarios where portability and
ease of configuration is important. Since SQLite databases are natively supported by UModel, you do not need
to install any drivers to connect to them.

SQLite database support notes
· On Linux, statement execution timeout for SQLite databases is not supported.
· Full text search tables are not supported.
· SQLite allows values of different data types in each row of a given table. All processed values must be

compatible with the declared column type; therefore, unexpected values can be retrieved and run-time
errors may occur if your SQLite database has row values which are not the same as the declared
column type.

Important

https://www.sqlite.org/index.html

576 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

It is recommended to create tables with the STRICT keyword to ensure more predictable behavior of your
data. Otherwise, the data may not be read or written correctly when values of different types are mixed in one
column. To find out more about STRICT tables, see the SQLite documentation.

10.2.7.1 Connect to an Existing SQLite Database

To connect to an existing SQLite database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select SQLite, and then click Next.
3. Browse for the SQLite database file, or enter the path (either relative or absolute) to the database. The

Connect button becomes enabled once you enter the path to a SQLite database file.
4. Click Connect.

10.2.8 Native Connection

Native connections are direct connections to the DB that do not need drivers to be installed.

You can set up native connections for the following DBs:

· MariaDB
· MySQL
· SQLite
· PostgreSQL

If you prefer to establish a connection by means of a driver, see the following topics:

· Setting up a JDBC Connection
· SQLite Connection
· Connecting to PostgreSQL (ODBC)

Connection setup
To set up a native connection, follow the steps below. You will need the following information: host name, port,
database name, username, and password.

1. Start the database connection wizard .
2. Select the DB you want to connect to (MariaDB, MySQL, PostgreSQL, or SQLite).
3. In the dialog that appears, enter the host (for example, localhost), optionally the port (typically 5432),

SSL Mode in the case of MySQL, the database name, username, and password in the corresponding
boxes.

4. Click Connect.

SQLite conections
For detailed information about SQLite connections, see the topic SQLite Connection .

551

571

575

615

551

575

https://www.sqlite.org/stricttables.html

© 2018-2024 Altova GmbH

Connecting to a Data Source 577UModel and Databases

Altova UModel 2024 Enterprise Edition

Notes for PostrgreSQL
If the PostgreSQL database server is on a different machine, note the following:

· The PostgreSQL database server must be configured to accept connections from clients. Specifically,
the pg_hba.conf file must be configured to allow non-local connections. Secondly, the
postgresql.conf file must be configured to listen on specified IP address(es) and port. For more
information, check the PostgreSQL documentation (https://www.postgresql.org/docs/9.5/static/client-
authentication-problems.html).

· The server machine must be configured to accept connections on the designated port (typically, 5432)
through the firewall. For example, on a database server running on Windows, a rule may need to be
created to allow connections on port 5432 through the firewall, from Control Panel > Windows
Firewall > Advanced Settings > Inbound Rules.

10.2.9 Database Connection Examples

This section includes examples for connecting to a database from UModel through ADO, ODBC, or JDBC. The
ADO.NET connection examples are listed separately, see Sample ADO.NET Connection Strings . For
instructions about establishing a native connection to PostgreSQL and SQLite, see Setting up a PostgreSQL
Connection and Setting up a SQLite Connection , respectively.

Note the following:

· The instructions may differ if your Windows configuration, network environment and the database client
or server software are not the same as the ones described in each example.

· For most database types, it is possible to connect using more than one data access technology
(ADO, ADO.NET, ODBC, JDBC) or driver. The performance of the database connection, as well as its
features and limitations will depend on the selected driver, database client software (if applicable), and
any additional connectivity parameters that you may have configured outside UModel.

10.2.9.1 Firebird (JDBC)

This example illustrates how to connect to a Firebird database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. UModel will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of UModel (32-bit, 64-bit) matches that of the JRE/JDK.
· The Firebird JDBC driver must be available on your operating system (it takes the form of a .jar file

which provides connectivity to the database). The driver can be downloaded from the Firebird website
(https://www.firebirdsql.org/). This example uses Jaybird 2.2.8.

· You have the following database connection details: host, database path or alias, username, and
password.

566

576 575

757

https://www.postgresql.org/docs/9.5/static/client-authentication-problems.html
https://www.postgresql.org/docs/9.5/static/client-authentication-problems.html
https://www.firebirdsql.org/

578 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To connect to Firebird through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file is located at the following path: C:\jdbc\firebird\jaybird-full-2.2.8.jar. Note that you
can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select org.firebirdsql.jdbc.FBDriver. Note that this entry is available if a valid .jar
file path is found either in the "Classpath" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:firebirdsql://<host>[:<port>]/<database path or alias>

7. Click Connect.

551

574

© 2018-2024 Altova GmbH

Connecting to a Data Source 579UModel and Databases

Altova UModel 2024 Enterprise Edition

10.2.9.2 Firebird (ODBC)

This example illustrates how to connect to a Firebird 2.5.4 database running on a Linux server.

Prerequisites:

· The Firebird database server is configured to accept TCP/IP connections from clients.
· The Firebird ODBC driver must be installed on your operating system. This example uses the Firebird

ODBC driver version 2.0.3.154 downloaded from the Firebird website (https://www.firebirdsql.org/).
· The Firebird client must be installed on your operating system. Note that there is no standalone

installer available for the Firebird 2.5.4 client; the client is part of the Firebird server installation
package. You can download the Firebird server installation package from the Firebird website
(https://www.firebirdsql.org/), look for "Windows executable installer for full Superclassic/Classic or
Superserver". To install only the client files, choose "Minimum client install - no server, no tools"
when going through the wizard steps.

Important:

· The platform of both the Firebird ODBC driver and client (32-bit or 64-bit) must correspond
to that of UModel.

· The version of the Firebird client must correspond to the version of Firebird server to which
you are connecting.

· You have the following database connection details: server host name or IP address, database path (or
alias) on the server, user name, and password.

To connect to Firebird via ODBC:

1. Start the database connection wizard .
2. Click ODBC Connections.

3. Select User DSN (or System DSN, if you have administrative privileges), and then click Add .

4. Select the Firebird driver, and then click User DSN (or System DSN, depending on what you selected
in the previous step). If the Firebird driver is not available in the list, make sure that it is installed on
your operating system (see also Viewing the Available ODBC Drivers).

551

570

https://www.firebirdsql.org/
https://www.firebirdsql.org/

580 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

5. Enter the database connection details as follows:

Data Source Name (DSN) Enter a descriptive name for the data source you are creating.

Database Enter the server host name or IP address, followed by a colon,
followed by the database alias (or path). In this example, the host
name is firebirdserv, and the database alias is products, as
follows:

firebirdserv:products

Using a database alias assumes that, on the server side, the
database administrator has configured the alias products to point to
the actual Firebird (.fdb) database file on the server (see the Firebird
documentation for more details).

You can also use the server IP address instead of the host name,
and a path instead of an alias; therefore, any of the following sample
connection strings are valid:

firebirdserver:/var/Firebird/databases/butterflies.fdb
127.0.0.1:D:\Misc\Lenders.fdb

© 2018-2024 Altova GmbH

Connecting to a Data Source 581UModel and Databases

Altova UModel 2024 Enterprise Edition

If the database is on the local Windows machine, click Browse and
select the Firebird (.fdb) database file directly.

Client Enter the path to the fbclient.dll file. By default, this is the bin
subdirectory of the Firebird installation directory.

Database Account Enter the database user name supplied by the database
administrator (in this example, PROD_ADMIN).

Password Enter the database password supplied by the database
administrator.

6. Click OK.

10.2.9.3 IBM DB2 (JDBC)

This example illustrates how to connect to an IBM DB2 database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. UModel will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of UModel (32-bit, 64-bit) matches that of the JRE/JDK. This example uses
Oracle's OpenJDK 11.0 64-bit, and, consequently, the 64-bit version of UModel.

· The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on
your operating system. This example uses the JDBC driver available after installing the IBM Data
Server Client version 10.1 (64-bit). For the JDBC drivers to be installed, choose a Typical installation,
or select this option explicitly on the installation wizard.

757

582 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

If you did not change the default installation path, the required .jar files will be in the C:\Program
Files\IBM\SQLLIB\java directory after installation.

· You need the following database connection details: host, port, database name, username, and
password.

To connect to IBM DB2 through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. This

examples refers to C:\Program Files\IBM\SQLLIB\java\db2jcc.jar. You may need to refer to the
db2jcc4.jar driver, depending on the database server version. For driver compatibility, refer to IBM
documentation (http://www-01.ibm.com/support/docview.wss?uid=swg21363866). Note that you can
leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.ibm.db2.jcc.DB2Driver. This entry becomes available only if a valid
.jar file path was found either in the "Classpaths" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

551

574

http://www-01.ibm.com/support/docview.wss?uid=swg21363866

© 2018-2024 Altova GmbH

Connecting to a Data Source 583UModel and Databases

Altova UModel 2024 Enterprise Edition

5. Enter the username and password of the database user in the corresponding text boxes.
6. Enter the JDBC connection string in the Database URL text box. Make sure to replace the connection

details with the ones applicable to your database server.

jdbc:db2://hostName:port/databaseName

7. Click Connect.

10.2.9.4 IBM DB2 (ODBC)

This example illustrates how to connect to an IBM DB2 database through ODBC.

Prerequisites:

· IBM Data Server Client must be installed and configured on your operating system (this example uses
IBM Data Server Client 9.7). For installation instructions, check the documentation supplied with your
IBM DB2 software. After installing the IBM Data Server Client, check if the ODBC drivers are available
on your machine (see Viewing the Available ODBC Drivers).

· Create a database alias. There are several ways to do this:
o From IBM DB2 Configuration Assistant

o From IBM DB2 Command Line Processor

o From the ODBC data source wizard (for this case, the instructions are shown below)

· You have the following database connection details: host, database, port, username, and password.

To connect to IBM DB2:

1. Start the database connection wizard and select IBM DB2 (ODBC/JDBC).
2. Click Next.

570

551

584 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Select ODBC, and click Next. If prompted to edit the list of known drivers for the database, select the
database drivers applicable to IBM DB2 (see Prerequisites), and click Next.583

© 2018-2024 Altova GmbH

Connecting to a Data Source 585UModel and Databases

Altova UModel 2024 Enterprise Edition

4. Select the IBM DB2 driver from the list, and then click Connect. (To edit the list of available drivers,
click Edit Drivers, and then check or uncheck the IBM DB2 drivers you wish to add or remove,
respectively.)

586 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

5. Enter a data source name (in this example, DB2DSN), and then click Add.

6. On the Data Source tab, enter the user name and password to the database.

© 2018-2024 Altova GmbH

Connecting to a Data Source 587UModel and Databases

Altova UModel 2024 Enterprise Edition

7. On the TCP/IP tab, enter the database name, a name for the alias, the host name and the port
number, and then click OK.

588 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

8. Enter again the username and password, and then click OK.

© 2018-2024 Altova GmbH

Connecting to a Data Source 589UModel and Databases

Altova UModel 2024 Enterprise Edition

10.2.9.5 IBM DB2 for i (JDBC)

This example illustrates how to connect to an IBM DB2 for i database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. UModel will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of UModel (32-bit, 64-bit) matches that of the JRE/JDK. This example uses
Oracle's OpenJDK 11.0 64-bit, and, consequently, the 64-bit version of UModel.

· The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on
your operating system. This example uses the open source Toolbox for Java/JTOpen version 9.8
(http://jt400.sourceforge.net/). After you download the package and unpack to a local directory, the
required .jar files will be available in the lib subdirectory.

· You need the following database connection details: host, username, and password.

To connect to IBM DB2 for i through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. In this

example, the required .jar file is at the following path: C:\jdbc\jtopen_9_8\jt400.jar. Note that you can
leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.ibm.as400.access.AS400JDBCDriver. This entry becomes available
only if a valid .jar file path was found either in the "Classpaths" text box, or in the operating system's
CLASSPATH environment variable (see the previous step).

5. Enter the username and password of the database user in the corresponding text boxes.
6. Enter the JDBC connection string in the Database URL text box. Make sure to replace host with the

host name or IP address of your database server.

jdbc:as400://host

757

551

574

http://jt400.sourceforge.net/

590 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

7. Click Connect.

10.2.9.6 IBM DB2 for i (ODBC)

This example illustrates how to connect to an IBM DB2 for i database through ODBC.

Prerequisites:

· IBM System i Access for Windows must be installed on your operating system (this example uses
IBM System i Access for Windows V6R1M0). For installation instructions, check the documentation
supplied with your IBM DB2 for i software. After installation, check if the ODBC driver is available on
your machine (see Viewing the Available ODBC Drivers).

· You have the following database connection details: the I.P. address of the database server, database
user name, and password.

· Run System i Navigator and follow the wizard to create a new connection. When prompted to specify a
system, enter the I.P. address of the database server. After creating the connection, it is
recommended to verify it (click on the connection, and select File > Diagnostics > Verify
Connection). If you get connectivity errors, contact the database server administrator.

To connect to IBM DB2 for i:

1. Start the database connection wizard .
2. Click ODBC connections.

570

551

© 2018-2024 Altova GmbH

Connecting to a Data Source 591UModel and Databases

Altova UModel 2024 Enterprise Edition

3. Click User DSN (alternatively, click System DSN, or File DSN, in which case the subsequent
instructions will be similar).

4. Click Add .
5. Select the iSeries Access ODBC Driver from the list, and click User DSN (or System DSN, if

applicable).

6. Enter a data source name and select the connection from the System combo box. In this example, the
data source name is iSeriesDSN and the System is 192.0.2.0.

7. Click Connection Options, select Use the User ID specified below and enter the name of the
database user (in this example, DBUSER).

592 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

8. Click OK. The new data source becomes available in the list of DSNs.
9. Click Connect.
10. Enter the user name and password to the database when prompted, and then click OK.

10.2.9.7 IBM Informix (JDBC)

This example illustrates how to connect to an IBM Informix database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. UModel will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of UModel (32-bit, 64-bit) matches that of the JRE/JDK.
· The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on

your operating system. In this example, IBM Informix JDBC driver version 3.70 is used. For the driver's
installation instructions, see the documentation accompanying the driver or the "IBM Informix JDBC
Driver Programmer's Guide").

· You have the following database connection details: host, name of the Informix server, database, port,
username, and password.

757

© 2018-2024 Altova GmbH

Connecting to a Data Source 593UModel and Databases

Altova UModel 2024 Enterprise Edition

To connect to IBM Informix through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file is located at the following path: C:\Informix_JDBC_Driver\lib\ifxjdbc.jar. Note that
you can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the
CLASSPATH environment variable of the operating system (see also Configuring the CLASSPATH
).

4. In the "Driver" box, select com.informix.jdbc.IfxDriver. Note that this entry is available if a valid .jar
file path is found either in the "Classpaths" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:informix-sqli://hostName:port/databaseName:INFORMIXSERVER=myserver;

7. Click Connect.

551

574

594 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

10.2.9.8 MariaDB (ODBC)

This example illustrates how to connect to a MariaDB database server through ODBC.

Prerequisites:

· The MariaDB Connector/ODBC (https://downloads.mariadb.org/connector-odbc/) must be installed.
· You have the following database connection details: host, database, port, username, and password.

To connect to MariaDB through ODBC:

1. Start the database connection wizard .
2. Select MariaDB (ODBC), and then click Next.

3. Select Create a new Data Source Name (DSN) with the driver, and choose MariaDB ODBC 3.0
Driver. If no such driver is available in the list, click Edit Drivers, and select any available MariaDB
drivers (the list contains all ODBC drivers installed on your operating system).

4. Click Connect.

551

https://downloads.mariadb.org/connector-odbc/

© 2018-2024 Altova GmbH

Connecting to a Data Source 595UModel and Databases

Altova UModel 2024 Enterprise Edition

5. Enter name and, optionally, a description that will help you identify this ODBC data source in future.

6. Fill in the database connection credentials (TCP/IP Server, User, Password), select a database, and
then click Test DSN. Upon successful connection, a message box appears:

596 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

7. Click Next and complete the wizard. Other parameters may be required, depending on the case (for
example, SSL certificates if you are connecting to MariaDB through a secure connection).

Note: If the database server is remote, it must be configured by the server administrator to accept remote
connections from your machine's IP address.

10.2.9.9 Microsoft Access (ADO)

A simple way to connect to a Microsoft Access database is to follow the wizard and browse for the database
file, as shown in Connecting to an Existing Microsoft Access Database . An alternative approach is to set up
an ADO connection explicitly, as shown in this topic. This approach is useful if your database is password-
protected.

It is also possible to connect to Microsoft Access through an ODBC connection, but it has limitations, so it is
best to avoid it.

To connect to a password-protected Microsoft Access database:

1. Start the database connection wizard .
2. Click ADO Connections.
3. Click Build.

559

551

© 2018-2024 Altova GmbH

Connecting to a Data Source 597UModel and Databases

Altova UModel 2024 Enterprise Edition

4. Select the Microsoft Office 15.0 Access Database Engine OLE DB Provider, and then click Next.

598 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

5. In the Data Source box, enter the path to the Microsoft Access file in UNC format, for example, \
\myserver\\mynetworkshare\Reports\Revenue.accdb, where myserver is the name of the server
and mynetworkshare is the name of the network share.

6. On the All tab, double click the Jet OLEDB:Database Password property and enter the database
password as property value.

Note: If you are still unable to connect, locate the workgroup information file (System.MDW) applicable to
your user profile, and set the value of the Jet OLEDB: System database property to the path of the
System.MDW file.

10.2.9.10 Microsoft Azure SQL (ODBC)

In order to connect properly to an Azure SQL database, you must install the latest SQL Server Native Client.

https://learn.microsoft.com/en-us/sql/relational-databases/native-client/applications/installing-sql-server-native-client?view=sql-server-ver16&redirectedfrom=MSDN

© 2018-2024 Altova GmbH

Connecting to a Data Source 599UModel and Databases

Altova UModel 2024 Enterprise Edition

For information about connecting to an Azure SQL database in the cloud, see this Altova blog entry.

10.2.9.11 Microsoft SQL Server (ADO)

This example illustrates how to connect to a SQL Server database through ADO. These instructions are
applicable when you use the recommended Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL),
which is available for download at https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-
sql-server?view=sql-server-ver15.

Before following these instructions, make sure that you have downloaded and installed the provider above
on your workstation. The ADO provider must match the platform of UModel (32-bit or 64-bit).

If you would like to use other ADO providers such as SQL Server Native Client (SQLNCLI) or Microsoft OLE
DB Provider for SQL Server (SQLOLEDB), the instructions are similar, but these providers are deprecated
and thus not recommended. Also, for the connection to be successful with a deprecated provider, you may
need to set additional connection properties as described in Setting up the SQL Server Data Link Properties
.

The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) is known to have issues with parameter
binding of complex queries like Common Table Expressions (CTE) and nested SELECT statements.

To connect to SQL Server:

1. Start the database connection wizard .
2. Select Microsoft SQL Server (ADO), and then click Next. The list of available ADO providers is

displayed. In this example, the Microsoft OLE DB Driver for SQL Server is used. If it's not in the list,
make sure that it is installed on your computer, as mentioned above.

3. Click Next. The Data Link Properties dialog box appears.

559

551

https://www.altova.com/blog/connecting-databasespy-to-a-sql-azure-database-in-the-cloud/
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

600 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

4. Select or enter the name of the database server, for example, SQLSERV01. If you are connecting to a
named SQL Server instance, the server name looks like SQLSERV01\SOMEINSTANCE.

5. If the database server was configured to allow connections from users authenticated on the Windows
domain, select Windows Authentication. Otherwise, select SQL Server Authentication, clear the
Blank password check box, and enter the database credentials in the relevant boxes.

6. Select the Allow saving password check box and the database to which you are connecting (in this
example, "Nanonull").

© 2018-2024 Altova GmbH

Connecting to a Data Source 601UModel and Databases

Altova UModel 2024 Enterprise Edition

7. To test the connection at this time, click Test Connection. This is an optional, recommended step.
8. Click OK.

10.2.9.12 Microsoft SQL Server (ODBC)

This example illustrates how to connect to a SQL Server database through ODBC.

Prerequisites:

· Download and install the Microsoft ODBC Driver for SQL Server from the Microsoft website, see
https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server. This example
uses Microsoft ODBC Driver 17 for SQL Server to connect to a SQL Server 2016 database. You
might want to download a different ODBC driver version, depending on the version of SQL Server where
you want to connect. For information about ODBC driver versions supported by your SQL Server
database, refer to the driver's system requirements.

https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server

602 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To connect to SQL Server using ODBC:

1. Start the database connection wizard .
2. Click ODBC Connections.

3. Select User DSN (or System DSN, if you have administrative privileges), and then click Add .
4. Select the driver from the list. Note that the driver appears in the list only after it has been installed.

5. Click User DSN (or System DSN if you are creating a System DSN).

Creating a System DSN requires that UModel be run as an administrator. Therefore, in order to
create a System DSN, cancel the wizard, make sure that you run UModel as an administrator,
and perform the steps above again.

6. Enter a name and, optionally, a description to identify this connection, and then select from the list the
SQL Server to which you are connecting (SQLSERV01 in this example).

551

© 2018-2024 Altova GmbH

Connecting to a Data Source 603UModel and Databases

Altova UModel 2024 Enterprise Edition

7. If the database server was configured to allow connections from users authenticated on the Windows
domain, select With Integrated Windows authentication. Otherwise, select one of the other
options, as applicable. This example uses With SQL Server authentication... , which requires that
the user name and password be entered in the relevant boxes.

604 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

8. Optionally, select the Change the default database to check box and enter the name of the
database to which you are connecting (in this example, Sandbox).

© 2018-2024 Altova GmbH

Connecting to a Data Source 605UModel and Databases

Altova UModel 2024 Enterprise Edition

9. Click Next and, optionally, configure additional parameters for this connection.

606 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

10. Click Finish. A confirmation dialog box listing the connection details opens.

© 2018-2024 Altova GmbH

Connecting to a Data Source 607UModel and Databases

Altova UModel 2024 Enterprise Edition

11. Click OK. The data source now appears in the list of User or System data sources, as configured, for
example:

10.2.9.13 MySQL (ODBC)

This example illustrates how to connect to a MySQL database server from a Windows machine through the
ODBC driver. The MySQL ODBC driver is not available on Windows, so it must be downloaded and installed
separately. This example uses MySQL Connector/ODBC 8.0.

608 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Prerequisites:

· MySQL ODBC driver must be installed on your operating system. Check the MySQL documentation
for the driver version recommended for your database server version (see
https://dev.mysql.com/downloads/connector/odbc/).

· You have the following database connection details: host, database, port, username, and password.

If you installed MySQL Connector/ODBC for 64-bit platform, make sure to install UModel for 64-bit platform
as well.

To connect to MySQL via ODBC:

1. Start the database connection wizard .
2. Select MySQL (ODBC), and then click Next.

3. Select Create a new Data Source Name (DSN) with the driver, and select a MySQL driver. If no
MySQL driver is available in the list, click Edit Drivers, and select any available MySQL drivers (the
list contains all ODBC drivers installed on your operating system).

If you installed UModel 64-bit, then the 64-bit ODBC drivers are shown in the list. Otherwise, the
32-bit ODBC drivers are shown. See also Viewing the Available ODBC Drivers .

4. Click Connect.

551

570

https://dev.mysql.com/downloads/connector/odbc/

© 2018-2024 Altova GmbH

Connecting to a Data Source 609UModel and Databases

Altova UModel 2024 Enterprise Edition

5. In the Data Source Name box, enter a descriptive name that will help you identify this ODBC data
source in future.

6. Fill in the database connection credentials (TCP/IP Server, User, Password), select a database, and
then click OK.

Note: If the database server is remote, it must be configured by the server administrator to accept remote
connections from your machine's IP address. Also, if you click Details>>, there are several additional
parameters available for configuration. Check the driver's documentation before changing their default
values.

10.2.9.14 Oracle (JDBC)

This example shows you how to connect to an Oracle database server from a client machine, using the JDBC
interface. The connection is created as a pure Java connection, using the Oracle Instant Client Package
(Basic) available from the Oracle website. The advantage of this connection type is that it requires only the Java
environment and the .jar libraries supplied by the Oracle Instant Client Package, saving you the effort to install
and configure a more complex database client.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. UModel will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you

610 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of UModel (32-bit, 64-bit) matches that of the JRE/JDK.
· The Oracle Instant Client Package (Basic) must be available on your operating system. The

package can be downloaded from the official Oracle website. This example uses Oracle Instant Client
Package version 12.1.0.2.0, for Windows 32-bit and, consequently, Oracle JDK 32-bit.

· You have the following database connection details: host, port, service name, username, and
password.

To connect to Oracle through the Instant Client Package:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file is located at the following path: C:\jdbc\instantclient_12_1\ojdbc7.jar. Note that you
can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select either oracle.jdbc.OracleDriver or oracle.jdbc.driver.OracleDriver. Note
that these entries are available if a valid .jar file path is found either in the "Classpaths" text box, or in
the operating system's CLASSPATH environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.

6. Enter the connection string to the database server in the Database URL text box, by replacing the
highlighted values with the ones applicable to your database server.

757

551

574

© 2018-2024 Altova GmbH

Connecting to a Data Source 611UModel and Databases

Altova UModel 2024 Enterprise Edition

jdbc:oracle:thin:@//host:port:service

7. Click Connect.

10.2.9.15 Oracle (ODBC)

This example illustrates a common scenario where you connect from UModel to an Oracle database server on
a network machine, through an Oracle database client installed on the local operating system.

The example includes instructions for setting up an ODBC data source (DSN) using the database connection
wizard in UModel. If you have already created a DSN, or if you prefer to create it directly from the ODBC Data
Source administrator in Windows, you can do so, and then select it when prompted by the wizard. For more
information about ODBC data sources, see Setting up an ODBC Connection .

Prerequisites:

· The Oracle database client (which includes the ODBC Oracle driver) must be installed and configured
on your operating system. For instructions on how to install and configure an Oracle database client,
refer to the documentation supplied with your Oracle software.

· The tnsnames.ora file located in Oracle home directory contains an entry that describes the database
connection parameters, in a format similar to this:

ORCL =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = server01)(PORT = 1521))
)
 (CONNECT_DATA =
 (SID = orcl)
 (SERVER = DEDICATED)
)
)

The path to the tnsnames.ora file depends on the location where Oracle home directory was installed.
For Oracle database client 11.2.0, the default Oracle home directory path could be as follows:

C:\app\username\product\11.2.0\client_1\network\admin\tnsnames.ora

You can add new entries to the tnsnames.ora file either by pasting the connection details and saving
the file, or by running the Oracle Net Configuration Assistant wizard (if available). If you want these
values to appear in dropdown lists during the configuration process, then you may need to add the path
to the admin folder as a TNS_ADMIN environment variable.

To connect to Oracle using ODBC:

1. Start the database connection wizard .
2. Select Oracle (ODBC / JDBC), and then click Next.

568

551

612 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Select ODBC.

4. Click Edit Drivers.

© 2018-2024 Altova GmbH

Connecting to a Data Source 613UModel and Databases

Altova UModel 2024 Enterprise Edition

5. Select the Oracle drivers you wish to use (in this example, Oracle in OraClient11g_home1). The list
displays the Oracle drivers available on your system after installation of Oracle client.

6. Click Back.
7. Select Create a new data source name (DSN) with the driver, and then select the Oracle driver

chosen in step 4.

614 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Avoid using the Microsoft-supplied driver called Microsoft ODBC for Oracle driver. Microsoft
recommends using the ODBC driver provided by Oracle (see http://msdn.microsoft.com/en-
us/library/ms714756%28v=vs.85%29.aspx)

8. Click Connect.

http://msdn.microsoft.com/en-us/library/ms714756%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms714756%28v=vs.85%29.aspx

© 2018-2024 Altova GmbH

Connecting to a Data Source 615UModel and Databases

Altova UModel 2024 Enterprise Edition

9. In the Data Source Name text box, enter a name to identify the data source (in this example, Oracle
DSN 1).

10. In the TNS Service Name box, enter the connection name as it is defined in the tnsnames.ora file (see
prerequisites). In this example, the connection name is ORCL. Note: If you wish to have the
dropdown list of the combo box populated with the values of the tnsnames.ora file, then you may need
to add the path to the admin folder as a TNS_ADMIN environment variable.

11. Click OK.

12. Enter the username and password to the database, and then click OK.

10.2.9.16 PostgreSQL (ODBC)

This example illustrates how to connect to a PostgreSQL database server from a Windows machine through
the ODBC driver. The PostgreSQL ODBC driver is not available on Windows, so it must be downloaded and

611

616 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

installed separately. This example uses the psqlODBC driver (version 11.0) downloaded from the official website
(see also Database Drivers Overview).

Note: You can also connect to a PostgreSQL database server directly (without the ODBC driver), see Setting
up a PostgreSQL Connection .

Prerequisites:

· psqlODBC driver must be installed on your operating system.
· You have the following database connection details: server, port, database, user name, and password.

To set up a connection to PostgreSQL using ODBC:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Select the User DSN option.

4. Click Create a new DSN and select the driver from the drop-down list. If no PostgreSQL driver is
available in the list, make sure that the PostgreSQL ODBC driver is installed on your operating system,
as mentioned in the prerequisites above.

5. Click User DSN.

553

576

551

© 2018-2024 Altova GmbH

Connecting to a Data Source 617UModel and Databases

Altova UModel 2024 Enterprise Edition

6. Fill in the database connection credentials (these must be supplied by the database owner), and then
click Save.

The connection is now available in the list of ODBC connections. To connect to the database, you can either
double-click the connection or select it, and then click Connect.

618 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

10.2.9.17 Progress OpenEdge (JDBC)

This example illustrates how to connect to a Progress OpenEdge 11.6 database server through JDBC.

Prerequisites

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. UModel will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of UModel (32-bit, 64-bit) matches that of the JRE/JDK.
· The operating system's PATH environment variable must include the path to the bin directory of the

JRE or JDK installation directory, for example C:\Program Files (x86)\Java\jre1.8.0_51\bin.
· The Progress OpenEdge JDBC driver must be available on your operating system. In this example,

JDBC connectivity is provided by the openedge.jar and pool.jar driver component files available in C:
\Progress\OpenEdge\java as part of the OpenEdge SDK installation.

· You have the following database connection details: host, port, database name, username, and
password.

Connecting to OpenEdge through JDBC

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file paths are: C:\Progress\OpenEdge\java\openedge.jar;C:

\Progress\OpenEdge\java\pool.jar;. Note that you can leave the "Classpaths" text box empty if

you have added the .jar file path(s) to the CLASSPATH environment variable of the operating system
(see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.ddtek.jdbc.openedge.OpenEdgeDriver. Note that this entry is
available if a valid .jar file path is found either in the "Classpaths" text box, or in the operating system's
CLASSPATH environment variable (see the previous step).

757

551

574

© 2018-2024 Altova GmbH

Connecting to a Data Source 619UModel and Databases

Altova UModel 2024 Enterprise Edition

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:datadirect:openedge://host:port;databaseName=db_name

7. Click Connect.

10.2.9.18 Progress OpenEdge (ODBC)

This example illustrates how to connect to a Progress OpenEdge database server through the Progress
OpenEdge 11.6 ODBC driver.

Prerequisites:

· The ODBC Connector for Progress OpenEdge driver must be installed on your operating system. The
Progress OpenEdge ODBC driver can be downloaded from the vendor's website (see also Database
Drivers Overview). Make sure to download the 32-bit driver when running the 32-bit version of
UModel, and the 64-bit driver when running the 64-bit version. After installation, check if the ODBC
driver is available on your machine (see also Viewing the Available ODBC Drivers).

553

570

620 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· You have the following database connection details: host name, port number, database name, user ID,
and password.

Connecting to Progress OpenEdge through ODBC

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Click User DSN (alternatively, click System DSN, or File DSN, in which case the subsequent

instructions will be similar).

4. Click Add .
5. Select the Progress OpenEdge Driver from the list, and click User DSN (or System DSN, if

applicable).

551

© 2018-2024 Altova GmbH

Connecting to a Data Source 621UModel and Databases

Altova UModel 2024 Enterprise Edition

6. Fill in the database connection credentials (Database, Server, Port, User Name, Password), and then
click OK. To verify connectivity before saving the entered data, click Test Connect.

7. Click OK. The new data source now appears in the list of ODBC data sources.

622 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

8. Click Connect.

10.2.9.19 Sybase (JDBC)

This example illustrates how to connect to a Sybase database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. UModel will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of UModel (32-bit, 64-bit) matches that of the JRE/JDK.
· Sybase jConnect component must be installed on your operating system (in this example, jConnect

7.0 is used, installed as part of the Sybase Adaptive Server Enterprise PC Client installation). For the
installation instructions of the database client, refer to Sybase documentation.

· You have the following database connection details: host, port, database name, username, and
password.

757

© 2018-2024 Altova GmbH

Connecting to a Data Source 623UModel and Databases

Altova UModel 2024 Enterprise Edition

To connect to Sybase through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file path is: C:\sybase\jConnect-7_0\classes\jconn4.jar. Note that you can leave the
"Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH environment
variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.sybase.jdbc4.jdbc.SybDriver. Note that this entry is available if a
valid .jar file path is found either in the "Classpaths" text box, or in the operating system's
CLASSPATH environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:sybase:Tds:hostName:port/databaseName

7. Click Connect.

551

574

624 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

10.2.9.20 Teradata (JDBC)

This example illustrates how to connect to a Teradata database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. UModel will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of UModel (32-bit, 64-bit) matches that of the JRE/JDK.
· The JDBC driver (one or more .jar files that provide connectivity to the database) must be available on

your operating system. In this example, Teradata JDBC Driver 16.20.00.02 is used. For more
information, see https://downloads.teradata.com/download/connectivity/jdbc-driver.

· You have the following database connection details: host, database, port, username, and password.

To connect to Teradata through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the .jar files
are located at the following path: C:\jdbc\teradata\. Note that you can leave the "Classpaths" text box
empty if you have added the .jar file path(s) to the CLASSPATH environment variable of the operating
system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.teradata.jdbc.TeraDriver. Note that this entry is available if a valid .jar
file path is found either in the "Classpath" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

757

551

574

https://downloads.teradata.com/download/connectivity/jdbc-driver

© 2018-2024 Altova GmbH

Connecting to a Data Source 625UModel and Databases

Altova UModel 2024 Enterprise Edition

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted value with the one applicable to your database server.

jdbc:teradata://databaseServerName

7. Click Connect.

626 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

10.2.9.21 Teradata (ODBC)

This example illustrates how to connect to a Teradata database server through ODBC.

Prerequisites:

· The Teradata ODBC driver must be installed (see
https://downloads.teradata.com/download/connectivity/odbc-driver/windows. This example uses
Teradata ODBC Driver for Windows version 16.20.00.

· You have the following database connection details: host, username, and password.

To connect to Teradata through ODBC:

1. Press the Windows key, start typing "ODBC", and select Set up ODBC data sources (32-bit) from
the list of suggestions. If you have a 64-bit ODBC driver, select Set up ODBC data sources (64-bit)
and use 64-bit UModel in the subsequent steps.

2. Click the System DSN tab, and then click Add.

https://downloads.teradata.com/download/connectivity/odbc-driver/windows

© 2018-2024 Altova GmbH

Connecting to a Data Source 627UModel and Databases

Altova UModel 2024 Enterprise Edition

3. Select Teradata Database ODBC Driver and click Finish.

628 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

4. Enter name and, optionally, a description that will help you identify this ODBC data source in future.
Also, enter the database connection credentials (Database server, User, Password), and, optionally,
select a database.

5. Click OK. The data source now appears in the list.

© 2018-2024 Altova GmbH

Connecting to a Data Source 629UModel and Databases

Altova UModel 2024 Enterprise Edition

6. Run UModel and start the database connection wizard .
7. Click ODBC Connections.

551

630 UModel and Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

8. Click System DSN, select the data source created previously, and then click Connect.

Note: If you get the following error: "The driver returned invalid (or failed to return) SQL_DRIVER_ODBC_VER:

03.80", make sure that the path to the ODBC client (for example, C:\Program
Files\Teradata\Client\16.10\bin, if you installed it to this location) exists in your system's PATH

environment variable. If this path is missing, add it manually.

© 2018-2024 Altova GmbH

 631XMI - XML Metadata Interchange

Altova UModel 2024 Enterprise Edition

11 XMI - XML Metadata Interchange

 Altova website: Exchanging UModel projects using XMI

You can export UModel projects to XML Metadata Interchange (XMI) files, and import XMI files as UModel
projects. This provides interoperability with other UML tools that support XMI. The supported XMI versions are
as follows:

· XMI 2.1 for UML 2.0
· XMI 2.1 for UML 2.1.2
· XMI 2.1 for UML 2.2
· XMI 2.1 for UML 2.3
· XMI 2.4.1 for UML 2.4.1
· XMI 2.4.1 for UML 2.5
· XMI 2.5.1 for UML 2.5.1

To import an XMI file into UModel:

· On the File menu, click Import from XMI File.

To export a UModel project to an XMI file:

· On the File menu, click Export to XMI File.

Notes:

· During the export process, all included files, even those defined as include by reference , are
exported.

· If you intend to re-import generated XMI code into UModel, make sure that you select the Export
UModel Extensions check box.

165

https://www.altova.com/umodel/advanced#xmi

632 XMI - XML Metadata Interchange

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The sections below describe options available when exporting projects to XMI.

Pretty-print XMI output
If you select this option, the XMI file will be generated with XML tag indentation and carriage returns.

Export UUIDs
XMI defines three versions of element identification: IDs, UUIDs and labels.

· IDs are unique within the XMI document, and are supported by most UML tools. UModel exports these
type of IDs by default, i.e. none of the check boxes need activated.

· UUID are Universally Unique Identifiers, and provide a mechanism to assign each element a global
unique identification, GUID. These IDs are globally unique, i.e. they are not restricted to the specific
XMI document. UUIDs are generated by selecting the "Export UUIDs" check box.

· UUIDs are stored in the standard canonical UUID/GUID format (e.g "6B29FC40-CA47-1067-B31D-
00DD010662DA", "550e8400-e29b-41d4-a716-446655440000",...)

· Labels are not supported by UModel.

Note: The XMI import process automatically supports both types of IDs.

Export UModel Extensions
XMI defines an "extension mechanism" which allows each application to export its tool-specific extensions to
the UML specification. Other UML tools will, however, only be able to import the standard UML data (ignoring
the UModel extensions). This UModel extension data will be available when importing into UModel.

Data such as the file names of classes, or element colors, are not part of the UML specification and thus have
to be deleted in XMI, or be saved in "Extensions". If they have been exported as extensions and re-imported, all
file names and colors will be imported as defined. If extensions are not used for the export process, then these
UModel-specific data will be lost.

When importing an XMI document, the format is automatically detected and the model generated.

Export diagrams
Exports UModel diagrams as "Extensions" in the XMI file. The option Export UModel Extensions must be
selected before you can save the diagrams as extensions.

© 2018-2024 Altova GmbH

 633UModel Plug-in for Visual Studio

Altova UModel 2024 Enterprise Edition

12 UModel Plug-in for Visual Studio

You can integrate UModel 2024 into the Microsoft Visual Studio versions 2012/2013/2015/2017/2019/2022. This
unifies the best of both worlds, combining the modeling capabilities of UModel with the development
environment of Visual Studio.

One of the main benefits to using UModel as a Visual Studio plug-in is automatic synchronization between the
C# or VB.NET code and the UML model. This means that, if you make changes to your code in Visual Studio,
these are automatically propagated to the model. Likewise, if you make changes to the model (for example, by
editing class diagrams), these would be propagated to the code. If necessary, you can disable automatic
synchronization, and synchronize the code and the model manually (in either direction).

Sample Visual Studio 2017 project with UModel Plug-in support

Compared to the standalone edition of UModel, the UModel plug-in for Visual Studio has the following behavior:

· Automatic synchronization between the UModel model and the project code is available, in either
direction (see Synchronizing the Model and Code).

· In Visual Studio 2019, the functionality of UModel is available in the Extensions menu. In older versions
of Visual Studio, the UModel functionality is accessible from the following menus:

641

634 UModel Plug-in for Visual Studio

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

File Contains menu entries from both UModel and Visual Studio.

Edit Contains menu entries from both UModel and Visual Studio.

View The UModel-specific commands are grouped under View | UModel.

Project The UModel-specific commands are grouped under Project | UModel.

Layout Same as in the standalone edition of UModel.

Tools Contains menu entries from both UModel and Visual Studio. The UModel options are
available under Tools | UModel options.

Help The UModel help is available under Help | UModel Help.

· When the cursor is in the Visual Studio code editor, the following new context menu items are
available (in contexts where these commands are meaningful):
o Jump to UML Model

o Reverse engineer current file

o Generate Sequence Diagram...

On the other hand, when the cursor is inside an element in the Model Tree window, the Jump to Code
context menu item is available (in contexts where this command is meaningful).

· When UModel runs as a Visual Studio plug-in, you can use the version control functionality available in
Visual Studio. The source control commands from the standalone edition of UModel available through
the Microsoft Source Control Plug-in API are not supported.

· The dialogs triggered by the commands UModel | Import Source Directory and UModel | Import
Source Project do not have the option to select "C#" and "Visual Basic" in the Language combo box.
Import of existing projects is done through Visual Studio commands (for example, in versions older
than 2019, File | Add | Existing Project).

· The Scripting Editor (Tools | Scripting Editor) and the menu option Tools | Restore Toolbars and
Windows are not supported.

© 2018-2024 Altova GmbH

Installing the UModel Plug-in for Visual Studio 635UModel Plug-in for Visual Studio

Altova UModel 2024 Enterprise Edition

12.1 Installing the UModel Plug-in for Visual Studio

To install the UModel Plug-in for Visual Studio, take the steps below:

1. Install Microsoft Visual Studio 2012/2013/2015/2017/2019/2022. Note that from Visual Studio 2022
onwards, Visual Studio is being made available only as a 64-bit application.

2. Install UModel (Enterprise or Professional Edition). If you have installed Visual Studio 2022+, then you
must install the 64-bit version of UModel.

3. Download and run the UModel integration package for Microsoft Visual Studio. This package is
available on the UModel (Enterprise and Professional Editions) download page at www.altova.com.

Once the integration package has been installed, you will be able to use UModel in the Visual Studio
environment.

Important

You must use the integration package corresponding to your UModel version (current version is 2024). The
integration package is not edition-specific and can therefore be used for both Enterprise and Professional
editions.

https://www.altova.com

636 UModel Plug-in for Visual Studio Adding UModel Support to Visual Studio Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

12.2 Adding UModel Support to Visual Studio Projects

Adding UModel support to new or existing Visual Studio projects enables you to set up automatic
synchronization between your Visual Studio project and the UModel model. A Visual Studio solution can
contain one UModel project (not more).

To add UModel support to a Visual Studio project:

1. Create a new Visual Studio project, or open an existing one. (In this example, a new C# project called
"MyApp" is being created with Visual Studio 2017).

2. On the File menu, click Add, and then click New Project.
3. Select UModel Projects, and click OK.

© 2018-2024 Altova GmbH

Adding UModel Support to Visual Studio Projects 637UModel Plug-in for Visual Studio

Altova UModel 2024 Enterprise Edition

4. If you want diagrams to be created automatically in the model based on the code, click Yes when
prompted (this is the recommended option).

5. When prompted to select the diagrams generation options, choose your preferences as you go through
the wizard steps, and click Finish. These steps are the same as in the standalone edition of UModel.

638 UModel Plug-in for Visual Studio Adding UModel Support to Visual Studio Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

When you click Finish, UModel starts the synchronization process and displays a dialog box. Click OK to
close the dialog box. The synchronization details are displayed in the Messages window.

Note that the Messages window might not be visible by default in Visual Studio. You can display this window
(and all other UModel-specific windows) by selecting the menu command View | UModel | [Name of the
window].

When you add a new UModel project to a Visual Studio solution, the settings required for code engineering
(such as the component realization, and the C# or VB.NET profile) are defined automatically. To view these
settings, open the Model Tree and the Properties windows (on the View menu, click UModel | Model Tree

© 2018-2024 Altova GmbH

Adding UModel Support to Visual Studio Projects 639UModel Plug-in for Visual Studio

Altova UModel 2024 Enterprise Edition

and UModel | Properties, respectively). Make sure to click the code engineering component in the Model Tree
window (in this case, "MyApp") in order to populate the Properties window.

640 UModel Plug-in for Visual Studio Loading/Unloading UModel Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

12.3 Loading/Unloading UModel Projects

After you add an UModel project to a Visual Studio solution, it appears in the Solution Explorer of Visual
Studio along with any other projects that are part of the solution. If necessary, you can temporarily unload the
UModel project from the solution. When an UModel project is unloaded from the solution, its files remain on the
disk, and in the Solution Explorer. This way, you can reload the project back into the solution at a later time.

To unload an UModel project from a Visual Studio solution:

1. Click the UModel project in Solution Explorer of Visual Studio.
2. On the Project menu, click Unload project.

To reload the UModel project back into the solution:

· Right-click the project in Solution Explorer, and click Reload Project.

To remove the UModel project from the Visual Studio solution:

· Unload the project, as shown above.
· Right-click the project in Solution Explorer, and click Remove.

© 2018-2024 Altova GmbH

Synchronizing the Model and Code 641UModel Plug-in for Visual Studio

Altova UModel 2024 Enterprise Edition

12.4 Synchronizing the Model and Code

The synchronization process between the UModel .ump file (the model) and the C# or VB.NET code can be
manual or automatic.

Automatic synchronization takes place once you add UModel support to your Visual Studio project (see
Adding UModel Support to Visual Studio Projects). Automatic synchronization means that, whenever you
edit the code, the UModel Plug-in for Visual Studio parses the code and updates the model. Likewise, if you
make changes to the model (for example, by editing a diagram), the code is updated accordingly. Manual
synchronization, on the other hand, is initiated on demand, as shown below.

Both the automatic and the manual synchronization update changes in bulk, for the entire project. When
UModel runs as a Visual Studio plug-in, the option to merge or update a single class is not available in the
Model Tree.

The commands which control automatic or manual synchronization are available in the Project | UModel
Project menu:

Code synchronization menu commands (Visual Studio 2010)

In newer versions of Visual Studio, selected menu items have a slightly different appearance:

Code synchronization menu commands (Visual Studio 2017)

The meaning of each command is as follows.

Automatic synchronize Program
Code from UModel Project

This menu option is switched on by default, meaning that
synchronization from model to code is set to take place
automatically. To enable or disable automatic synchronization,
click the menu item.

Automatic synchronize UModel
Project from Program Code

Same as above, in the opposite direction (from code to model).

636

642 UModel Plug-in for Visual Studio Synchronizing the Model and Code

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Merge Program Code from UModel
Project

Updates the program code with changes made in the UModel
project (same functionality as in the standalone version).

The name of this command changes to Overwrite Program
Code from UModel Project, if you have set this option from
Project | UModel Project | Synchronization Settings.

Merge UModel Project from Program
Code

Updates the UModel project with changes made in the program
code (same functionality as in the standalone version).

The name of this command changes to Overwrite UModel
Project from Program Code, if you have set this option from
Project | UModel Project | Synchronization Settings.

Cancel UModel Project / Program
Code Synchronization

Enables you to cancel a synchronization operation which is in
progress. When no synchronization operation is in progress, this
option is disabled.

During synchronization, the progress of the operation appears in the Visual Studio status bar, for example:

Code synchronization between code and model cannot take place in the following cases:

· Code is not parseable
· The last reverse engineering or forward engineering process encountered an error.
· The syntax check throws an error in UModel.

In such cases, the error details are displayed in the Messages window. To open the source file which contains
the error, click the corresponding line in the Messages window. The cursor will be positioned on the line
containing the error.

Automatic synchronization limitations
Some C# and VB.NET code modifications in Visual Studio do not trigger an internal Visual Studio event and
are thus not automatically updated in UModel. In such cases, you can either perform a forced synchronization
manually, or make a different modification which triggers a source file update. Manual synchronization is
necessary when adding or changing the following entities:

· Default values for attributes
· Default values for operation parameters
· TemplateParameters
· TemplateBindings
· Summary section for all elements
· Remark section for all elements
· All changes in method bodies

Note that if you change any of the above-mentioned modeling elements in the model, automatic code
synchronization will take place normally. There are no limitations when automatic synchronization is from
model to code.

© 2018-2024 Altova GmbH

Synchronizing the Model and Code 643UModel Plug-in for Visual Studio

Altova UModel 2024 Enterprise Edition

To perform a forced manual synchronization from code to model, right-click the source code file in the code
editor and select Reverse engineer current file from the context menu.

If your UModel project contains the language profile for Java, then automatic synchronization is automatically
disabled for that project in Visual Studio, and a message box informs you of this. Such projects must be
synchronized manually (using the menu commands UModel | Merge Program Code from UModel Project,
and UModel | Merge UModel Project from Program Code). Alternatively, consider using the UModel Plug-in
for Eclipse (see UModel Plug-in for Eclipse).644

644 UModel Plug-in for Eclipse

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

13 UModel Plug-in for Eclipse

Eclipse is an open source framework that integrates different types of applications delivered in form of plug-ins.
The UModel plug-in for the Eclipse Platform allows you to access UModel functionality directly from Eclipse
(versions 2024-03 (4.31), 2023-12 (4.30), 2023-09 (4.29), 2023-06 (4.28)), while also exposing some Eclipse-
specific behavior discussed in this chapter.

One of the main benefits to using UModel as an Eclipse plug-in is automatic synchronization between the Java
code and the UModel model. This means that, if you make changes to your Java code in Eclipse, these are
automatically propagated to the model. Conversely, if you make changes to the model (for example, by editing
class diagrams), these would be propagated to the code. If necessary, you can disable automatic
synchronization, and synchronize the code and the model manually (in either direction).

Compared to the standalone version of UModel, the UModel plug-in for Eclipse has the following behavior:

· In Eclipse, several graphical user interface elements conform to the specifics of the Eclipse
development environment (see The UModel Perspective). As in the standalone version, some user
interface elements may be disabled or not available if the context is not relevant. For example, the
UModel toolbar buttons are shown based on the kind of diagram active in the main editor.

· In Eclipse, a UModel menu is available—it corresponds to the Project menu in the standalone version
of UModel. While most of the commands in this menu are not different to the standalone version, there
are several new commands that enable you to control automatic synchronization:

Resynchronize UModel Project
with Code

Enables you to explicitly initiate the synchronization
between the UModel project and the program code (this may
be the case when last automatic synchronization has failed
due to any reason).

Merge Program Code from
UModel Project

Updates the program code with changes made in the
UModel project (same functionality as in the standalone
version).

Merge UModel Project from
Program Code

Updates the UModel project with changes made in the
program code (same functionality as in the standalone
version).

Cancel UModel Project / Program
Code Synchronization

Enables you to cancel a synchronization operation which is
in progress. When no synchronization operation is in
progress, this option is disabled.

649

© 2018-2024 Altova GmbH

 645UModel Plug-in for Eclipse

Altova UModel 2024 Enterprise Edition

Automatic synchronize Program
Code from UModel Project

This menu option is switched on by default, meaning that
synchronization from model to code is set to take place
automatically. To disable automatic synchronization, switch
it off.

Automatic synchronize UModel
Project from Program Code

Same as above, in the opposite direction (from code to
model).

· The version control commands available in the standalone version of UModel through the Microsoft
Source Control Plug-in API are not supported in Eclipse. Instead, you have the flexibility to use third-
party version control systems that can integrate with Eclipse.

· The dialogs triggered by the commands UModel | Import Source Directory and UModel | Import
Source Project do not have the option to select "Java" in the Language combo box. To import Java
source code into an Eclipse project, use the standard Eclipse commands (for example, File |
Import).

· In Eclipse, a new toolbar is available—the UModel toolbar, which contains some general as well as
project-related commands.

The toolbar button opens the help file. The toolbar button displays the current status of the
code engineering process (when it turns red this indicates an error, and you can view the details in the
Messages view). Finally, the drop-down list in the toolbar has several functions:
o It enables you to quickly load or unload in Eclipse a particular UModel project (.ump) file. Your

Eclipse project must include at least one UModel project (.ump) file; otherwise, the drop-down list
is disabled.

o When a UModel project is loaded, it provides several contextual commands, including quick

access to any of the diagrams of the loaded project:

646 UModel Plug-in for Eclipse

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· The Scripting Editor (Tools | Scripting Editor) and the menu option Tools | Restore Toolbars and
Windows are not supported.

· The UModel Help, Support Center, Check for Updates and About menus are available in the
Help | UModel Help menu of Eclipse. The version information of the UModel Plug-in for Eclipse is
also available from the Eclipse menu (select Help | About Eclipse, and then click the UModel icon).

© 2018-2024 Altova GmbH

Installing the UModel Plug-in for Eclipse 647UModel Plug-in for Eclipse

Altova UModel 2024 Enterprise Edition

13.1 Installing the UModel Plug-in for Eclipse

Prerequisites

· Eclipse 2024-03 (4.31), 2023-12 (4.30), 2023-09 (4.29), 2023-06 (4.28) (http://www.eclipse.org), 64-bit.
· A Java Runtime Environment (JRE) or Java Development Kit (JDK) for the 64-bit platform.
· UModel Enterprise or Professional Edition 64-bit.

Note: All the prerequisites listed above must have the 64-bit platform. Integration with older Eclipse 32-bit
platforms is no longer supported, although it may still work.

After the prerequisites listed above are in place, you can install the UModel Integration Package (64-bit) to
integrate UModel in Eclipse. The integration can be carried out either during the installation of the Integration
Package or manually from Eclipse after the Integration Package has been installed. The UModel Integration
Package is available for download at https://www.altova.com/components/download.

Note: Eclipse must be closed while you install or uninstall the UModel Integration Package.

Integrate UModel during installation of the Integration Package
You can integrate UModel in Eclipse during the installation of the UModel Integration Package. Do this as
follows:

1. Run the UModel Integration Package to start the installation wizard.
2. Go through the initial steps of the installation with eth wizard.
3. In the Integration step, select Let this wizard integrate Altova UModel plug-in into Eclipse, and browse

for the directory where the Eclipse executable (eclipse.exe) is located.
4. Click Next and complete the installation.

The UModel perspective and menus will be available in Eclipse the next time you start it.

Integrate UModel in Eclipse manually
After you have installed the UModel Integration Package, you can manually integrate UModel in Eclipse as
follows:

1. In Eclipse, select the menu command Help | Install New Software.
2. In the Install dialog box, click Add.

http://www.eclipse.org/
https://www.altova.com/components/download

648 UModel Plug-in for Eclipse Installing the UModel Plug-in for Eclipse

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. In the Add Repository dialog box, click Local. Browse for the folder C:\Program
Files\Altova\Common2024\eclipse\UpdateSite, and select it. Provide a name for the site (such as
"Altova").

4. Repeat the steps 2-3 above, this time selecting the folder C:\Program Files\Altova\<%
APPNAMESHORT%>\eclipse\UpdateSite and providing a name such as "Altova UModel".

5. On the Install dialog box, select Only Local Sites. Next, select the "Altova category" folder and click
Next.

6. Review the items to be installed and click Next to proceed.
7. To accept the license agreement, select the respective check box.
8. Click Finish to complete the installation.

Note: If there are problems with the plug-in (missing icons, for example), start Eclipse from the command line
with the -clean flag.

© 2018-2024 Altova GmbH

The UModel Perspective 649UModel Plug-in for Eclipse

Altova UModel 2024 Enterprise Edition

13.2 The UModel Perspective

After you install the UModel plug-in for Eclipse, a new perspective ("UModel") becomes available in Eclipse. By
default, the UModel perspective resembles to some extent the graphical user interface of the standalone
version of UModel. To switch to the UModel perspective, click Window | Perspective | Open Perspective |
Other, and choose UModel from the list. The image below illustrates a sample UModel project (BankView.ump)
loaded into Eclipse, with the UModel perspective switched on.

The UModel perspective in Eclipse is organized as follows:

· The Diagram window is available as an Eclipse editor. Like in the standalone version, when there are
multiple diagrams open, they are shown in individual editors.

· All of the following UModel windows are available as Eclipse views (by default, to the left of the main
editor):

650 UModel Plug-in for Eclipse The UModel Perspective

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

o Diagram Tree

o Favorites

o Properties

o Styles

o Hierarchy

o Overview

o Documentation

o Layer

· Finally, the Messages window is also available as an Eclipse view (by default, under the main editor).

The UModel perspective behaves just like any other Eclipse perspective—you can switch to it whenever
required using the menu command Window | Navigation | Next Perspective.

To configure the settings applicable to the UModel perspective:

1. On the Window menu, click Preferences.
2. On the Preferences dialog box, select UModel.

© 2018-2024 Altova GmbH

The UModel Perspective 651UModel Plug-in for Eclipse

Altova UModel 2024 Enterprise Edition

To customize the appearance of the UModel perspective (toolbar visibility, menu visibility, and so on), switch to
the UModel perspective, and then select the menu command Window | Perspective | Customize
Perspective. To revert to the default settings, select Window | Perspective| Reset Perspective.

To display a particular view in the UModel perspective, switch to the UModel perspective, and then select the
required view from the Window | Show View menu.

For general information about Eclipse perspectives, refer to the Eclipse documentation.

652 UModel Plug-in for Eclipse Adding UModel Support to Eclipse Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

13.3 Adding UModel Support to Eclipse Projects

Before you can work with UModel projects (.ump file) in the Eclipse environment, make sure to create or open
an Eclipse project first (this can be, for example, a new or existing Java project to which you would like to add
UML support). This topic shows you how to create a new UModel project within an Eclipse project. For
instructions on how to import an existing UModel project into an Eclipse project, see Importing Existing
UModel Projects .

To add a UModel project to an Eclipse project:

1. Create a new (or open an existing) Eclipse project, by using the standard Eclipse commands (File |
New | Project, or File | Open File).

2. On the File menu, click New | Other, and then select the UModel Project File type from the dialog
box.

3. Click Next.
4. When prompted, select a parent folder for the new UModel project, and click Finish. The new UModel

project becomes available in the Navigator view, under the parent folder you specified.

654

© 2018-2024 Altova GmbH

Adding UModel Support to Eclipse Projects 653UModel Plug-in for Eclipse

Altova UModel 2024 Enterprise Edition

UModel projects cannot be opened in an editor. To take actions against the project (such as
saving or loading its contents into Eclipse), right-click the .ump file, and select the required
command.

654 UModel Plug-in for Eclipse Importing Existing UModel Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

13.4 Importing Existing UModel Projects

To import existing UModel projects into Eclipse:

1. Create a new (or open an existing) Eclipse project.
2. On the File menu, click Import.
3. Select General | File System.

4. Click Next.
5. Click Browse and select the UModel project folders you want to import (for example, the UModel

Examples folder).

© 2018-2024 Altova GmbH

Importing Existing UModel Projects 655UModel Plug-in for Eclipse

Altova UModel 2024 Enterprise Edition

6. Click Finish.

656 UModel Plug-in for Eclipse Loading/Unloading UModel Projects

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

13.5 Loading/Unloading UModel Projects

After you have created or imported one or more UModel project files, they appear in the Navigator view of
Eclipse. Even though an Eclipse project can contain multiple UModel project files, only one UModel project can
be active (loaded) at a time in Eclipse. You can load a specific project as follows:

· Right-click the file in the Navigator view, select UModel | Load.
· In the UModel toolbar, select Load YourProjectName.ump.

To unload a project:

· Right-click the file in the Navigator view, select UModel | Unload.
· In the UModel toolbar, select Unload project.

© 2018-2024 Altova GmbH

How Automatic Synchronization Works 657UModel Plug-in for Eclipse

Altova UModel 2024 Enterprise Edition

13.6 How Automatic Synchronization Works

Automatic synchronization takes place after you add UModel support to a Java project (see Adding UModel
Support to Eclipse Projects). Automatic synchronization means that, whenever you edit the code in the
Eclipse environment, the UModel Plug-in for Eclipse parses the code and updates the model. Likewise, if you
make changes to a diagram in the model, the code is updated accordingly.

If your UModel project contains the language profile for C# or Visual Basic, then automatic synchronization is
automatically disabled for that project, and a message box informs you of this. Such projects must be
synchronized manually (using the menu commands UModel | Merge Program Code from UModel Project,
and UModel | Merge UModel Project from Program Code).

Automatic or manual synchronization updates changes in bulk, for the entire project. The option to merge or
update a single class is not available in the Model Tree.

During synchronization, the progress of the operation appears in the Eclipse status bar.

If code is not parseable then the Code Engineering Status tool bar button turns red. This also happens if the
last reverse engineering or forward engineering process encountered an error. The same is true if the syntax
check throws an error in UModel.

The Messages view displays the error details.

To open the source file which contains the error, click the corresponding line in the Messages view. The cursor
will be positioned on the line containing the error

652

658 UModel Plug-in for Eclipse Example: Setting up Automatic Synchronization

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

13.7 Example: Setting up Automatic Synchronization

This tutorial illustrates how to set up automatic synchronization between a Java project and its corresponding
UML model. Before you proceed, make sure that you have already installed the UModel plug-in for Eclipse, and
the Java Development Kit (not just the Java Runtime Environment) required by Eclipse.

Step 1: Create a new Java project
We will begin by creating a new Java project in Eclipse. For the scope of this example, this will be a simple
application that displays the text "Hello, World" when it is run.

To create the "Hello, World" application:

1. Start Eclipse and switch to the Java perspective.
2. On the File menu, click New | Project.

3. Select Java | Java Project, and then click Next.

© 2018-2024 Altova GmbH

Example: Setting up Automatic Synchronization 659UModel Plug-in for Eclipse

Altova UModel 2024 Enterprise Edition

4. Enter "MyJavaProject" as project name, and then click Next.

660 UModel Plug-in for Eclipse Example: Setting up Automatic Synchronization

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

5. Leave the default settings as is, and click Finish. Your project now appears in the Package Explorer.

© 2018-2024 Altova GmbH

Example: Setting up Automatic Synchronization 661UModel Plug-in for Eclipse

Altova UModel 2024 Enterprise Edition

6. On the File menu, click New | Package.

7. Enter "helloworld" as package name, and click Finish.
8. On the File menu, click New | Class. Enter "HelloWorldClass" as class name, and make sure to

select the public static_void main(String[] args) option.

662 UModel Plug-in for Eclipse Example: Setting up Automatic Synchronization

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

9. Open the class file, and add the following text to the body of the class:

package helloworld;

public class HelloWorldClass {

 public static void main(String[] args) {

 // Display "Hello, World"

 System.out.println("Hello, World");
 }

© 2018-2024 Altova GmbH

Example: Setting up Automatic Synchronization 663UModel Plug-in for Eclipse

Altova UModel 2024 Enterprise Edition

}

10. Run the application. The Console view displays the text "Hello, World", as shown below.

Step 2: Add the UModel project to the Java project
It is now time to add the UModel project file to the Eclipse project. This will create a synchronization
relationship between the model and the code.

1. On the File menu, click New | Other, and select UModel Project File.

664 UModel Plug-in for Eclipse Example: Setting up Automatic Synchronization

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2. Click Next. When prompted to specify a location for the new UModel project, leave the default settings
as is, and then click Finish.

3. When prompted by UModel to create diagrams for the project, click Yes.

4. Go through the wizard steps, leaving the default settings as is. When you click Finish, the new
UModel project is added to the Eclipse project, and synchronization of the code with the model takes
place automatically. Notice the messages displayed in the Messages view of UModel.

© 2018-2024 Altova GmbH

Example: Setting up Automatic Synchronization 665UModel Plug-in for Eclipse

Altova UModel 2024 Enterprise Edition

Step 3: Trigger automatic synchronization from model to code
To trigger automatic synchronization from model to code, we will make some changes to the class diagram in
the model. Namely, we will add to the class a new property called "Property1" of type "Boolean".

To add the property to the class:

1. In the UModel toolbar, expand the project drop-down list, and open the generated "Content of
helloworld" class diagram.

666 UModel Plug-in for Eclipse Example: Setting up Automatic Synchronization

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

2. Right-click the class, and select New | Property from the context menu.
3. Type the property name ("Property1"), followed by the colon character (:), followed by the type

("boolean").

© 2018-2024 Altova GmbH

Example: Setting up Automatic Synchronization 667UModel Plug-in for Eclipse

Altova UModel 2024 Enterprise Edition

4. Switch back to the code editor. Notice that the newly added property is now reflected in the code.

668 UModel Plug-in for Eclipse Example: Setting up Automatic Synchronization

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Step 4. Trigger automatic synchronization from code to model
Let's now trigger automatic synchronization of changes in the opposite direction (from code to model). To do
this, change in the code the name of the "Property1" property to "MyProperty", and then save the project.
Notice that the changes are now reflected in the diagram.

© 2018-2024 Altova GmbH

Example: Setting up Automatic Synchronization 669UModel Plug-in for Eclipse

Altova UModel 2024 Enterprise Edition

670 Source Control

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

14 Source Control

The source control support in UModel is available through the Microsoft Source Control Plug-in API (formerly
known as the MSSCCI API), versions 1.1, 1.2 and 1.3. This enables you to run source control commands such
as "Check in" or "Check out" directly from UModel to virtually any source control system that lets native or
third-party clients connect to it through the Microsoft Source Control Plug-in API.

You can use as your source control provider any commercial or non-commercial plug-in that supports the
Microsoft Source Control Plug-in API, and can connect to a compatible version control system. For the list of
source control systems and plug-ins tested by Altova, see Supported Source Control Systems .

Installing and configuring the source control provider
To view the source control providers available on your system, do the following:

1. On the Tools menu, click Options.
2. Click the Source Control tab.

Any source control plug-ins compatible with the Microsoft Source Code Control Plug-in API are displayed in the
Current source control plug-in drop-down list.

If a compatible plug-in cannot be found on your system, the following message is displayed:

"Registration of installed source control providers could not be found or is incomplete."

Some source control systems might not install the source control plug-in automatically, in which case you will
need to install it separately. For further instructions, refer to the documentation of the respective source control
system. A plug-in (provider) compatible with the Microsoft Source Code Control Plug-in API is expected to be
registered under the following registry entry on your operating system:

HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\InstalledSCCProviders

673

© 2018-2024 Altova GmbH

 671Source Control

Altova UModel 2024 Enterprise Edition

Upon correct installation, the plug-in becomes available automatically in the list of plug-ins available to UModel.

Accessing the source control commands
The commands related to source control are available in the Project | Source Control menu.

Resource / Speed issues
Very large source control databases might be introducing a speed/resource penalty when automatically
performing background status updates.

You might be able to speed up your system by disabling (or increasing the interval of) the Perform
background status updates every ... seconds option in the Source Control tab accessed through Tools |
Options.

Note: The 64-bit version of your Altova application automatically supports any of the supported 32-bit source
control programs listed in this documentation. When using a 64-bit Altova application with a 32-bit
source control program, the Perform background status updates every ... seconds option is
automatically grayed-out and cannot be selected.

Differencing with Altova DiffDog
You can configure many source control systems (including Git and TortoiseSVN) so that they use Altova
DiffDog as their differencing tool. For more information about DiffDog, see https://www.altova.com/diffdog. For
DiffDog documentation, see https://www.altova.com/documentation.html.

https://www.altova.com/diffdog
https://www.altova.com/documentation.html

672 Source Control Setting Up Source Control

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

14.1 Setting Up Source Control

The mechanism for setting up source control and placing files in a UModel project under source control is as
follows:

1. If this hasn't been done already, install the source control system (see Supported Source Control
Systems) and set up the source control database (repository) to which you wish to save your
work.

2. Create a local workspace folder that will contain the working files that you wish to place under source
control. The folder that contains all your workspace folders and files is called the local folder, and the
path to the local folder is referred to as the local path. This local folder will be bound to a particular
folder in the repository.

3. In your Altova application, create an application project folder to which you must add the files you wish
to place under source control. This organization of files in an application project is abstract. The files in
a project reference physical files saved locally, preferably in one folder (with sub-folders if required) for
each project.

4. In the source control system's database (also referred to as source control or repository), a folder is
created that is bound to the local folder. This folder (called the bound folder) will replicate the structure
of the local folder so that all files to be placed under source control are correctly located hierarchically
within the bound folder. The bound folder is usually created when you add a file or an application
project to source control for the first time.

673

© 2018-2024 Altova GmbH

Supported Source Control Systems 673Source Control

Altova UModel 2024 Enterprise Edition

14.2 Supported Source Control Systems

The list below shows the Source Control Servers (SCSs) supported by UModel, together with their respective
Source Control Clients (SCCs). The list is organized alphabetically by SCS. Note the following:

· Altova has implemented the Microsoft Source Control Plug-in API (versions 1.1, 1.2, and 1.3) in
UModel, and has tested support for the listed drivers and revision control systems. It is expected that
UModel will continue to support these products if, and when, they are updated.

· Source Code Control clients not listed below, but which implement the Microsoft Source Control Plug-
in API, should also work with UModel.

Source Control System Source Code Control Clients

AccuRev 4.7.0 Windows AccuBridge for Microsoft SCC 2008.2

Bazaar 1.9 Windows Aigenta Unified SCC 1.0.6

Borland StarTeam 2008 Borland StarTeam Cross-Platform Client 2008 R2

Codice Software Plastic SCM Professional
2.7.127.10 (Server)

Codice Software Plastic SCM Professional 2.7.127.10 (SCC
Plugin)

Collabnet Subversion 1.5.4 · Aigenta Unified SCC 1.0.6
· PushOK SVN SCC 1.5.1.1
· PushOK SVN SCC x64 version 1.6.3.1
· TamTam SVN SCC 1.2.24

ComponentSoftware CS-RCS (PRO) 5.1 ComponentSoftware CS-RCS (PRO) 5.1

Dynamsoft SourceAnywhere for VSS 5.3.2
Standard/Professional Server

Dynamsoft SourceAnywhere for VSS 5.3.2 Client

Dynamsoft SourceAnywhere Hosted Dynamsoft SourceAnywhere Hosted Client (22252)

Dynamsoft SourceAnywhere Standalone 2.2
Server

Dynamsoft SourceAnywhere Standalone 2.2 Client

Git PushOK GIT SCC plug-in (see Source Control with Git)

IBM Rational ClearCase 7.0.1 (LT) IBM Rational ClearCase 7.0.1 (LT)

March-Hare CVSNT 2.5 (2.5.03.2382) Aigenta Unified SCC 1.0.6

March-Hare CVS Suite 2008 · Jalindi Igloo 1.0.3
· March-Hare CVS Suite Client 2008 (3321)
· PushOK CVS SCC NT 2.1.2.5
· PushOK CVS SCC x64 version 2.2.0.4
· TamTam CVS SCC 1.2.40

Mercurial 1.0.2 for Windows Sergey Antonov HgSCC 1.0.1

Microsoft SourceSafe 2005 with CTP Microsoft SourceSafe 2005 with CTP

695

674 Source Control Supported Source Control Systems

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Source Control System Source Code Control Clients

Microsoft Visual Studio Team System
2008/2010 Team Foundation Server

Microsoft Team Foundation Server 2008/2010 MSSCCI
Provider

Perforce 2008 P4S 2008.1 Perforce P4V 2008.1

PureCM Server 2008/3a PureCM Client 2008/3a

QSC Team Coherence Server 7.2.1.35 QSC Team Coherence Client 7.2.1.35

Reliable Software Code Co-Op 5.1a Reliable Software Code Co-Op 5.1a

Seapine Surround SCM Client/Server for
Windows 2009.0.0

Seapine Surround SCM Client 2009.0.0

Serena Dimensions Express/CM 10.1.3 for
Win32 Server

Serena Dimensions 10.1.3 for Win32 Client

Softimage Alienbrain Server 8.1.0.7300 Softimage Alienbrain Essentials/Advanced Client 8.1.0.7300

SourceGear Fortress 1.1.4 Server SourceGear Fortress 1.1.4 Client

SourceGear SourceOffsite Server 4.2.0 SourceGear SourceOffsite Client 4.2.0 (Windows)

SourceGear Vault 4.1.4 Server SourceGear Vault 4.1.4 Client

VisualSVN Server 1.6 · Aigenta Unified SCC 1.0.6
· PushOK SVN SCC 1.5.1.1
· PushOK SVN SCC x64 version 1.6.3.1
· TamTam SVN SCC 1.2.24

© 2018-2024 Altova GmbH

Source Control Commands 675Source Control

Altova UModel 2024 Enterprise Edition

14.3 Source Control Commands

The following sections use Visual SourceSafe to show the source control features of UModel. The examples in
this section use the Bank_CSharp.ump UModel project (and associated code files) available in the C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples folder. Note that a Source Control
project is not the same as a UModel project. Source Control projects are directory dependent, whereas UModel
projects are logical constructions without direct directory dependence.

To access the Source Control commands, do one of the following:

· Use the menu command Project | Source Control
· Use the context menu in the Model Tree
· Click the source control toolbar buttons in the Source Control toolbar. Use Tools | Customize |

Toolbars to activate the toolbar.

The description of the version control commands that follow apply to the standalone version of UModel. The
Visual Studio and Eclipse versions of UModel use the version control functionality and menu items available in
those IDEs.

Open from Source Control
Enable Source Control
Get Latest Version
Get
Get Folder(s)
Check Out
Check In
Undo Check Out...
Add to Source Control
Remove from Source Control
Share from Source Control
Show History
Show Differences
Show Properties
Refresh Status
Source Control Manager
Change Source Control

14.3.1 Open from Source Control

The Open from Source Control command creates a local project from an existing source control database, and
places it under source control, SourceSafe in this case.

1. Select Project | Source Control | Open from Source Control.
The Login dialog box is opened, enter your login details to continue.
The "Create local project from SourceSafe" dialog box appears.

2. Define the directory to contain the new local project e.g. c:\temp\ssc. This becomes the Working
directory, or the Check Out Folder.

675

678

679

679

680

681

683

683

685

687

688

689

691

692

693

693

693

676 Source Control Source Control Commands

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Select the SourceSafe project you want to download e.g. Bank_CSharp.
If the folder you define here does not exist at the location, a dialog box opens prompting you to create
it.

4. Click Yes to create the new directory.
The Open dialog box is now visible.

© 2018-2024 Altova GmbH

Source Control Commands 677Source Control

Altova UModel 2024 Enterprise Edition

5. Select the Bank_CSharp.ump UModel project file and click Open.

Bank_CSharp.ump now opens in UModel, and the file is placed under source control. This is
indicated by the lock symbol visible on the Root folder in the Model Tree window. The Root folder
represents both the project file and the working directory for source control operations.

The BankCSharp directory has been created locally, you can now work with these files as you
normally would.

Note:
To place under source control the code files generated when synchronizing code, see: Add to Source
Control 685

678 Source Control Source Control Commands

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Source control symbols

 or
The lock symbol denotes that the file, or folder is under source control, but is currently not checked out.

 or
The red check mark denotes checked out, i.e. the UModel project file (or code file) has been checked out for
editing. The asterisk in the Application title bar denotes that changes have been made to the file, and you will
be prompted to save it when you exit.

 or
The arrow symbol shows that the file(s) have been checked out by someone else in the network, or by you into
a different working directory

14.3.2 Enable Source Control

This command allows you to enable or disable source control for a UModel project and is available through the
Project menu item, i.e. Project | Source Control | Enable Source Control. Selecting this option on any file
or folder, enables/disables source control for the whole UModel project.

To enable Source Control for a project:

1. Select the menu option Project | Source Control and activate/check the Enable source control
check box of the fly-out menu. The previous check in/out status of the various files are retrieved and
displayed in the Model Tree window.

To disable Source Control for a project:

1. Select the menu option Project | Source Control and uncheck the Enable source control check
box.

You are now prompted if you want to remove the binding information from the project.

© 2018-2024 Altova GmbH

Source Control Commands 679Source Control

Altova UModel 2024 Enterprise Edition

To provisionally disable source control for the project, select No.

To permanently disable source control for the project, select Yes.

14.3.3 Get Latest Version

Retrieves and places the latest source control version of the selected file(s) in the working directory. The files
are retrieved as read-only and are not checked out.

If the affected files are currently checked out, different things occur depending on the specific version control
plugin: nothing happens, new data are merged into your local file, or your changes are overwritten.

This command works in a similar fashion to the Get command, but does not display the "Source control - Get"
dialog box. It is therefore not possible to specify Advanced get options.

Note that this command automatically performs a recursive get latest version operation when performed on a
folder, i.e. it affects all other files below the current one in the package hierarchy.

To get the latest version of a file:

1. Select the file(s) you want to get the latest version of in the Model Tree.
2. Select Project | Source Control | Get Latest Version.

14.3.4 Get

Retrieves a read-only copy of the selected files and places them in the working folder. The files are not
checked-out for editing per default.

Using Get:

· Select the files you want to get in the Model Tree.
· Select Project | Source Control | Get.

680 Source Control Source Control Commands

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Overwrite changed files
Overwrites those files that have been changed locally with those from the source control database.

Select All
Selects all the files in the list box.

Advanced
Allows you to define the Replace writable and Set timestamp options in the respective combo boxes.

The "Make writable" check box removes the read-only attribute of the retrieved files.

14.3.5 Get Folder(s)

Retrieves read-only copies of files in the selected folders and places them in the working folder. The files are
not checked-out for editing per default.

Using Get Folders:

· Select the folder you want to get in the Model Tree.
· Select Project | Source Control | Get Folders.

© 2018-2024 Altova GmbH

Source Control Commands 681Source Control

Altova UModel 2024 Enterprise Edition

Overwrite changed files
Overwrites those files that have been changed locally with those from the source control database.

Recursive (get tree)
Retrieves all files of the folder tree below the selected folder.

Advanced
Allows you to define the Replace writable and Set timestamp options in the respective combo boxes.

The "Make writable" check box removes the read-only attribute of the retrieved files.

14.3.6 Check Out

This command checks out the latest version of the selected files and places writable copies in the working
directory. The files are flagged as "checked out" for all other users.

To Check Out files:

· Select the file or folder you want to check out in the Model Tree.
· Select Project | Source Control | Check Out.

682 Source Control Source Control Commands

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Note: You can change the number of files to check out, by activating the individual check boxes in the Files
list box.

Select the option Checkout local version to check out only the local versions of the files, not those from the
source control database.

The following items can be checked out:

· Single files, click on the respective files (CTRL + click, in the Model Tree)
· Folders, click on the folders (CTRL + click, in the Model Tree)

 or
The red check mark denotes that the file/folder has been checked out.

Advanced
Allows you to define the Replace writable and Set timestamp options in the respective combo boxes.

The "Make writable" check box removes the read-only attribute of the retrieved files.

© 2018-2024 Altova GmbH

Source Control Commands 683Source Control

Altova UModel 2024 Enterprise Edition

14.3.7 Check In

This command checks in the previously checked out files, i.e. your locally updated files, and places them in
the source control database.

To Check In files:

· Select the files in the Model Tree
· Select Project | Source Control | Check In.

Shortcut: Right-click a checked out item in the project window, and select "Check in" from the Context menu.

Note:
You can change the number of files to check in, by activating the individual check boxes in the Files
list box.

The following items can be checked in:
· Single files, click on the respective files (CTRL + click, in Model Tree)
· Folders, click on the folders (CTRL + click, in Model Tree)

, or

The lock symbol denotes that the file/folder is under source control, but is currently not checked out.

14.3.8 Undo Check Out...

This command discards changes made to previously checked out files, i.e. your locally updated files, and
retains the old files from the source control database.

684 Source Control Source Control Commands

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To Undo Check Out..

· Select the files in the Model Tree
· Select Project | Source Control | Undo Check Out.

Note:
You can change the number of files by activating the individual check boxes in the Files list box.

The Undo check out option can apply to the following items:
· Single files, click on the respective files (CTRL + click, in Model Tree)
· Folders, click on the folders (CTRL + click, in Model Tree)

Advanced
Allows you to define the Replace writable and Set timestamp options in the respective combo boxes.

The "Make writable" check box removes the read-only attribute of the retrieved files.

© 2018-2024 Altova GmbH

Source Control Commands 685Source Control

Altova UModel 2024 Enterprise Edition

14.3.9 Add to Source Control

Adds the selected files or folders to the source control database and places them under source control. If you
are adding a new UModel project you will be prompted for the workspace folder and the location at which your
project should be stored.

Having placed the UModel project file (*.ump) under source control, you can then add the code files produced
by the code-engineering process, to source control as well. For this to work, the generated code files and the
UModel project have to be placed in, or under, the same SourceSafe working directory. The working directory
used in this section is C:\Users\Altova\Documents\UMODEL_WORK\.

To add UModel generated code files to source control:

1. Expand the Component View folder in the Model Tree and Navigate to the BankView component.

2. Click the BankView component and click the Browse icon next to the "directory" field in the
Properties window.

3. Change the code engineering directory to C:\Users\Altova\Documents\UMODEL_WORK\codegen.
4. Select the menu item Project | Merge Program Code from UModel project.
5. Change the Synchronization settings if necessary, and click OK to confirm.

686 Source Control Source Control Commands

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The Messages window displays the code from project process.
A message box opens asking if you want to place the newly created files under source control.

6. Click Yes to do so.
7. The "Add to Source Control" dialog box is opened, allowing you to select the files you want to place

under source control.

© 2018-2024 Altova GmbH

Source Control Commands 687Source Control

Altova UModel 2024 Enterprise Edition

8. Click OK once you have selected the files you want to place under source control.
The lock symbol now appears next to each of the classes/file sources placed under source control.

14.3.10 Remove from Source Control

This command removes previously added files, from the source control database. These type of files remain
visible in the Model Tree but cannot be checked in or out. Use the "Add to Source Control" command to place
them back under source control.

688 Source Control Source Control Commands

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To remove files from the source control provider:

· Select the files you want to remove in the Model Tree.
· Select Project | Source Control | Remove from Source Control.

Note:
You can change the number of files to remove, by activating the individual check boxes in the Files list
box.

The following items can be removed from source control:
· Single files, click on the respective files (CTRL + click, for several)
· Folders, click on the folder icon.

14.3.11 Share from Source Control

This command shares/branches files from other projects/folders within the source control repository, into the
selected folder. To use the Share command you must have the Check in/out rights to the project you are
sharing from.

To share a file from source control:

1. Select the folder you want to share files to, in the Model Tree window, and select Project | Source
Control | Share from Source Control. e.g. BankView Component in the Component View folder.

2. Select the project folder that contains the file you want to share in the "Projects" list box.

© 2018-2024 Altova GmbH

Source Control Commands 689Source Control

Altova UModel 2024 Enterprise Edition

3. Select the file you want to share in the "Files to share" list box and click the Share button.
The file is now removed from the "File to share" list.

4. Click the Close button to continue.

Branch after share
Shares the file and creates a new branch to create a separate version.

14.3.12 Show History

This command displays the history of a file under source control, and allows you to view, see detailed history
info, difference, or retrieve previous versions of a file.

To show the history of a file:

1. Click on the file in the Model Tree window.
2. Select the menu options Project | Source control | Show history.

A dialog box prompting for more information opens.

690 Source Control Source Control Commands

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Select the appropriate entries and confirm with OK.

This dialog box is provides various way of comparing and getting specific versions of the file in
question. Double clicking an entry in the list opens the History Details dialog box for that file.

Close
Closes this dialog box.

View
Opens a further dialog box in which you can select the type of viewer you want to see the file with.

Details
Opens a dialog box in which you can see the properties of the currently active file.

Get
Allows you to retrieve one of the previous versions of the file in the version list, and place it into the
working directory.

692

© 2018-2024 Altova GmbH

Source Control Commands 691Source Control

Altova UModel 2024 Enterprise Edition

Check Out
Allows you to check out the latest version of the file.

Diff
Opens the Difference options dialog box, which allows you to define the difference options when
viewing the differences between two file versions.

Use CTRL+Click to mark two file versions in this window, then click Diff to view the differences between
them.

Pin
Pins or unpins a version of the file, allowing you to define the specific file version to use when
differencing two files.

Rollback
Rolls back to the selected version of the file.

Report
Generates a history report which you can send to the printer, file, or clipboard.

Help
Opens the online help of the source control provider plugin.

14.3.13 Show Differences

This command displays the differences between the file currently in the source control repository, and the
checked in/out file of the same name in the working directory.

If you have "pinned" one of the files in the history dialog box, then the pinned file will be used in the "Compare"
text box. Any two files can be selected using the Browse buttons.

To show the differences between two files:

1. Click on a file in the Model Tree window.
2. Select the menu option Project | Source control | Show Differences.

A dialog box prompting for more information appears.

691

692 Source Control Source Control Commands

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. Select the appropriate entries and confirm with OK.

The differences between the two files are highlighted in both windows (this example uses MS
SourceSafe).

14.3.14 Show Properties

This command displays the properties of the currently selected file, and is dependent on the source control
provider you use.

© 2018-2024 Altova GmbH

Source Control Commands 693Source Control

Altova UModel 2024 Enterprise Edition

To display the properties of the currently selected file:
· Select Project | Source Control | Properties.

This command can only be used on single files.

14.3.15 Refresh Status

This command refreshes the status of all project files, independent of their current status.

14.3.16 Source Control Manager

This command starts your source control software with its native user interface.

14.3.17 Change Source Control

This dialog box allows you to change the source control binding that you are using. Click the Unbind button
first, then (optionally) click the Select button to select a new source control provider, and finally click the Bind
button to bind to a new location in the repository.

694 Source Control Source Control Commands

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

© 2018-2024 Altova GmbH

Source Control with Git 695Source Control

Altova UModel 2024 Enterprise Edition

14.4 Source Control with Git

Support for Git as a source control system in UModel is available through a third-party plug-in called GIT SCC
plug-in (http://www.pushok.com/software/git.html).

At the time when this documentation is written, the GIT SCC plug-in is available for experimental use.
Registration with the plug-in publisher is required in order to use the plug-in.

The GIT SCC plug-in enables you to work with a Git repository using the commands available in the Project |
Source Control menu of UModel. Note that the commands in the Project | Source Control menu of UModel
are provided by the Microsoft Source Control Plug-in API (MSSCCI API), which uses a design philosophy
different from Git. As a result, the plug-in essentially mediates between "Visual Source Safe"-like functionality
and Git functionality. On one hand, this means that a command such as Get latest version may not be
applicable with Git. On the other hand, there are new Git-specific actions, which are available in the "Source
Control Manager" dialog box provided by the plug-in (under the Project | Source Control | Source Control
Manager menu of UModel).

The Source Control Manager dialog box

Other commands that you will likely need to use frequently are available directly under the Project | Source
Control menu.

The following sections describe the initial configuration of the plug-in, as well as the basic workflow:

· Enabling Git Source Control with GIT SCC Plug-in
· Adding a Project to Git Source Control
· Cloning a Project from Git Source Control

696

696

698

http://www.pushok.com/software/git.html

696 Source Control Source Control with Git

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

14.4.1 Enabling Git Source Control with GIT SCC Plug-in

To enable Git source control with UModel, the third-party PushOK GIT SCC plug-in must be installed,
registered, and selected as source control provider, as follows:

1. Download the plug-in installation file from the publisher's website (http://www.pushok.com), run it, and
follow the installation steps.

2. On the Project menu of UModel, click Change Source Control, and make sure PushOk GITSCC is
selected as source control provider. If you do not see Push Ok GITSCC in the list of providers, it is
likely that the installation of the plug-in was not successful. In this case, check the publisher's
documentation for a solution.

3. When a dialog box prompts you to register the plug-in, click Registration and follow the wizard steps
to complete the registration process.

14.4.2 Adding a Project to Git Source Control

You can save UModel projects as Git repositories. The structure of files or folders that you add to the project
would then correspond to the structure of the Git repository.

To add a project to Git source control:

1. Make sure that PushOK GIT SCC Plug-in is set as source control provider (see Enabling Git Source
Control with GIT SCC Plug-in).

2. Create a new empty project and make sure that it has no validation errors (that is, the command
Project | Check Project Syntax does not show any errors or warnings).

3. Save the project to a local folder, for example C:\MyRepo\Project.ump.
4. In the Model Tree pane, click the Root node.
5. On the Project menu, under Source Control, click Add to Source Control.

696

http://www.pushok.com

© 2018-2024 Altova GmbH

Source Control with Git 697Source Control

Altova UModel 2024 Enterprise Edition

6. Click OK.

7. Enter the text of your commit message, and click OK.

You can now start adding modeling elements (diagrams, classes, packages, and so on) to your project. Note
that all project files and folders must be under the root folder of the project. For example, if the project was
created in the C:\MyRepo folder , then only files under C:\MyRepo should be added to the project. Otherwise, if
you attempt to add to your project files that are outside the project root folder, a warning message is displayed:

698 Source Control Source Control with Git

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

14.4.3 Cloning a Project from Git Source Control

Projects that have been previously added to Git source control (see Adding a Project to Git Source Control)
can be opened from the Git repository as follows:

1. Make sure that PushOK GIT SCC Plug-in is set as source control provider (see Enabling Git Source
Control with GIT SCC Plug-in).

2. On the Project menu, click Source Control | Open from Source Control.
3. Enter the path or the URL of the source repository. Click Check to verify the validity of the path or

URL.

4. Under Local Path, enter the path to local folder where you want the project to be created, and click
Next. If the local folder exists (even if it is empty), the following dialog box opens:

5. Click Yes to confirm, and then click Next.

696

696

© 2018-2024 Altova GmbH

Source Control with Git 699Source Control

Altova UModel 2024 Enterprise Edition

6. Follow the remaining wizard steps, as required by your specific case.
7. When the wizard completes, a Browse dialog box appears, asking you to open the UModel Project

(*.ump) file. Select the project file to load the project contents into UModel.

700 UModel Diagram icons

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

15 UModel Diagram icons

The following section is a quick guide to the icons that are made available in each of the modeling diagrams.

The icons are split up into two sections:

· Add - displays a list of elements that can be added to the diagram.
· Relationship - displays a list of relationship types that can be created between elements in the

diagram.

© 2018-2024 Altova GmbH

Activity Diagram 701UModel Diagram icons

Altova UModel 2024 Enterprise Edition

15.1 Activity Diagram

Add
Action (CallBehaviorAction)
Action (CallOperationAction)
AcceptEventAction
AcceptEventAction (TimeEvent)
SendSignalAction

DecisionNode (Branch)
MergeNode
InitialNode
ActivityFinalNode
FlowFinalNode
ForkNode (vertical)
ForkNode (horizontal)
JoinNode
JoinNode (horizontal)

InputPin
OutputPin
ValuePin

ObjectNode
CentralBufferNode
DataStoreNode
ActivityPartition (horizontal)
ActivityPartition (vertical)
ActivityPartition 2-Dimensional

ControlFlow
ObjectFlow
ExceptionHandler

Activity
ActivityParameterNode
StructuredActivityNode
ExpansionRegion
ExpansionNode
InterruptibleActivityRegion

702 UModel Diagram icons Activity Diagram

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Note
Note Link

© 2018-2024 Altova GmbH

Class Diagram 703UModel Diagram icons

Altova UModel 2024 Enterprise Edition

15.2 Class Diagram

Relationship
Association
Aggregation
Composition
AssociationClass
Dependency
Usage
InterfaceRealization
Generalization

Add
Package
Class
Interface
Enumeration
Datatype
PrimitiveType
Profile
Stereotype
ProfileApplication
InstanceSpecification

Note
Note Link

704 UModel Diagram icons Communication diagram

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

15.3 Communication diagram

Add
Lifeline
Message (Call)
Message (Reply)
Message (Creation)
Message (Destruction)

Note
Note Link

© 2018-2024 Altova GmbH

Composite Structure Diagram 705UModel Diagram icons

Altova UModel 2024 Enterprise Edition

15.4 Composite Structure Diagram

Add
Collaboration
CollaborationUse
Part (Property)
Class
Interface
Port

Relationship
Connector
Dependency (Role Binding)
InterfaceRealization
Usage

Note
Note Link

706 UModel Diagram icons Component Diagram

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

15.5 Component Diagram

Add
Package
Interface
Class
Component
Artifact

Relationship
Realization
InterfaceRealization
Usage
Dependency

Note
Note Link

© 2018-2024 Altova GmbH

Deployment Diagram 707UModel Diagram icons

Altova UModel 2024 Enterprise Edition

15.6 Deployment Diagram

Add
Package
Component
Artifact
Node
Device
ExecutionEnvironment

Relationship
Manifestation
Deployment
Association
Generalization
Dependency

Note
Note Link

708 UModel Diagram icons Interaction Overview diagram

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

15.7 Interaction Overview diagram

Add
CallBehaviorAction (Interaction)
CallBehaviorAction (InteractionUse)
DecisionNode
MergeNode
InitialNode
ActivityFinalNode
ForkNode
ForkNode (Horizontal)
JoinNode
JoinNode (Horizontal)
DurationConstraint

Relationship
ControlFlow

Note
Note Link

© 2018-2024 Altova GmbH

Object Diagram 709UModel Diagram icons

Altova UModel 2024 Enterprise Edition

15.8 Object Diagram

Relationship
Association
AssociationClass
Dependency
Usage
InterfaceRealization
Generalization

Add
Package
Class
Interface
Enumeration
Datatype
PrimitiveType
InstanceSpecification

Note
Note Link

710 UModel Diagram icons Package diagram

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

15.9 Package diagram

Add
Package
Profile

Relationship
Dependency
PackageImport
PackageMerge
ProfileApplication

Note
Note Link

© 2018-2024 Altova GmbH

Profile Diagram 711UModel Diagram icons

Altova UModel 2024 Enterprise Edition

15.10 Profile Diagram

Add
Profile
Stereotype

Relationship
Generalization
ProfileApplication
PackageImport
ElementImport

Note
NoteLink

712 UModel Diagram icons Protocol State Machine

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

15.11 Protocol State Machine

Add
Simple state
Composite state
Orthogonal state
Submachine state

FinalState
InitialState

EntryPoint
ExitPoint
Choice
Junction
Terminate
Fork
Fork (horizontal)
Join
Join (horizontal)
ConnectionPointReference

Relationship
Protocol Transition

Note
Note link

© 2018-2024 Altova GmbH

Sequence Diagram 713UModel Diagram icons

Altova UModel 2024 Enterprise Edition

15.12 Sequence Diagram

Add
Lifeline
CombinedFragment
CombinedFragment (Alternatives)
CombinedFragment (Loop)
InteractionUse
Gate
StateInvariant
DurationConstraint
TimeConstraint

Message (Call)
Message (Reply)
Message (Creation)
Message (Destruction)

Asynchronous Message (Call)
Asynchronous Message (Reply)
Asynchronous Message (Destruction)

Note
Note Link

No message numbering
Simple message numbering
Nested message numbering

Toggle dependent message movement
Toggle automatic creation of replies for messages
Toggle automatic creation of operations in target by typing operation names

714 UModel Diagram icons State Machine Diagram

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

15.13 State Machine Diagram

Add
Simple state
Composite state
Orthogonal state
Submachine state

FinalState
InitialState

EntryPoint
ExitPoint
Choice
Junction
Terminate
Fork
Fork (horizontal)
Join
Join (horizontal)
DeepHistory
ShallowHistory
ConnectionPointReference

Relationship
Transition

Note
Note link

Toggle automatic creation of operations in target by typing operation names

© 2018-2024 Altova GmbH

Timing Diagram 715UModel Diagram icons

Altova UModel 2024 Enterprise Edition

15.14 Timing Diagram

Add
Lifeline (State/Condition)
Lifeline (General value)
TickMark
Event/Stimulus
DurationConstraint
TimeConstraint

Message (Call)
Message (Reply)
Asynchronous Message (Call)

Note
Note Link

716 UModel Diagram icons Use Case diagram

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

15.15 Use Case diagram

Add
Package
Actor
UseCase

Relationship
Association
Generalization
Include
Extend

Note
Note Link

© 2018-2024 Altova GmbH

XML Schema diagram 717UModel Diagram icons

Altova UModel 2024 Enterprise Edition

15.16 XML Schema diagram

Add
XSD TargetNamespace
XSD Schema
XSD Element (global)
XSD Group
XSD ComplexType
XSD ComplexType (simpleContent)
XSD SimpleType
XSD List
XSD Union
XSD Enumeration
XSD Attribute
XSD AttributeGroup
XSD Notation
XSD Import

Relationship
XSD Include
XSD Redefine
XSD Restriction
XSD Extension
XSD Substitution

Note
Note link

718 UModel Diagram icons Business Process Modeling Notation

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

15.17 Business Process Modeling Notation

Add
Start Event
Intermediate Event
Stop Event

Task
Loop Task
Multi Instance Task
Compensation Task

Collapsed Sub Process
Collapsed Loop Sub Process
Collapsed Multi Instance Sub Process
Collapsed Ad Hoc Process
Collapsed Compensation Sub Process

Expanded Sub Process
Expanded Loop Sub Process
Expanded Multi Instance Sub Process
Expanded Ad Hoc Process
Expanded Compensation Sub Process

Gateway
Inclusive Gateway (OR)
Parallel Gateway (AND)
Data Based Exclusive Gateway (XOR)
Event Based Exclusive Gateway (XOR)
Complex Gateway (Decision/Merge)

Relationship
Sequence Flow
Conditional Flow
Default Flow
Message Flow
Association

Pool
Data Object

© 2018-2024 Altova GmbH

Business Process Modeling Notation 719UModel Diagram icons

Altova UModel 2024 Enterprise Edition

Group

Text Annotation
Annotation Association

720 UModel Diagram icons Business Process Modeling Notation 2.0

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

15.18 Business Process Modeling Notation 2.0

Add
Start Event
Catch Event
Throw Event
End Event

Task
Expanded Sub Process
Collapsed Sub Process
Call Activity
Gateway

Relationship
Sequence Flow
Default Sequence Flow
Conditional Sequence Flow
Message Flow
Association

Pool
Group
Data Object
Data Output
Data Input
Collection Data Object
Data Store
Message

Text Annotation
Annotation Association

© 2018-2024 Altova GmbH

Database Modeling 721UModel Diagram icons

Altova UModel 2024 Enterprise Edition

15.19 Database Modeling

Add
Table
CheckConstraint
PrimaryKey
ForeignKey
UniqueKey
Index

Relationship
Database Relationship Association
Database Relationship with Attributes

722 Menu Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

16 Menu Reference

The following section lists all the menus and menu options in UModel, and supplies a short description of
each.

© 2018-2024 Altova GmbH

File 723Menu Reference

Altova UModel 2024 Enterprise Edition

16.1 File

New
Clears the diagram tab, if a previous project exists, and creates a new UModel project.

Open
Opens previously defined modeling project. Select a previously saved project file *.ump from the Open dialog
box. See Creating, Opening, and Saving Projects and Opening Projects from a URL .

Reload
Reloads the current project and saves or discards the changes made since you opened the project file.

Save
Saves the currently active modeling project using the currently active file name.

Save as
Saves the currently active modeling project with a different name, or allows you to give the project a new name
if this is the first time you save it.

Save Copy As
Saves a copy of the currently active UModel project with a different file name.

Save Diagram as Image
Opens the "Save as..." dialog box and allows you to save the currently active diagram as a .png file. Very large
.png files, in the gigabyte range, can also be saved.

Save all Diagrams as Images
Save all diagrams of the currently active project as .png files.

Import from XMI File
Imports a previously exported XMI file. If the file was produced with UModel, then all extensions etc. will be
retained.

Export to XMI File
Exports the model as an XMI file. You can select the UML version, as well as the specific IDs that you want to
export, see XMI - XML Metadata Interchange .

Send by Mail
Opens your default mail application and inserts the current UModel project as an attachment.

153 154

631

724 Menu Reference File

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Print
Opens the Print dialog box, from where you can print out the current diagram (or a selection on the diagram) as
hard copy.

Use current retains the currently defined zoom factor of the modeling project. Selecting this option enables the
"Page split of pictures" group. Use optimal scales the modeling project to fit the page size. You can also
specify the zoom factor numerically. The Prevent option prevents modeling elements from being split over a
page, and keeps them as one unit.

Print all Diagrams
Opens the Print dialog box and prints out all UML diagrams contained in the current project file.

Print Preview
Opens the same Print dialog box with the same settings as described above.

Print Setup
Opens the Print Setup dialog box in which you can define the printer you want to use and the paper settings.

Recent files
This section of the File menu lists up to four most recent files you have been working with.

Exit
The Exit command exist UModel. If any of your current files have unsaved changes, UModel will prompt you to
save the changes.

© 2018-2024 Altova GmbH

Edit 725Menu Reference

Altova UModel 2024 Enterprise Edition

16.2 Edit

Undo
UModel has an unlimited number of "Undo" steps that you can use to retrace your modeling steps.

Redo
The redo command allows you to redo previously undone commands. You can step backward and forward
through the undo history using both these commands.

Cut/Copy/Paste/Delete
These are the standard Windows text editing commands. You can use them not only for text but also for
modeling elements, see Renaming, Moving, and Copying Elements .

Paste in Diagram only
Adds a "link" (or "view") of the copied element to the current diagram but not to the Model Tree, see Renaming,
Moving, and Copying Elements .

Delete from Diagram only
Deletes the selected modeling elements from the currently active diagram. The deleted elements are not
deleted from the modeling project and are available in the Model Tree tab. Note that this option is not available
to delete properties or operations from a class, they can be selected and deleted there directly.

Select all
Select all modeling elements of the currently active diagram. Equivalent to the Ctrl+A shortcut.

Find
Allows you to search for specific text in the current window, see Finding and Replacing Text .

Find Next F3
Searches for the next occurrence of the same search string in the currently active window.

Find Previous (Shift+F3)
Searches for the previous occurrence of the same search string in the currently active tab or diagram.

Replace
Allows you to search and replace any modelling elements in the project, see Finding and Replacing Text .

111

111

113

113

726 Menu Reference Edit

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Copy as Bitmap
Copies the currently active diagram to clipboard, from where you can paste it into the application of your
choice.

Copy Selection as Bitmap
Copies the currently selected diagram elements to the clipboard from where you can paste them into the
application of your choice.

© 2018-2024 Altova GmbH

Project 727Menu Reference

Altova UModel 2024 Enterprise Edition

16.3 Project

Check Project Syntax
Checks the UModel project syntax, see Checking Project Syntax .

Source Control
See Source control systems for detailed information on source control servers and clients and how to use
them.

Import Source Directory
Opens the Import Source Directory wizard. For a specific example, see Reverse Engineering (from Code to
Model) .

Import Source Project
Opens the Import Source Project wizard, see Importing Source Code .

Import Binary Types
Opens the Import Binary Types dialog box allowing you to import Java, C#, and VB binary files, see Importing
Java, C#, and VB.NET Binaries .

Import XML Schema Directory
Opens the Import XML Schema Directory allowing you to import all XML Schemas in that directory and
optionally all XML Schemas in any of the subfolders.

Import XML Schema File
Opens the Import XML Schema File dialog box allowing you to import schema files, see XML Schema
Diagrams .

Import SQL Database
Opens the Import Database dialog box from where you can import database structure into the model, see
Importing SQL Databases into UModel .

Generate Sequence Diagrams from Code...
See Generate Multiple Sequence Diagrams .

Generate Code from Sequence Diagrams
UModel can create code from a sequence diagram which is linked to at least one operation. For more
information, see this section .

172

670

72

196

212

467

531

414

415

728 Menu Reference Project

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Generate State Machine Code
UModel enables you to select one or more state machines in which code should be generated. For details, see
this topic .

Merge Program Code from UModel Project / Overwrite Program Code from UModel Project
Updates program code from the model (assuming that your project is set up for code engineering, see
Generating Program Code). The name of this command can be either Merge Program Code from
UModel Project or Overwrite Program Code from UModel Project, depending on the settings in the
Synchronization Settings dialog box. By default, the Synchronization Settings dialog box opens every time
when you run this command. For more information, see Code Synchronization Settings .

Merge UModel Project from Program Code / Overwrite UModel Project from Program Code
Updates the model (the UModel Project) from the program code. The name of this command can either be
Merge UModel Project from Program Code or Overwrite UModel Project from Program Code,
depending on the settings in the Synchronization Settings dialog box. By default, the Synchronization Settings
dialog box opens every time when you run this command. For more information, see Code Synchronization
Settings .

Project Settings
When generating program code into a UModel project, you may want to set or change project settings .

Synchronization Settings
Opens the Synchronization Settings dialog box, see Code Synchronization Settings .

Model Transformation
Starts a wizard that lets you convert the model from one language to another (for example, from Java to C#),
see Transforming UML Models .

Merge Project
Merges two UModel project files into one model. The first file you open is the one the second file will be merged
into. Please see Merging UModel projects for more information.

Merge Project (3-way)
UModel supports the merging of multiple UModel projects that have been simultaneously edited by different
developers, in a 3-way project merge .

Include Subproject
See Including other UModel projects .

Open Subproject Individually
Opens the selected subproject as a new project.

369

169

229

229

174

229

300

291

291

163

© 2018-2024 Altova GmbH

Project 729Menu Reference

Altova UModel 2024 Enterprise Edition

Clear Messages
Clears the syntax check and code merging messages, warnings and errors from the Messages Window .

Note: Errors are generally problems that must be fixed before code can be generated, or the model code can
be updated during the code engineering process. Warnings can generally be deferred until later. Errors
and warnings are generated by the syntax checker, the compiler for the specific language, the UModel
parser that reads the newly generated source file, as well as during the import of XMI files.

Generate Documentation
Generates documentation for the currently open project in HTML, Microsoft Word, and RTF formats, see
Generating UML documentation .

List Elements not used in any Diagram
Creates a list of all elements not used in any diagram in the project, see Checking Where and If Elements Are
Used .

List shared Packages
Lists all shared packages of the current project.

List included Packages
Lists all include packages in the current project.

95

328

115

730 Menu Reference Layout

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

16.4 Layout

The commands of the Layout menu allow you to line up and align the elements of your modeling diagrams, see
Aligning and Resizing Modeling Elements .

Align
The align command allows you to align modeling elements along their borders, or centers depending on the
specific command you select.

Space Evenly
This set of commands allow you to space selected elements evenly both horizontally and vertically.

Make Same Size
This set of commands allow you to adjust the width and height of selected elements based on the active
element.

Line Up
This set of commands allow you to line up the selected elements vertically or horizontally.

Line Style
This set of commands allow you to select the type of line used to connect the various modeling elements. The
lines can be any type of dependency, association lines used in the various model diagrams.

Autosize
This command resizes the selected elements to their respective optimal size(s).

Autolayout all
This command arranges automatically the modeling elements on the diagram, using one of the options below.

Force Directed Displays the modeling elements from a centric viewpoint.

Hierarchic Displays elements according to their hierarchical relationships. For example, a
superclass will be placed above any of its derived classes.

The hierarchical layout options can be customized from the Tools | Options
menu, View tab, Autolayout Hierarchic group.

Block Displays elements grouped by element size in rectangular fashion.

Reposition Text Labels
Repositions modeling element names (of the selected elements) to their default positions.

129

© 2018-2024 Altova GmbH

View 731Menu Reference

Altova UModel 2024 Enterprise Edition

16.5 View

The commands available in this menu allow you to:

· Show or hide any of the UModel helper windows, see UModel Graphical User Interface
· Define the sort criteria of elements inside the Model Tree window and Favorites window
· Define the grouping criteria of diagrams in the Diagram Tree window
· Show or hide specific UML elements in the Favorites window and Model Tree window
· Define the zoom factor of the current diagram, see Zooming into/out of Diagrams .

80

82 87

86

134

732 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

16.6 Tools

The commands available in this menu allow you to:

· Spell check your UModel project and define the spell checker options.
· Access the Scripting Environment of UModel. You can create, manage and store your own forms,

macros and event handlers.
· View and execute the currently defined macros.
· Customize the interface: define your own toolbars, keyboard shortcuts, menus, and macros.
· Restore toolbars and windows to their default state.
· Define the global program settings/options .

16.6.1 Spelling

Select Tools | Spelling to start the spell check process. The standard spell checker options are available in
this dialog box.

To define the specific spell checker options, click Options in the Spelling dialog or select the menu command
Tools | Spelling Options.

You can spell check entries in the Model Tree as well as in UML diagrams. Right clicking in the Model Tree
and selecting "Documentation Spelling" spell checks the comments and notes of the Model Tree.

770

738

748

© 2018-2024 Altova GmbH

Tools 733Menu Reference

Altova UModel 2024 Enterprise Edition

Not in Dictionary
This text box contains the word that cannot be found in either the selected language dictionary or user
dictionary.

Suggestions
This list box displays words resembling the unknown word (supplied from the language and user dictionaries).
Double-clicking a word in this list automatically inserts it in the document and continues the spell-checking
process.

Ignore once
This command allows you to continue checking the document while ignoring the first occurrence of the
unknown word. The same word will be flagged again if it appears in the document.

Ignore all
This command ignores all instances of the unknown word in the whole document.

Add to dictionary
This command adds the unknown word to the user dictionary. You can access the user dictionary (in order to
edit it) via the Options dialog.

Change
This command replaces the currently highlighted word in the XML document with the (edited) word in the Not in
Dictionary text box.

734 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Change all
This command replaces all occurrences of the currently highlighted word in the XML document with the (edited)
word in the Not in Dictionary text box.

Recheck Document
The "Recheck Document" button restarts the check from the beginning of the document.

Adding dictionaries for the spellchecker
For each dictionary language there are two Hunspell dictionary files that work together: a .aff file and .dic
file. All language dictionaries are installed in a Lexicons folder at the following location: C:
\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons.

Within the Lexicons folder, different language dictionaries are each stored in a different folder: <language
name>\<dictionary files>. For example, files for the two English-language dictionaries (English
(British) and English (US)) will be stored as below:

C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (British)
\en_GB.aff
C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (British)
\en_GB.dic
C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (US)\en_US.aff
C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (US)\en_US.dic

In the Spelling Options dialog, the dropdown list of the Dictionary Language combo box displays the language
dictionaries. These dictionaries are those available in the Lexicons folder and have the same names as the
language subfolders in the Lexicons folder. For example, in the case of the English-language dictionaries
shown above, the dictionaries would appear in the Dictionary Language combo box as: English (British) and
English (US).

All installed dictionaries are shared by the different users of the machine and the different major versions of
Altova products (whether 32-bit or 64-bit).

You can add dictionaries for the spellchecker in two ways, neither of which require that the files be registered
with the system:

· By adding Hunspell dictionaries into a new subfolder of the Lexicons folder. Hunspell dictionaries can
be downloaded, for example, from https://wiki.openoffice.org/wiki/Dictionaries or
http://extensions.services.openoffice.org/en/dictionaries. (Note that OpenOffice uses the zipped OXT
format. So change the extension to .zip and unzip the .aff and .dic file to the language folders in
the Lexicons folder. Also note that Hunspell dictionaries are based on Myspell dictionaries. So
Myspell dictionaries can also be used.)

· By using the Altova dictionary installer, which installs a package of multiple language dictionaries by
default to the correct location on your machine. The installer can be downloaded via the link in the
Dictionary language pane of the Spelling Options dialog (see screenshot below). Installation of the
dictionaries must be done with administrator rights, otherwise installation will fail with an error.

https://wiki.openoffice.org/wiki/Dictionaries
http://extensions.services.openoffice.org/en/dictionaries
https://www.altova.com/dictionaries

© 2018-2024 Altova GmbH

Tools 735Menu Reference

Altova UModel 2024 Enterprise Edition

Note: It is your choice as to whether you agree to the terms of the license applicable to the dictionary and
whether the dictionary is appropriate for your use with the software on your computer.

Working with the user dictionary
Each user has one user dictionary, in which user-allowed words can be stored. During a spellcheck, spellings
are checked against a word list comprising the words in the language dictionary and the user dictionary. You
can add words to and delete words from the user dictionary via the User Dictionary dialog (screenshot below).
This dialog is accessed by clicking the User Dictionary button in the Spelling Options dialog (see second
screenshot in this section).

To add a word to the user dictionary, enter the word in the Word text box and click Add. The word will be
added to the alphabetical list in the Dictionary pane. To delete a word from the dictionary, select the word in the
Dictionary pane and click Delete. The word will be deleted from the Dictionary pane. When you have finished
editing the User Dictionary dialog, click OK for the changes to be saved to the user dictionary.

Words may also be added to the User Dictionary during a spelling check. If an unknown word is encountered
during a spelling check, then the Spelling dialog pops up prompting you for the action you wish to take. If
you click the Add to Dictionary button, then the unknown word is added to the user dictionary.

The user dictionary is located at: C:\Users\<user>\Documents\Altova\SpellChecker\Lexicons\user.dic

732

736 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

16.6.2 Spelling Options

Elements
This group allows you to choose between spell checking all UML elements, or only the Notes and Comments
objects.

Prefixes
Double clicking in the "Prefix to ignore" column lets you enter the prefixes, of specific UML elements, you want
to ignore during spell checking, e.g. m_ for properties, and I for Interfaces.

The "Append" button adds a new row to the Prefixes table. "Delete" deletes the currently active row.

Clicking the "More spelling options..." button opens the Spelling Options dialog box shown below.

More Spelling Options
The Spelling Options dialog is used to define global spellchecker options.

© 2018-2024 Altova GmbH

Tools 737Menu Reference

Altova UModel 2024 Enterprise Edition

Always suggest corrections:
Activating this option causes suggestions (from both the language dictionary and the user dictionary) to be
displayed in the Suggestions list box. Disabling this option causes no suggestions to be shown.

Make corrections only from main dictionary:
Activating this option causes only the language dictionary (main dictionary) to be used. The user dictionary is
not scanned for suggestions. It also disables the User Dictionary button, preventing any editing of the user
dictionary.

Ignore words in UPPER case:
Activating this option causes all upper case words to be ignored.

Ignore words with numbers:
Activating this option causes all words containing numbers to be ignored.

Split CamelCase words
CamelCase words are words that have capitalization within the word. For example the word "CamelCase" has
the "C" of "Case" capitalized, and is therefore said to be CamelCased. Since CamelCased words are rarely
found in dictionaries, the spellchecker would flag them as errors. To avoid this, the Split CamelCase words
option splits CamelCased words into their capitalized components and checks each component individually.
This option is checked by default.

Dictionary Language
Use this combo box to select the dictionary language for the spellchecker. The default selection is US English.
Other language dictionaries are available for download free of charge from the Altova website.

https://www.altova.com/dictionaries

738 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

16.6.3 Scripting Editor

The Scripting Editor command opens the Scripting Editor window, see Scripting Editor .

Note: The .NET Framework version 2.0 or higher must be installed on your machine in order for the Scripting
Editor to run.

16.6.4 Macros

Displays a list of macros that are currently defined in the Scripting Project, see Scripting Editor . The active
Scripting Project is defined in the Scripting tab of the Options dialog box.

16.6.5 User-defined Tools

Placing the cursor over the User-defined Tools command rolls out a sub-menu containing custom-made
commands that use external applications. You can create these commands in the Tools tab of the
Customize dialog. Clicking one of these custom commands executes the action associated with this
command.

The User-Defined Tools | Customize command opens the Tools tab of the Customize dialog (in which you
can create the custom commands that appear in the menu of the User-Defined Tools command.)

16.6.6 Customize

The Customize command displays a dialog box from where you can customize UModel to suit your personal
needs. You can customize the following entities:

· Commands
· Toolbars
· Tools
· Keyboard
· Menu
· Macros
· Plug-ins
· Options

770

770

754

741

741

739

740

741

745

746

747

747

747

© 2018-2024 Altova GmbH

Tools 739Menu Reference

Altova UModel 2024 Enterprise Edition

16.6.6.1 Commands

The Commands tab allows you customize UModel menus or toolbars.

To add a command to a toolbar or menu:

1. On the Tools menu, click Customize.
2. Select the command category in the Categories list box. The commands available appear in the

Commands list box.
3. Click a command in the Commands list box and drag it to an existing menu or toolbar. An I-beam

appears when you place the cursor over a valid position to drop the command.
4. Release the mouse button at the position you want to insert the command. A small button appears at

the tip of mouse pointer when you drag a command. The check mark below the pointer means that the
command cannot be dropped at the current cursor position. The check mark disappears whenever you
can drop the command (over a toolbar or menu).

Notes:

· Placing the cursor over a menu when dragging, opens it, allowing you to insert the command anywhere
in the menu.

· Commands can be placed in menus or tool bars. If you created you own toolbar, you can populate it
with your own commands/icons.

· You can also edit the commands in the context menus (right-click anywhere to open the context
menu), using the same method. Click the Menu tab and then select the specific context menu
available in the Context Menus combo box.

746

740 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To delete a command or menu:

1. On the Tools menu, click Customize.
2. Click the menu entry or icon you want to delete, and drag with the mouse.
3. Release the mouse button whenever the check mark icon appears below the mouse pointer. The

command (or menu item) is deleted from the menu or tool bar.

16.6.6.2 Toolbars

The Toolbars tab allows you to activate or deactivate specific toolbars, as well as create your own specialized
ones.

Toolbars contain symbols for the most frequently used menu commands. For each symbol, you get a brief "tool
tip" explanation when the mouse cursor is directly over the item and the status bar shows a more detailed
description of the command. You can drag the toolbars from their standard position to any location on the
screen, where they appear as a floating window. Alternatively, you can also dock them to the left or right edge
of the main window.

To activate or deactivate a toolbar:

· Click the check box to activate (or deactivate) the specific toolbar.

© 2018-2024 Altova GmbH

Tools 741Menu Reference

Altova UModel 2024 Enterprise Edition

To create a new toolbar:

1. Click the New... button, and give the toolbar a name in the Toolbar name dialog box.
2. Add commands to the toolbar using the Commands tab of the Customize dialog box.

To reset the Menu Bar:

1. Click the Menu Bar entry, and
2. Click the Reset button, to reset the menu commands to the state they were when installed.

To reset all toolbar and menu commands:

1. Click the Reset All button, to reset all the toolbar commands to the state they were when the program
was installed. A prompt appears stating that all toolbars and menus will be reset.

2. Click Yes to confirm the reset.

The Show text labels option places explanatory text below toolbar icons when activated.

16.6.6.3 Tools

The Tools tab allows you to create custom menu commands that can start external tools directly from UModel.
The custom menu commands that you define here appear under the menu Tools | User-defined tools.
External tools can be programs included with Windows, such as Windows Explorer (explorer.exe), Notepad
(notepad.exe), or other custom executables. You can optionally assign arguments to each user-defined tool
and set the directory where the external tool should initialize (in order to look for relative file names).

For example, the configuration illustrated below adds a new menu command called "Open Project Folder".
When run, this command will open the directory of the current UModel project in Windows Explorer.

739

742 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

When an external tool takes arguments (like Windows Explorer in the example above), these can be entered in
the Arguments input box. To supply multiple arguments, separate them with the space character. The values

you can supply as arguments can be plain text (hard-coded values) or be selected with the button from a
list of predefined UModel variables. You can use any of the following UModel predefined variables as
arguments:

UModel predefined variable Purpose

Project File Name The file name of the active UModel project file, for example
Test.ump.

Project File Path The absolute file path of the active UModel project file, for
example, C:\MyDirectory\Test.ump.

Focused UML Data – Name The name of the currently focused UML element, for example,
Class1.

Focused UML Data – UML Qualified Name The qualified name of the currently focused UML element, for
example, Package1::Package2::Class1.

Focused UML Data – Code File Name The code file name of the currently focused UML class,
interface or enumeration as shown in the Property window
(relative to the realizing component), for example, Class1.cs or
MyNamespace\Class1.Java.

© 2018-2024 Altova GmbH

Tools 743Menu Reference

Altova UModel 2024 Enterprise Edition

UModel predefined variable Purpose

Focused UML Data – Code File Path The code file path of the currently focused UML class,
interface or enumeration as shown in the Property window, for
example, C:\Temp\MySource\Class1.cs.

Focused UML Data – Code Project File
Name

The file name of the code project to which the currently
focused UML class, interface or enumeration belongs.

The code project file name can be relative to the UModel
project file and is the same as shown in the Properties of the
component, for example, C:
\Temp\MySource\MyProject.vcproj or
MySource\MyProject.vcproj.

Focused UML Data – Code Project File
Path

The file path of the code project to which the currently focused
UML class, interface or enumeration belongs, for example, C:
\Temp\MySource\MyProject.vcproj.

Project Folder The directory where the current UModel project is saved, for
example, C:
\Users\<user>\Documents\Altova\UModel2024\UModelExa
mples\.

Temporary Folder The directory where the application's temporary files are
saved, for example, C:\Users\<user>\AppData\Local\Temp.

In some cases, you may also need to enter a value in the Initial Directory input box. For example, the
configuration below opens in Notepad the code file of the currently selected element on a diagram. (Note that,
for this command to work, the element currently selected on the diagram must have a value (file name) defined
in the code file name field of the Properties Window , and that file must exist in C:
\UML_Bank_Sample\CSharpCode directory).

88

744 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

© 2018-2024 Altova GmbH

Tools 745Menu Reference

Altova UModel 2024 Enterprise Edition

16.6.6.4 Keyboard

The Keyboard tab allows you to define (or change) keyboard shortcuts for any command.

To assign a new Shortcut to a command:

1. Select a value from the Category combo box.
2. Select the command you want to assign a new shortcut to, in the Commands list box.
3. Click inside the Press New Shortcut Key text box, and press the shortcut keys that are to activate

the command. The shortcuts appear immediately in the text box. If the shortcut was assigned
previously, then that function is displayed below the text box.

4. Click Assign to permanently assign the shortcut. The shortcut now appears in the Current Keys list
box. (To clear this text box, press any of the control keys, Ctrl, Alt or Shift).

To de-assign (delete) a shortcut:

1. Click the shortcut you want to delete in the Current Keys list box, and
2. Click the Remove button (which has now become active).
3. Click Close to confirm all the changes made in the Customize dialog box.

746 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

16.6.6.5 Menu

The Menu tab allows you to customize the menu bars as well as the context menus.

Customizing menus
The Default Menu bar is the menu bar that is displayed when no project is open. The UModel project menu
bar is the menu bar that is displayed when a project is open. Each menu bar can be customized separately,
and customization changes made to one do not affect the other.

To customize a menu bar, select it from the Show Menus For drop-down list. Then click the Commands tab
and drag commands from the Commands list box to the menu bar or into any of the menus.

Deleting commands from menus and resetting the menu bars
To delete an entire menu or a command inside a menu, do the following:

1. Select from the Show Menus for drop-down list the menu bar that is to be customized.
2. With the Customize dialog open, select (i) the menu you want to delete from the application's menu

bar, or (ii) the command you want to delete from one of these menus.
3. Either (i) drag the menu from the menu bar or the menu command from the menu, or (ii) right-click the

menu or menu command and select Delete.

You can reset any menu bar to its original installation state by selecting it from the Show Menus For drop-
down list and then clicking the Reset button.

© 2018-2024 Altova GmbH

Tools 747Menu Reference

Altova UModel 2024 Enterprise Edition

Customizing the application's context menus
Context menus are the menus that appear when you right-click certain objects in the application's interface.
Each of these context menus can be customized by doing the following:

1. Select the context menu from the Select context menu drop-down list. This pops up the context
menu.

2. Click the Commands tab.
3. Drag a command from the Commands list box into the context menu.
4. To delete a command from the context menu, right-click that command in the context menu, and

select Delete. Alternatively, drag the command out of the context menu.

You can reset any context menu to its original installation state by selecting it in the Select context menu
drop-down list and then clicking the Reset button.

Menu shadows
Select the Menu shadows check box to give all menus shadows.

You can choose from among several menu animations if you prefer animated menus. The Menu animations
drop-down list provides the following options:

· None (default)
· Unfold
· Slide
· Fade

16.6.6.6 Macros

The Macros tab allows you to select from the macros defined in the Scripting Project that is currently active in
UModel.

The active Scripting Projects are specified in the Scripting tab of the Options dialog, or in the Scripting tab
of the project settings.

16.6.6.7 Plug-Ins

The Plug-Ins tab allows you to add or remove a UModel Plug-in (.dll file) which integrates with UModel, see
UModel IDE Plug-Ins .

16.6.6.8 Options

The Options tab allows you to set general environment settings.

754

796

748 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

When active, the Show ScreenTips on toolbars check box displays a tooltip label when the mouse pointer is
placed over a toolbar button. The label contains a short description of the button function. If the Show shortcut
keys in ScreenTips check box is selected, the tooltip label displays the associated keyboard shortcut, if one
has been assigned.

When active, the Large Icons check box switches between the standard size icons, and larger versions of the
icons.

16.6.7 Restore Toolbars and Windows

The Restore Toolbars and Windows command closes down UModel and re-starts it with the default settings.
Before it closes down a dialog pops up asking for confirmation about whether UModel should be restarted.

This command is useful if you have been resizing, moving, or hiding toolbars or windows, and would now like to
have all the toolbars and windows as they originally were.

16.6.8 Options

Select the menu item Tools | Options to define your project options.

The View tab allows you to define:

· Where the program logo should appear.
· The application title bar contents.
· The types of elements you want listed when using the "List elements not used in any diagram" context

menu option in the Model Tree, or Favorites tab. You also have the option of ignoring elements
contained in included files.

· If a selected element in a diagram is automatically selected/synchronized in the Model Tree.
· The default depth of the hierarchy view when using the Show graph view in the Hierarchy tab.
· The Autolayout Hierarchic settings, which allow you to define the nesting depth up and down in the

hierarchy window.
· "Expand each element only once", only allows one of the same classifiers to be expanded in the same

image/diagram.
· If you want snap lines to help you align elements when dragging in a diagram.

© 2018-2024 Altova GmbH

Tools 749Menu Reference

Altova UModel 2024 Enterprise Edition

The Editing tab allows you to define:

· If a new Diagram created in the Model Tree tab, is also automatically opened in the main area.
· Default visibility settings when adding new elements - Properties or Operations.
· The default code language when a new component is added.
· If a newly added constraint, is to automatically constrain its owner as well.
· If a prompt should appear when deleting elements from a project, from the Favorites tab or in any of the

diagrams. This prompt can be deactivated when deleting items there; this option allows you to reset
the "prompt on delete" dialog box.

· The delay with which the syntax error pop-up message should be closed.

750 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The Diagram Editing tab allows you to define:

· The number of items that can be automatically added to a diagram, before a prompt appears.
· The display of Styles when they are automatically added to a diagram.
· If Associations between modeling elements, are to be created automatically when items are added to a

diagram.
· If the associations to collections are to be resolved.
· If templates from unknown externals are to be resolved as not fully qualified.
· or use preexisting Collection Templates, or define new ones.

Collection Templates should be defined as fully qualified i.e. a.b.c.List. If the template has this
namespace then UModel automatically creates a Collection Association. Exception: If the template
belongs to the Unknown Externals package, and the option "Unknown externals: resolve unqualified",
is enabled, then only the template name is considered (i.e. List instead of a.b.c.List).

· If the autocompletion window is to be available when editing attributes or operations in the class
diagram.

© 2018-2024 Altova GmbH

Tools 751Menu Reference

Altova UModel 2024 Enterprise Edition

The File tab allows you to define:

· The actions performed when files are changed.
· If the contents of the Favorites tab are to be loaded and saved with the current project, as well as the

any currently open diagrams.
· If the previously opened project is to automatically be opened when starting the application.
· If you want to structure the project file with CR/LF and tab indents in a pretty-print format.

752 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The Code Engineering tab allows you to define the following parameters:

· The circumstances under which the Message window will open.
· If all coding elements i.e. those contained in a Java / C# / VB namespace root, as well as those

assigned to a Java / C# / VB component, are to be checked, or only elements used for code
engineering, i.e. where "use for code engineering" check box is active, are to be checked.

· When updating program code if:
o If a syntax check is to be performed.

o If missing ComponentRealizations are to be automatically generated.

o If missing code file names in the merged code are to be generated.

o If namespaces are to be used in the code file path.

· The Indentation method used in the code, i.e. tabs or any number of spaces.
· The directories to be ignored when updating a UModel project from code, or directory. Separate the

respective directories with a semicolon ";". Child directories of the same name are also ignored.
· The location of the XMLSpy Catalog File, RootCatalog.xml, which enables UModel as well as

XMLSpy to retrieve commonly used schemas (as well as stylesheets and other files) from local user
folders. This increases the overall processing speed, and enables users to work offline.

· You can also specify whether you want to back up modified C++ files.

© 2018-2024 Altova GmbH

Tools 753Menu Reference

Altova UModel 2024 Enterprise Edition

The Source Control tab allows you to define:

· The current source control plug-in using the combo box. The Advanced button allows you to define the
specific settings of the source control plug-in that you selected. These settings change depending on
the source control plug-in that you use.

· The login ID for the source control provider.
· Specific settings check in/out settings.
· The Reset button is made available if you have checked/activated the "Don't show this again" option in

one of the dialog boxes. The Don't show this again prompt is then reenabled.

754 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The Scripting tab allows you to define:

· If the Scripting environment should be active for the current UModel project.
· Which Global scripting file you want to use
· If auto-macros are to be executed when UModel starts
· If Scripting events are to be processed.

770

© 2018-2024 Altova GmbH

Tools 755Menu Reference

Altova UModel 2024 Enterprise Edition

For information about the settings available in the Network Proxy tab, see Network Proxy Settings . To find
out more about Java VM settings, see Java Virtual Machine Settings .

The Network tab:
The Network section (screenshot below) enables you to configure important network settings.

758

757

756 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

IP addresses
When host names resolve to more than one address in mixed IPv4/IPv6 networks, selecting this option causes
the IPv6 addresses to be used. If the option is not selected in such environments and IPv4 addresses are
available, then IPv4 addresses are used.

Timeout
· Transfer timeout: If this limit is reached for the transfer of any two consecutive data packages of a

transfer (sent or received), then the entire transfer is aborted. Values can be specified in seconds [s] or
milliseconds [ms], with the default being 40 seconds. If the option is not selected, then there is no time
limit for aborting a transfer.

· Connection phase timeout: This is the time limit within which the connection has to be established,
including the time taken for security handshakes. Values can be specified in seconds [s] or
milliseconds [ms], with the default being 300 seconds. This timeout cannot be disabled.

Certificate
· Verify TLS/SSL server certificate: If selected, then the authenticity of the server's certificate is checked

by verifying the chain of digital signatures until a trusted root certificate is reached. This option is
enabled by default. If this option is not selected, then the communication is insecure, and attacks (for
example, a man-in-the-middle attack) would not be detected. Note that this option does not verify that
the certificate is actually for the server that is communicated with. To enable full security, both the
certificate and the identity must be checked (see next option).

· Verify TLS/SSL server identity: If selected, then the server's certificate is verified to belong to the server
we intend to communicate with. This is done by checking that the server name in the URL is the same
as the name in the certificate. This option is enabled by default. If this option is not selected, then the
server's identify is not checked. Note that this option does not enable verification of the server's
certificate. To enable full security, both the certificate as well as the identity must be checked (see
previous option).

The Help tab:
UModel provides Help (the user manual) in two formats:

© 2018-2024 Altova GmbH

Tools 757Menu Reference

Altova UModel 2024 Enterprise Edition

· Online Help, in HTML format, which is available at the Altova website. In order to access the Online
Help you will need Internet access.

· A Help file in PDF format, which is installed on your machine when you install UModel. It is named
UModel.pdf and is located in the application folder (in the Program Files folder). If you do not have

Internet access, you can always open this locally saved Help fie.

The Help option (screenshot below) enables you to select which of the two formats is opened when you click
the Help (F1) command in the Help menu.

You can change this option at any time for the new selection to take effect. The links in this section (see
screenshot above) open the respective Help format.

16.6.8.1 Java Virtual Machine Settings

In the Java section (see screenshot below), you can optionally enter the path to a Java VM (Virtual Machine)
on your file system. Note that adding a custom Java VM path is not always necessary. By default, UModel
attempts to detect the Java VM path automatically by reading (in this order) the Windows registry and the
JAVA_HOME environment variable. The custom path added in this dialog box will take priority over any other
Java VM path detected automatically.

You may need to add a custom Java VM path, for example, if you are using a Java virtual machine which does
not have an installer and does not create registry entries (e.g., Oracle's OpenJDK). You might also want to set
this path if you need to override, for whatever reason, any Java VM path detected automatically by UModel.

758 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Note the following:

· The Java VM path is shared between Altova desktop (not server) applications. Consequently, if you
change it in one application, it will automatically apply to all other Altova applications.

· The path must point to the jvm.dll file from the \bin\server or \bin\client directory, relative to the

directory where the JDK was installed.
· The UModel platform (32-bit, 64-bit) must be the same as that of the JDK.
· After changing the Java VM path, you may need to restart UModel for the new settings to take effect.

Changing the Java VM path affects database connectivity via JDBC.This setting does not affect Java code
generation and import. Note that the Java runtimes used for importing Java binaries into UModel can be
configured separately. For more information, see Adding Custom Java Runtimes .

16.6.8.2 Network Proxy Settings

The Network Proxy section enables you to configure custom proxy settings. These settings affect how the
application connects to the Internet (for XML validation purposes, for example). By default, the application uses
the system's proxy settings, so you should not need to change the proxy settings in most cases. If necessary,
however, you can set an alternative network proxy by selecting, in the Proxy Configuration combo box, either
Automatic or Manual to configure the settings accordingly.

Note: The network proxy settings are shared among all Altova MissionKit applications. So, if you change the
settings in one application, all MissionKit applications will be affected.

213

© 2018-2024 Altova GmbH

Tools 759Menu Reference

Altova UModel 2024 Enterprise Edition

Use system proxy settings
Uses the Internet Explorer (IE) settings configurable via the system proxy settings. It also queries the settings
configured with netsh.exe winhttp.

Automatic proxy configuration
The following options are provided:

· Auto-detect settings: Looks up a WPAD script (http://wpad.LOCALDOMAIN/wpad.dat) via DHCP or

DNS, and uses this script for proxy setup.
· Script URL: Specify an HTTP URL to a proxy-auto-configuration (.pac) script that is to be used for

proxy setup.
· Reload: Resets and reloads the current auto-proxy-configuration. This action requires Windows 8 or

newer, and may need up to 30s to take effect.

Manual proxy configuration
Manually specify the fully qualified host name and port for the proxies of the respective protocols. A supported
scheme may be included in the host name (for example: http://hostname). It is not required that the scheme

is the same as the respective protocol if the proxy supports the scheme.

760 Menu Reference Tools

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The following options are provided:

· HTTP Proxy: Uses the specified host name and port for the HTTP protocol. If Use this proxy server for
all protocols is selected, then the specified HTTP proxy is used for all protocols.

· SSL Proxy: Uses the specified host name and port for the SSL protocol.
· No Proxy for: A semi-colon (;) separated list of fully qualified host names, domain names, or IP

addresses for hosts that should be used without a proxy. IP addresses may not be truncated and IPv6
addresses have to be enclosed by square brackets (for example:
[2606:2800:220:1:248:1893:25c8:1946]). Domain names must start with a leading dot (for

example: .example.com).

· Do not use the proxy server for local addresses: If checked, adds <local> to the No Proxy for list. If

this option is selected, then the following will not use the proxy: (i) 127.0.0.1, (ii) [::1], (iii) all host

names not containing a dot character (.).

Current proxy settings
Provides a verbose log of the proxy detection. It can be refreshed with the Refresh button to the right of the
Test URL field (for example, when changing the test URL, or when the proxy settings have been changed).

· Test URL: A test URL can be used to see which proxy is used for that specific URL. No I/O is done
with this URL. This field must not be empty if proxy-auto-configuration is used (either through Use
system proxy settings or Authomatic proxy configuration).

© 2018-2024 Altova GmbH

Window 761Menu Reference

Altova UModel 2024 Enterprise Edition

16.7 Window

Cascade
This command rearranges all open document windows so that they are all cascaded (i.e. staggered) on top of
each other.

Tile horizontally
This command rearranges all open document windows as horizontal tiles, making them all visible at the same
time.

Tile vertically
This command rearranges all open document windows as vertical tiles, making them all visible at the same
time.

Arrange icons
Arranges haphazardly positioned, iconized diagrams, along the base of the diagram viewing area.

Close
Closes the currently active diagram tab.

Close All
Closes all currently open diagram tabs.

Close All But Active
Closes all diagram tabs except for the currently active one.

Forward
Whenever you change focus from a diagram window to another one, or navigate a hyperlink, UModel
"remembers" this as an event. This command takes you "forward" in the history of such events. It is only
meaningful and available if you already used the Back menu command (see below).

Back
This command takes you back to the window that was previously in focus. This can be useful when you work
with many diagram windows simultaneously, or when you navigate with hyperlinks, see Hyperlinking
Elements .

Window list (1, 2)
This list shows all currently open diagram windows, and lets you quickly switch between them. You can also
use the Ctrl+Tab or Ctrl F6 keyboard shortcuts to cycle through the open windows.

117

762 Menu Reference Window

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Windows
Displays a dialog box where you can layout or close multiple diagram windows simultaneously, see also
Diagram Pane .98

© 2018-2024 Altova GmbH

Help 763Menu Reference

Altova UModel 2024 Enterprise Edition

16.8 Help

This section describes all the menu commands available in the Help menu.

Help (F1)

The Help (F1) command opens the application's Help documentation (its user manual). By default, the
Online Help in HTML format at the Altova website will be opened.

If you do not have Internet access or do not want, for some other reason, to access the Online Help, you
can use the locally stored version of the user manual. The local version is a PDF file named UModel.pdf

that is stored in the application folder (in the Program Files folder).

If you want to change the default format to open (Online Help or local PDF), do this in the Help section of
the Options dialog (menu command Tools | Options).

Software Activation

License your product
After you download your Altova product software, you can license—or activate—it using either a free
evaluation key or a purchased permanent license key.

· Free evaluation license. When you first start the software after downloading and installing it, the
Software Activation dialog will pop up. In it is a button to request a free evaluation license. Click
it to get your license. When you click this button, your machine-ID will be hashed and sent to
Altova via HTTPS. The license information will be sent back to the machine via an HTTP response.
If the license is created successfully, a dialog to this effect will appear in your Altova application.
On clicking OK in this dialog, the software will be activated for a period of 30 days on this
particular machine.

· Permanent license key. The Software Activation dialog allows you to purchase a permanent
license key. Clicking this button takes you to Altova's online shop, where you can purchase a
permanent license key for your product. Your license will be sent to you by e-mail in the form of a
license file, which contains your license-data.

There are three types of permanent license: installed, concurrent user, and named user. An
installed license unlocks the software on a single computer. If you buy an installed license for N
computers, then the license allows use of the software on up to N computers. A concurrent-user
license for N concurrent users allows N users to run the software concurrently. (The software may
be installed on 10N computers.) A named-user license authorizes a specific user to use the
software on up to 5 different computers. To activate your software, click Upload a New License,
and, in the dialog that appears, enter the path to the license file, and click OK.

Note: For multi-user licenses, each user will be prompted to enter his or her own name.

Your license email and the different ways to license (activate) your Altova product
The license email that you receive from Altova will contain your license file as an attachment.
The license file has a .altova_licenses file extension.

To activate your Altova product, you can do one of the following:

764 Menu Reference Help

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· Save the license file (.altova_licenses) to a suitable location, double-click the

license file, enter any requested details in the dialog that appears, and finish by
clicking Apply Keys.

· Save the license file (.altova_licenses) to a suitable location. In your Altova

product, select the menu command Help | Software Activation, and then Upload a
New License. Browse for or enter the path to the license file, and click OK.

· Save the license file (.altova_licenses) to any suitable location, and upload it from

this location to the license pool of your Altova LicenseServer. You can then either: (i)
acquire the license from your Altova product via the product's Software Activation
dialog (see below) or (ii) assign the license to the product from Altova LicenseServer.
For more information about licensing via LicenseServer, read the rest of this topic.

You can access the Software Activation dialog (screenshot below) at any time by clicking the Help |
Software Activation command.

Activate your software
You can activate the software by registering the license in the Software Activation dialog or by licensing via
Altova LicenseServer (see details below).

· Registering the license in the Software Activation dialog. In the dialog, click Upload a New
License and browse for the license file. Click OK to confirm the path to the license file and to
confirm any data you entered (your name in the case of multi-user licenses). Finish by clicking
Save.

· Licensing via Altova LicenseServer on your network: To acquire a license via an Altova
LicenseServer on your network, click Use Altova LicenseServer, located at the bottom of the
Software Activation dialog. Select the machine on which the LicenseServer you want to use has
been installed. Note that the auto-discovery of License Servers works by means of a broadcast
sent out on the LAN. As these broadcasts are limited to a subnet, License Server must be on the
same subnet as the client machine for auto-discovery to work. If auto-discovery does not work,
then type in the name of the server. The Altova LicenseServer must have a license for your Altova
product in its license pool. If a license is available in the LicenseServer pool, this is indicated in
the Software Activation dialog (see screenshot below showing the dialog in Altova XMLSpy).
Click Save to acquire the license.

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver

© 2018-2024 Altova GmbH

Help 765Menu Reference

Altova UModel 2024 Enterprise Edition

After a machine-specific (aka installed) license has been acquired from LicenseServer, it cannot
be returned to LicenseServer for a period of seven days. After that time, you can return the
machine license to LicenseServer (click Return License) so that this license can be acquired
from LicenseServer by another client. (A LicenseServer administrator, however, can unassign an
acquired license at any time via the administrator's Web UI of LicenseServer.) Note that the
returning of licenses applies only to machine-specific licenses, not to concurrent licenses.

Check out license
You can check out a license from the license pool for a period of up to 30 days so that the license
is stored on the product machine. This enables you to work offline, which is useful, for example, if
you wish to work in an environment where there is no access to your Altova LicenseServer (such
as when your Altova product is installed on a laptop and you are traveling). While the license is
checked out, LicenseServer displays the license as being in use, and the license cannot be used
by any other machine. The license automatically reverts to the checked-in state when the check-
out period ends. Alternatively, a checked-out license can be checked in at any time via the Check
in button of the Software Activation dialog.

To check out a license, do the following: (i) In the Software Activation dialog, click Check out
License (see screenshot above); (ii) In the License Check-out dialog that appears, select the
check-out period you want and click Check out. The license will be checked out. After checking
out a license, two things happen: (i) The Software Activation dialog will display the check-out
information, including the time when the check-out period ends; (ii) The Check out License
button in the dialog changes to a Check In button. You can check the license in again at any
time by clicking Check In. Because the license automatically reverts to the checked-in status
after the check-out period elapses, make sure that the check-out period you select adequately
covers the period during which you will be working offline.

766 Menu Reference Help

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

If the license being checked out is a Installed User license or Concurrent User license, then the
license is checked out to the machine and is available to the user who checked out the license. If
the license being checked out is a Named User license, then the license is checked out to the
Windows account of the named user. License check-out will work for virtual machines, but not for
virtual desktop (in a VDI). Note that, when a Named User license is checked out, the data to
identify that license check-out is stored in the user's profile. For license check-out to work, the
user's profile must be stored on the local machine that will be used for offline work. If the user's
profile is stored at a non-local location (such as a file-share), then the checkout will be reported as
invalid when the user tries to start the Altova application.

License check-ins must be to the same major version of the Altova product from which the license
was checked out. So make sure to check in a license before you upgrade your Altova product to
the next major version.

Note: For license check-outs to be possible, the check-out functionality must be enabled on
LicenseServer. If this functionality has not been enabled, you will get an error message to this
effect when you try to check out. In this event, contact your LicenseServer administrator.

Copy Support Code
Click Copy Support Code to copy license details to the clipboard. This is the data that you will
need to provide when requesting support via the online support form.

Altova LicenseServer provides IT administrators with a real-time overview of all Altova licenses on a
network, together with the details of each license as well as client assignments and client usage of
licenses. The advantage of using LicenseServer therefore lies in administrative features it offers for large-
volume Altova license management. Altova LicenseServer is available free of cost from the Altova website.
For more information about Altova LicenseServer and licensing via Altova LicenseServer, see the Altova
LicenseServer documentation.

Order Form

When you are ready to order a licensed version of the software product, you can use either the Purchase
a Permanent License Key button in the Software Activation dialog (see previous section) or the Order
Form command to proceed to the secure Altova Online Shop.

Registration

Opens the Altova Product Registration page in a tab of your browser. Registering your Altova software will
help ensure that you are always kept up to date with the latest product information.

Check for Updates

Checks with the Altova server whether a newer version than yours is currently available and displays a
message accordingly.

Support Center

A link to the Altova Support Center on the Internet. The Support Center provides FAQs, discussion forums
where problems are discussed, and access to Altova's technical support staff.

Download Components and Free Tools

A link to Altova's Component Download Center on the Internet. From here you can download a variety of
companion software to use with Altova products. Such software ranges from XSLT and XSL-FO processors

https://www.altova.com/support
https://www.altova.com/
https://www.altova.com/manual/en/licenseserver/3.14/
https://www.altova.com/manual/en/licenseserver/3.14/

© 2018-2024 Altova GmbH

Help 767Menu Reference

Altova UModel 2024 Enterprise Edition

to Application Server Platforms. The software available at the Component Download Center is typically free
of charge.

UModel on the Internet

A link to the Altova website on the Internet. You can learn more about UModel, related technologies and
products on the Altova website.

About UModel

Displays the splash window and version number of your product. If you are using the 64-bit version of
UModel, this is indicated with the suffix (x64) after the application name. There is no suffix for the 32-bit
version.

https://www.altova.com/
https://www.altova.com/

768 UModel Programmer's Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17 UModel Programmer's Reference

UModel is an Automation Server. That is, it is an application that exposes programmable objects to other
applications (called Automation Clients). As a result, an Automation Client can directly access the objects and
functionality that the Automation Server makes available. This is beneficial to an Automation Client because it
can make use of the functionality of UModel. For example, an Automation Client can use the reverse
engineering functionality of UModel. Developers can therefore improve their applications by using the ready-
made functionality of UModel.

The programmable objects of UModel are made available to Automation Clients via the UModel API, which is a
COM API. The object model of the API and a complete description of all available objects are provided in this
documentation (see UModel API Reference).

The UModel API can be accessed from within the following environments:

· Scripting Editor
· IDE Plug-ins
· External programs

Each of these environments is described briefly below.

Scripting Editor
You can customize your installation of UModel by modifying and adding functionality to it. You can also create
Forms for user input and modify the user interface so that it contains new menu commands and toolbar
shortcuts. All these features are achieved by writing scripts that interact with objects of the Application API. To
aid you in carrying out these tasks efficiently, UModel offers you an in-built Scripting Editor. A complete
description of the functionality available in the Scripting Editor and how it is to be used is given in the Scripting
Editor section of this documentation. The supported programming languages are JScript and VBScript.

IDE Plug-ins
UModel enables you to create your own plug-ins, as DLL files, and integrate them into UModel. The UModel
graphical user interface provides commands to enable or disable a plug-in. Typical languages used to
implement an IDE plug-in are C# and C++. For more information, see IDE Plug-ins .

External programs
Additionally, you can manipulate UModel with external scripts. For example, you could write a script to open
UModel at a given time, then open a UModel project generate UML documentation, and print it out. External
scripts would again make use of the API to carry out these tasks, see The UModel API .

Using the UModel API from outside UModel requires an instance of UModel to be started first, see Accessing
the API .

Essentially, UModel will be started via its COM registration. Then the Application object associated with the
UModel instance is returned. Depending on the COM settings, an object associated with an already running
UModel can be returned. Any programming language that supports creation and invocation of COM objects can
be used. The most common of these are listed below.

877

770

796

815

770

796

815

815

© 2018-2024 Altova GmbH

 769UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

· JScript and VBScript script files have a simple syntax and are designed to access COM objects.
You can run such scripts directly from the command line or with a double click from Windows
Explorer. They are best used for simple automation tasks.

· C# is a full-fledged programming language that provides support for COM interoperability.
· Java : Altova products come with native Java classes that wrap the Application API and provide a full

Java look-and-feel.
· Other programming languages that make useful alternatives are: Visual Basic for Applications, Perl,

and Python.

862

834

860

770 UModel Programmer's Reference Scripting Editor

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.1 Scripting Editor

Scripting Editor is a development environment built into UModel from where you can customize the functionality
of UModel with the help of JScript or VBScript scripts. For example, you can add a new menu item to perform a
custom project task, or you can have UModel trigger some behavior each time when a document is opened or
closed. To make this possible, you create scripting projects—files with .asprj extension (Altova Scripting
Project).

Scripting Editor

Scripting projects typically include one or several macros—these are programs that perform miscellaneous
custom tasks when invoked. You can run macros either explicitly from a menu item (or a toolbar button, if
configured), or you can set up a macro to run automatically whenever UModel starts. The scripting environment
also integrates with the UModel COM API. For example, your VBScript or JScript scripts can handle
application or document events such as starting or shutting down UModel, opening or closing a project, and so
on. Scripting projects can include Windows Forms that you can design visually, in a way similar to Visual
Studio. In addition, several built-in commands are available that help you instantiate and use .NET classes from
VBScript or JScript code.

Once your scripting project is complete, you can enable it either globally in UModel, or only for specific
projects.

Scripting Editor requires .NET Framework 2.0 or later to be installed before UModel is installed.

© 2018-2024 Altova GmbH

Scripting Editor 771UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.1.1 Creating a Scripting Project

All scripts and scripting information created in the Scripting Editor are stored in Altova Scripting Projects (.asprj
files). A scripting project may contain macros, application event handlers, and forms (which can have their own
event handlers). In addition, you can add global variables and functions to a "Global Declarations" script—this
makes such variables and functions accessible across the entire project.

To start a new project, run the menu command Tools | Scripting Editor.

The languages supported for use in a scripting project are JScript and VBScript (not to be confused with Visual
Basic, which is not supported). These scripting engines are available by default on Windows and have no
special requirements to run. You can select a scripting language as follows:

1. Right-click the Project item in the upper-left pane, and select Project settings from the context menu.
2. Select a language (JScript or VBScript), and click OK.

From the Project settings dialog box above, you can also change the target .NET Framework version. This is
typically necessary if your scripting project requires features available in a newer .NET Framework version.
Note that any clients using your scripting project will need to have the same .NET Framework version installed
(or a later compatible version).

By default, a scripting project references several .NET assemblies, like System, System.Data,
System.Windows.Forms, and others. If necessary, you can import additional .NET assemblies, including
assemblies from .NET Global Assembly Cache (GAC) or custom .dll files. You can import assemblies as
follows:

1. Statically, by adding them manually to the project. Right-click Project in the top-left pane, and select
Add .NET Assembly from the context menu.

2. Dynamically, at runtime, by calling the CLR.LoadAssembly command from the code.
786

772 UModel Programmer's Reference Scripting Editor

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

You can create multiple scripting projects if necessary. You can save a scripting project to the disk, and then
load it back into the Scripting Editor later. To do this, use the standard Windows buttons available in the
toolbar: New, Open, Save, Save As. Once the scripting project has been tested and is ready for deployment,
you can load it into UModel and run any of its macros or event handlers. For more information, see Enabling
Scripts and Macros .

You can also find an example scripting project at the following path: C:
\Users\<user>\Documents\Altova\UModel2024\UModelExamples\Scripting\ScriptSampleFind.asprj.

The next sections focus on the parts that your scripting project may need: global declarations, macros, forms,
and events.

17.1.1.1 Overview of the Environment

The Scripting Editor consists of the following parts:

· Toolbar
· Project pane
· Properties pane
· Main window
· Toolbox

793

© 2018-2024 Altova GmbH

Scripting Editor 773UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Toolbar
The toolbar includes standard Windows file management commands (New, Open, Save, Save As) and editor
commands (Copy, Cut, Delete, Paste). When editing source code, the Find and Replace commands are
additionally available, as well as the Print command.

Project pane
The project pane helps you view and manage the structure of the project. A scripting project consists of several
components that can work together and may be created in any order:

· A "Global Declarations" script. As the name suggests, this script stores information available globally
across the project. You can declare in this script any variables or functions that you need to be
available in all forms, event handler scripts, and macros.

· Forms. Forms are typically necessary to collect user input, or provide some informative dialog boxes.
For example, your scripting project may display an input form that lets the user enter an element name
and click a Delete button. Upon clicking the button, all occurrences of that element would be removed
from the UModel project. A form is invoked by a call to it either within a function (in the Global
Declarations script) or directly in a macro.

· Events. The "Events" folder displays UModel application events provided by the COM API. To write a
script that will be executed when an event occurs, double-click any event, and then type the handling
code in the editor. The application events should not be confused with form events; the latter are
handled at form level, as further detailed below.

· Macros. A macro is a script that can be invoked either on demand from a context menu or be executed
automatically when UModel starts. Macros do not have parameters or return values. A macro can
access all variables and functions declared in the Global Declarations script and it can also display
forms.

Right-click any of the components to see the available context menu commands and their shortcuts. Double-
click any file (such as a form or a script) to open it in the main window.

The toolbar buttons provide the following quick commands:

New macro Adds a new macro to the project, in the Macros directory.

New form Adds a new form to the project, in the Forms directory.

Run macro Runs the selected macro.

Debug macro Runs the selected macro in debug mode.

Properties pane
The Properties pane is very similar to the one in Visual Studio. It displays the following:

· Form properties, when a form is selected
· Object properties, when an object in a form is selected
· Form events, when a form is selected
· Object events, when an object in a form is selected

774 UModel Programmer's Reference Scripting Editor

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To switch between the properties and events of the selected component, click the Properties or Events
 buttons, respectively.

The Categorized and Alphabetical icons display the properties or events either organized by
category or organized in ascending alphabetical order.

When a property or event is selected, a short description of it is displayed at the bottom of the Properties pane.

Main window
The main window is the working area where you can enter source code or modify the design of the form. When
editing forms, you can work in two tabs: the Design tab and the Source tab. The Design tab shows the layout
of the form, while the Source tab contains the source code such as handler methods for the form events.

The source code editor provides code editing aids such as syntax coloring, source code folding, highlighting of
starting and ending braces, zooming, autocompletion suggestions, bookmarks.

Autocompletion suggestions
JScript and VBScript are untyped languages, so autocompletion is limited to COM API names and UModel
built-in commands . The full method or property signature is shown next to the autocompletion entry helper.

If names start with objUMLxxx, members of the corresponding IUMLxxx interface will be shown. For example,
the UModel COM API has an interface, IUMLClass. If you use names like objUMLClass, objUMLClass123, or
objUMLClassParent, the members of the corresponding IUMLClass will be displayed.

If names start with objApplication, objDocument, or objDiagramWindow, then members of the corresponding
interface will be shown. This also applies to all other interfaces defined in the UModel API.

Placing the mouse over a known method or property displays its signature (and documentation if available), for
example:

783

© 2018-2024 Altova GmbH

Scripting Editor 775UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

The auto-completion entry helper is normally shown automatically during editing, but it can also be obtained on
demand by pressing Ctrl+Space.

Bookmarks
· To set or remove a bookmark, click inside a line, and then press Ctrl+F2
· To navigate to the next bookmark, press F2
· To navigate to the previous bookmark, press Shift+F2
· To delete all bookmarks, press Ctrl+Shift+F2

Zooming in/out
· To zoom in or out, hold the Ctrl key pressed and then press the "+" or "-" keys or rotate the mouse

wheel.

Text view settings
To trigger text settings, right-click inside the editor, and select Text View Settings from the context menu.

Font settings
To change the font, right-click inside the editor, and select Text View Font from the context menu.

Toolbox
The Toolbox contains all the objects that are available for designing forms, such as buttons, text boxes, combo
boxes, and so on.

To add a Toolbox item to a form:

1. Create or open a form and make sure that the Design tab is selected.
2. Click the Toolbox object (for example, Button), and then click at the location in the form where you

wish to insert it. Alternatively, drag the object directly onto the form.

Some objects such as Timer are not added to the Form but are created in a tray at the bottom of the main
window. You can select the object in the tray and set properties and event handlers for the object from the
Properties pane. For an example of handling tray components from the code, see Handling form events .

You can also add registered ActiveX controls to the form. To do this, right-click the Toolbox area and select
Add ActiveX Control from the context menu.

17.1.1.2 Global Declarations

The "Global Declarations" script is present by default in any scripting project; you do not need to create it
explicitly. Any variables or functions that you add to this script are considered global across the entire project.
Consequently, you can refer to such variables and functions from any of the project's macros and events. The
following is an example of a global declarations script that imports the System.Windows.Forms namespace into
the project. To achieve that, the code below invokes the CLR.Import command built into Scripting Editor.

// import System.Windows.Forms namespace for all macros, forms and events:
CLR.Import("System.Windows.Forms");

Note: Every time a macro is executed or an event handler is called, the global declarations are re-initialized.

777

776 UModel Programmer's Reference Scripting Editor

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.1.1.3 Macros

Macros are scripts that contain JScript (or VBScript, depending on your project's language) statements, such
as variable declarations and functions.

If your projects should use macros, you can add them as follows: right-click inside the Project pane, select
Add Macro from the context menu, and then enter the macro's code in the main form. The code of a macro
could be as simple as an alert, for example:

alert("Hello, I'm a macro!");

More advanced macros can contain variables and local functions. Macros can also contain code that invokes
forms from the project. The listing below illustrates an example of a macro that shows a form. It is assumed
that this form has already been created in the "Forms" folder and has the name "SampleForm", see also
Forms .

// display a form
ShowForm("SampleForm");

In the code listing above, ShowForm is a command built into Scripting Editor. For reference to other similar
commands that you can use to work with forms and .NET objects, see the Built-in Commands .

You can add multiple macros to the same project, and you can designate any macro as "auto-macro". When a
macro is designated as "auto-macro", it runs automatically when UModel starts. To designate a macro as auto-
macro, right-click it, and select Set as Auto-Macro from the context menu.

Only one macro can be run at a time. After a macro (or event) is executed, the script is closed and global
variables lose their values.

To run a macro directly in Script Editor, click Run Macro . To debug a macro using the Visual Studio

debugger, click Debug Macro . For information about enabling and running macros in UModel, see
Enabling Scripts and Macros .

17.1.1.4 Forms

Forms are particularly useful if you need to collect input data from users or display data to users. A form can
contain miscellaneous controls to facilitate this, such as buttons, check boxes, combo boxes, and so on.

To add a form, right-click inside the Project pane, and then select Add Form from the context menu. To add a
control to a form, drag it from the Toolbox available to the right side of Scripting Editor and drop it onto the
form.

You can change the position and size of the controls directly on the form, by using the handles that appear
when you click any control, for example:

776

783

793

© 2018-2024 Altova GmbH

Scripting Editor 777UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

All form controls have properties that you can easily adjust in the Properties pane. To do this, first select the
control on the form, and then edit the required properties in the Properties pane.

Handling form events
Each form control also exposes various events to which your scripting project can bind. For example, you
might want to invoke some UModel COM API method whenever a button is clicked. To create a function that
binds to a form event, do the following:

1. In the Properties pane, click Events .
2. In the Action column, double-click the event where you need the method (for example, in the image

below, the handled event is "Click").

778 UModel Programmer's Reference Scripting Editor

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

You can also add handler methods by double-clicking a control on the form. For example, double-clicking a
button in the form design generates a handler method for the "Click" event of that button.

Once the body of the handler method is generated, you can type code that handles this event, for example:

//Occurs when the component is clicked.
function MyForm_ButtonClick(objSender, e_EventArgs)

{
 alert("A button was clicked");
}

To display a work-in-progress form detached from the Scripting Editor, right-click the form in the Project
window, and select Test Form from the context menu. Note that the Test Form command just displays the
form; the form's events (such as button clicks) are still disabled. To have the form react to events, call it from a
macro, for example:

// Instantiate and display a form
ShowForm("SampleForm");

Accessing form controls
You can access any components on a form from your code by using field access syntax. For example,
suppose there is a form designed as follows:

// MyForm
// ButtonPanel
// OkButton
// CancelButton
// TextEditor
// AxMediaPlayer1
// TrayComponents
// MyTimer

The code below shows how to instantiate the form, access some of its controls using field access syntax, and
then display the form:

// Instantiate the form
var objForm = CreateForm("MyForm");

// Disable the OK button
objForm.ButtonPanel.OkButton.Enabled = false;

// Change the text of TextEditor
objForm.TextEditor.Text = "Hello";
// Show the form
objForm.ShowDialog();

When you add certain controls such as timers to the form, they are not displayed on the form; instead, they
are shown as tray components at the base of the form design, for example:

© 2018-2024 Altova GmbH

Scripting Editor 779UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

To access controls from the tray, use the GetTrayComponent method on the form object, and supply the name
of the control as argument. In this example, to get a reference to MyTimer and enable it, use the following code:

var objTimer = objForm.GetTrayComponent("MyTimer");

objTimer.Enabled = true;

For ActiveX Controls, you can access the underlying COM object via the OCX property:

var ocx = lastform.AxMediaPlayer1.OCX; // get underlying COM object

ocx.enableContextMenu = true;

ocx.URL = "mms://apasf.apa.at/fm4_live_worldwide";

17.1.1.5 Events

Your scripting project may optionally include scripts that handle UModel events such as opening, closing, or
saving a document, starting or closing UModel, adding an element to a diagram, and others. These events are
provided by the UModel COM API, and you can find them in the "Events" folder of your scripting project. Note
that these events are UModel-specific, as opposed to form events. Events are organized into folders as follows:

· Application Events
· Document Events
· Transaction Events
· UMLData Events
· Focused UMLData Events

780 UModel Programmer's Reference Scripting Editor

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

To create an event handler script, right-click an event, and select Open from the context menu (or double-click
the event). The event handler script is displayed in the main window, where you can start editing it. For
example, the event handler illustrated below displays an alert each time a project is opened in UModel:

Note the following:

· The alert command is applicable to JScript. The VBScript equivalent is MsgBox. See also alert .
· The name of the event handler function must not be changed; otherwise, the event handler script will

not be called.
· In order for events to be processed, the Process Events check box must be selected when you enable

the scripting project in UModel. For more information, see Enabling Scripts and Macros .

You can optionally define local variables and helper functions within event handler scripts, for example:

var local;

function OnInitialize(objApplication)

{
 local = "OnInitialize";
 Helper();
}

function Helper()

{
 alert("I'm a helper function for " + local);
}

17.1.1.6 JScript Programming Tips

Below are a few JScript programming tips that you may find useful while developing a scripting project in
UModel Scripting Editor.

Out parameters
Out parameters from methods of the.NET Framework require special variables in JScript. For example:

784

793

© 2018-2024 Altova GmbH

Scripting Editor 781UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

var dictionary =

CLR.Create("System.Collections.Generic.Dictionary<System.String,System.String>");
dictionary.Add("1", "A");
dictionary.Add("2", "B");

// use JScript method to access out-parameters
var strOut = new Array(1);

if (dictionary.TryGetValue("1", strOut)) // TryGetValue will set the out parameter

 alert(strOut[0]); // use out parameter

Integer arguments
.NET Methods that require integer arguments should not be called directly with JScript number objects which
are floating point values. For example, instead of:

var objCustomColor = CLR.Static("System.Drawing.Color").FromArgb(128,128,128);

use:

var objCustomColor =

CLR.Static("System.Drawing.Color").FromArgb(Math.floor(128),Math.floor(128),Math.floor(12
8));

Iterating .NET collections
To iterate .NET collections, the JScript Enumerator as well as the .NET iterator technologies can be used, for
example:

// iterate using the JScript iterator
var itr = new Enumerator(coll);

for (; !itr.atEnd(); itr.moveNext())

 alert(itr.item());

// iterate using the .NET iterator
var itrNET = coll.GetEnumerator();

while(itrNET.MoveNext())

 alert(itrNET.Current);

.NET templates

.NET templates can be instantiated as shown below:

var coll = CLR.Create("System.Collections.Generic.List<System.String>");

or

CLR.Import("System");

782 UModel Programmer's Reference Scripting Editor

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

CLR.Import("System.Collections.Generic");
var dictionary = CLR.Create("Dictionary<String,Dictionary<String,String>>");

.NET enumeration values
 .NET enumeration values are accessed as shown below:

var enumValStretch = CLR.Static("System.Windows.Forms.ImageLayout").Stretch;

Enumeration literals
The enumeration literals from the UModel API can be accessed as shown below (there is no need to know their
numerical value).

objExportXMIFileDlg.XMIType = eXMI21ForUML23;

17.1.1.7 Example Scripting Project

A demo project that illustrates scripting with UModel is available at the following path: C:
\Users\<user>\Documents\Altova\UModel2024\UModelExamples\Scripting\ScriptSampleFind.asprj.

This scripting project consists of a macro and a Windows form. The form is where you can search for UML
packages, interfaces, operations, and other element kinds in the currently opened UModel project. You can
choose the element kinds to be searched for, and you can also make the search case insensitive, and match
whole words only.

To load the scripting project into Scripting Editor:

1. On the Tools menu, click Scripting Editor.
2. Click Open and browse for the ScriptSampleFind.asprj file from the path above.

Notice that the project contains a macro called Find Sample in the "Macros" directory. Also, a search form is
available in the "Forms" directory, and it includes various form event handlers.

To enable the scripting project as global UModel scripting project:

1. On the Tools menu, click Options.
2. Click the Scripting tab.
3. Under "Global scripting project file", click Browse and select the ScriptSampleFind.asprj file from

the path above.
4. This scripting project does not have auto-macros and application event handlers; therefore, you don't

need to select either the Run auto-macros... or Process events check boxes.
5. Click Apply.

At this stage, a new menu item called Find Sample becomes available under the Tools | Macros menu. This
new menu item calls the macro of the scripting project.

© 2018-2024 Altova GmbH

Scripting Editor 783UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

To run the macro:

1. Open a UModel project that contains several packages, operations, and so on (in this example, C:
\Users\<user>\Documents\Altova\UModel2024\UModelExamples\Bank_Java.ump).

2. On the Tools menu, click Macros, and then click Find Sample.
3. Type the search term, and click Find.

As shown above, all project elements whose name contains the search term are now listed. You can click on
any element in the grid to select it in the Project window.

17.1.2 Built-in Commands

This section provides reference to all the commands you can use in the UModel Scripting Editor.

· alert
· confirm
· CLR.Create
· CLR.Import
· CLR.LoadAssembly
· CLR.ShowImports
· CLR.ShowLoadedAssemblies

784

784

785

786

786

787

788

784 UModel Programmer's Reference Scripting Editor

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· CLR.Static
· CreateForm
· doevents
· lastform
· prompt
· ShowForm
· watchdog

17.1.2.1 alert

Displays a message box that shows a given message and the "OK" button. To proceed, the user will have to
click "OK".

Signature
For JScript, the signature is:

alert(strMessage : String) -> void

For VBScript, the signature is:

MsgBox(strMessage : String) -> void

Example
The following JScript code displays a message box with the text "Hello World".

alert("Hello World");

17.1.2.2 confirm

Opens a dialog box that shows a given message, a confirmation button, and a cancel button. The user will have
to click either "OK" or "Cancel" to proceed. Returns a Boolean that represents the user's answer. If the user
clicked "OK", the function returns true; if the user clicked "Cancel", the function returns false.

788

789

790

790

791

792

792

© 2018-2024 Altova GmbH

Scripting Editor 785UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Signature

confirm(strMessage : String) -> result : Boolean

Example (JScript)

if (confirm("Continue processing?") == false)

 alert("You have cancelled this action");

Example (VBScript)

If (confirm("Continue processing?") = false) Then

 MsgBox("You have cancelled this action")

End If

17.1.2.3 CLR.Create

Creates a new .NET object instance of the type name supplied as argument. If more than one argument is
passed, the successive arguments are interpreted as the arguments for the constructor of the .NET object. The
return value is a reference to the created .NET object

Signature

CLR.Create(strTypeNameCLR : String, constructor arguments ...) -> object

Example
The following JScript code illustrates how to create instances of various .NET classes.

// Create an ArrayList
var objArray = CLR.Create("System.Collections.ArrayList");

// Create a ListViewItem
var newItem = CLR.Create("System.Windows.Forms.ListViewItem", "NewItemText");

// Create a List<string>

786 UModel Programmer's Reference Scripting Editor

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

var coll = CLR.Create("System.Collections.Generic.List<System.String>");

// Import required namespaces and create a Dictionary object
CLR.Import("System");
CLR.Import("System.Collections.Generic");
var dictionary = CLR.Create("Dictionary< String, Dictionary< String, String > >");

17.1.2.4 CLR.Import

Imports a namespace. This is the scripting equivalent of C# using and VB.Net imports keyword. Calling
CLR.Import makes it possible to leave out the namespace part in subsequent calls like CLR.Create() and
CLR.Static().

Note: Importing a namespace does not add or load the corresponding assembly to the scripting project. You
can add assemblies to the scripting project dynamically (at runtime) in the source code by calling
CLR.LoadAssembly .

Signature

CLR.Import(strNamespaceCLR : String) -> void

Example
Instead of having to use fully qualified namespaces like:

if (ShowForm("FormName") == CLR.Static("System.Windows.Forms.DialogResult").OK)

{
 var sName = lastform.textboxFirstName.Text + " " + lastform.textboxLastName.Text;

 CLR.Static("System.Windows.Forms.MessageBox").Show("Hello " + sName);
}

One can import namespaces first and subsequently use the short form:

CLR.Import("System.Windows.Forms");

if (ShowForm("FormName") == CLR.Static("DialogResult").OK)

{
 var sName = lastform.textboxFirstName.Text + " " + lastform.textboxLastName.Text;

 CLR.Static("MessageBox").Show("Hello " + sName);
}

17.1.2.5 CLR.LoadAssembly

Loads the .NET assembly with the given long assembly name or file path. Returns Boolean true if the
assembly could be loaded; false otherwise.

786

© 2018-2024 Altova GmbH

Scripting Editor 787UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Signature

CLR.LoadAssembly(strAssemblyNameCLR : String, showLoadErrors : Boolean) -> result :
Boolean

Example
The following JScript code attempts to set the clipboard text by loading the required assembly dynamically.

// set clipboard text (if possible)
// System.Windows.Clipboard is part of the PresentationCore assembly, so load this
assembly first:
if (CLR.LoadAssembly("PresentationCore, Version=3.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35", true))

{
 var clipboard = CLR.Static("System.Windows.Clipboard");

 if (clipboard != null)

 clipboard.SetText("HelloClipboard");
}

17.1.2.6 CLR.ShowImports

Opens a message box that shows the currently imported namespaces. The user will have to click "OK" to
proceed.

Signature

CLR.ShowImports() -> void

Example
The following JScript code first imports a namespace, and then displays the list of imported namespaces:

CLR.Import("System.Windows.Forms");
CLR.ShowImports();

788 UModel Programmer's Reference Scripting Editor

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.1.2.7 CLR.ShowLoadedAssemblies

Opens a message box that shows the currently loaded assemblies. The user will have to click "OK" to
proceed.

Signature

CLR.ShowLoadedAssemblies() -> void

Example

CLR.ShowLoadedAssemblies();

17.1.2.8 CLR.Static

Returns a reference to a static .NET object. You can use this function to get access to .NET types that have
no instances and contain only static members.

Signature

CLR.Static(strTypeNameCLR : String) -> object

© 2018-2024 Altova GmbH

Scripting Editor 789UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Example (JScript)

// Get the value of a .NET Enum into a variable
var enumValStretch = CLR.Static("System.Windows.Forms.ImageLayout").Stretch

// Set the value of the Windows clipboard
var clipboard = CLR.Static("System.Windows.Clipboard");

clipboard.SetText("HelloClipboard");

// Check the buttons pressed by the user on a dialog box
if (ShowForm("FormName") == CLR.Static("System.Windows.Forms.DialogResult").OK)

 alert("ok");
else

 alert("cancel");

17.1.2.9 CreateForm

Instantiates the Form object identified by the name supplied as argument. The form must exist in the "Forms"
folder of the scripting project. Returns the form object (System.Windows.Forms.Form) corresponding to the
given name, or null if no form with such name exists.

Signature

CreateForm (strFormName : String) -> System.Windows.Forms.Form | null

Example
Let's assume that a form called "FormName" exists in the scripting project.

The following JScript code instantiates the form with some default values and displays it to the user.

var myForm = CreateForm("FormName");

if (myForm != null)

{
 myForm.textboxFirstName.Text = "Daniela";
 myForm.textboxLastName.Text = "Heidegger";

790 UModel Programmer's Reference Scripting Editor

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 var dialogResult = myForm.ShowDialog();

}

The dialogResult can subsequently be evaluated as follows:

if (dialogResult == CLR.Static("System.Windows.Forms.DialogResult").OK)

 alert("ok");
else

 alert("cancel");

Note: The code above will work only if the DialogResult property of the "OK" and "Cancel" buttons is set
correctly from the Properties pane (for example, it must be OK for the "OK" button).

17.1.2.10 doevents

Processes all Windows messages currently in the message queue.

Signature

doevents() -> void

Example (JScript)

for (i=0; i < nLongLastingProcess; ++i)

{
 // do long lasting process

 doevents(); // process Windows messages; give UI a chance to update
}

17.1.2.11 lastform

This is a global field that returns a reference to the last form object that was created via CreateForm() or
ShowForm().

Signature

lastform -> formObj : System.Windows.Forms.Form

Example
The following JScript code shows the form "FormName" as a dialog box.

CreateForm("FormName");
if (lastform != null)

© 2018-2024 Altova GmbH

Scripting Editor 791UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

{
 lastform.textboxFirstName.Text = "Daniela";
 lastform.textboxLastName.Text = "Heidegger";
 var dialogResult = lastform.ShowDialog();

}

The values of both textbox controls are initialized with the help of lastform.

17.1.2.12 prompt

Opens a dialog box that shows a message and a textbox control with a default answer. This can be used to let
the user input a simple string value. The return value is a string that contains the textbox value or null if the user
selected "Cancel".

Signature

prompt(strMessage : String, strDefault : String) -> val : String

Example

var name = prompt("Please enter your name", "Daniel Smith");

if (name != null)

 alert("Hello " + name + "!");

792 UModel Programmer's Reference Scripting Editor

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.1.2.13 ShowForm

Instantiates a new form object from the given form name and immediately shows it as dialog box. The return
value is an integer that represents the generated DialogResult (System.Windows.Forms.DialogResult). For
the list of possible values, refer to the documentation of the DialogResult Enum
(https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dialogresult?view=netframework-4.8).

Signature

ShowForm(strFormName : String) -> result : Integer

Example
The following JScript code

var dialogResult = ShowForm("FormName");

Shows the form "FormName" as a dialog box:

The DialogResult can subsequently be evaluated, for example:

if (dialogResult == CLR.Static("System.Windows.Forms.DialogResult").OK)

 alert("ok");
else

 alert("cancel");

Note: The code above will work only if the DialogResult property of the "OK" and "Cancel" buttons is set
correctly from the Properties pane (for example, it must be OK for the "OK" button).

17.1.2.14 watchdog

Long running CPU-intensive scripts may ask the user if the script should be terminated. The watchdog()
method is used to disable or enable this behavior. By default, the watchdog is enabled.

Calling watchdog(true) can also be used to reset the watchdog. This can be useful before executing long
running CPU-intensive tasks to ensure they have the maximum allowed script processing quota.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dialogresult?view=netframework-4.8

© 2018-2024 Altova GmbH

Scripting Editor 793UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Signature

watchdog(bEnable : boolean) -> void

Example

watchdog(false); // disable watchdog - we know the next statement is CPU intensive but

it will terminate for sure
doCPUIntensiveScript();
watchdog(true); // re-enable watchdog

17.1.3 Enabling Scripts and Macros

Once a scripting project is complete and tested, you can use it in the following ways:

1. As the global scripting project for UModel. This means that all the scripts and macros from the
scripting project are available to UModel.

2. At UModel project level. This means that a reference to the .asprj file is saved together with the UModel
project. When the UModel project is opened, its associated scripts and macros can be called.

To set a scripting project as global:

1. On the Tools menu, click Options.
2. Click the Scripting tab.
3. Select the Activate scripting check box and browse for the .asprj file to be used as global scripting

project.

You can optionally enable the following additional script processing options:

Run auto-macros when UModel starts If you select this check box, any macros that were set as
"Auto-macro" in the project will be triggerred
automatically when UModel starts.

Process events Select this check box if your scripts bind to any
application events. Clear the check box to prevent the

794 UModel Programmer's Reference Scripting Editor

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

scripts from reacting to events.

To enable a scripting project at project level:

1. Open the project.
2. On the Project menu, click Project Settings.
3. Click the Scripting tab.
4. Select the Activate project scripts check box and browse for the .asprj file.

The Run-auto macros... check box has the same meaning as already described above.

17.1.3.1 Running Macros

When a scripting project is active in UModel, any macros available in that project are displayed in the Tools |
Macros menu. Therefore, you can run a macro at any time, by triggering the respective menu command, for
example Tools | Macros | <SomeMacro>.

Macros that were configured as auto-macros will run automatically whenever UModel starts, provided that this
behavior is enabled from options, as described in Enabling Scripts and Macros .

For convenience, you can create toolbar buttons for macros, as follows:

1. On the Tools menu, click Customize.
2. Click the Macros tab. Any macros that are available at application level (in the global scripting project)

are listed.
3. Click Add Command.

793

© 2018-2024 Altova GmbH

Scripting Editor 795UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

4. Optionally, click Edit icon and draw a new icon for the new macro. You can also assign a shortcut to
the macro, from the Keyboard tab.

5. Drag the macro from the Associated commands pane onto the toolbar where you would like it to
appear.

To remove a macro from a toolbar:

1. On the Tools menu, click Customize.
2. Click the Macros tab.
3. Drag the macro from the toolbar where it appears back into the Associated commands pane.

796 UModel Programmer's Reference UModel IDE Plug-Ins

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.2 UModel IDE Plug-Ins

One of the ways to interact programmatically with the UModel graphical user interface is creating your own
plug-ins for UModel, as DLL libraries. With UModel Integrated Development Environment (IDE) plug-ins, it is
possible to achieve the following:

· Customize UModel (for example, add commands through custom menus, icons, or buttons)
· React to events from UModel
· Run your specific code within UModel with access to the complete UModel API
· Integrate your own ActiveX controls into UModel

Plug-ins can be written either as a COM application (in C++) or in a .NET language suitable for COM
interoperability, such as C#. Any UModel plug-in must implement the IUModelPlugIn interface. Other
prerequisites specific to .NET COM interoperability apply, as further described in this documentation.

A few Visual Studio solutions that illustrate how to access UModel functionality through a custom plug-in are
available at the following path: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\IDEPlugIn.

Limitations
When developing a UModel IDE plug-in, avoid setting the VisualStyleState property of the
System.Windows.Forms.Application object, for example:

System.Windows.Forms.Application.VisualStyleState = VisualStyleState.NoneEnabled;

The setting above prevents the COM class from being created and consequently blocks the File | Open and
File | Save As menu commands in UModel when the plug-in is loaded.

17.2.1 How to Create a UModel IDE Plug-In

This section shows how to create a simple UModel IDE plug-in DLL using C# and Visual Studio.

Note: UModel Enterprise or Professional Edition, Visual Studio, and Microsoft .NET Framework must be
installed on your computer.

To proceed, run Visual Studio and create a new project of type "Class Library (.dll)".

811

© 2018-2024 Altova GmbH

UModel IDE Plug-Ins 797UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.2.1.1 Add Reference to UModel Plug-In Library

Any DLL library added to UModel as a plug-in must implement the IUModelPlugIn interface. To make this
possible, a reference to the UModelPlugInLib.dll must first be added in Visual Studio, as follows:

1. Right-click References in the Solution Explorer, and select Add Reference.
2. On the Browse tab, click Browse and select UModelPlugInLib.dll from the UModel installation

directory (for example, C:\Program Files (x86)\Altova\UModel2024).

811

798 UModel Programmer's Reference UModel IDE Plug-Ins

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

3. In Solution Explorer, click the referenced library (UModelPlugInLib). Find the Embed Interop Types
property in the Properties window and make sure that this property is set to False.

UModelPlugInLib.dll is a .NET assembly and has been created from IUModelPlugIn.tlb available in the
same folder, using the Microsoft .NET Framework.

If you plan to install your plug-in on a .NET Framework prior to 2.0 (e.g. 1.1), it is necessary that you generate
your own UModelPluginLib.dll in the respective .NET Framework version.

© 2018-2024 Altova GmbH

UModel IDE Plug-Ins 799UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

You can create your own UModelPlugInLib.dll assembly using the type library importer of your choice. In
.NET, this can be done with the Type Library Importer (tlbimp.exe) of the Microsoft .NET Framework SDK:

tlbimp.exe IUmodelPlugIn.tlb

You can also create the assembly with a strong name key pair and a specific version:

tlbimp.exe IUmodelPlugIn.tlb /keyfile:UModelPlugIn.snk /asmversion:1.0.0.0

where UModelPlugIn.snk is a key file created by the Strong Name Tool (sn.exe, also part of the .NET
Framework SDK, with a command such as:

sn.exe -k UModelPlugIn.snk

For more information about tools included in the .NET Framework, refer to the Microsoft documentation
https://docs.microsoft.com/en-us/dotnet/framework/tools/.

17.2.1.2 Add Reference to UModel Type Library

To access the API functionality of UModel from your Visual Studio project, add a reference to the UModel Type
Library in Visual Studio, as follows:

1. Create a new Visual Studio project, or open an existing one.
2. On the Project menu, click Add Reference.
3. In the COM section, select UModel Type Library from the list. If this entry is not available in the COM

section, click Browse and select the file UModel.tlb from the UModel program application folder.

Note: Do not confuse the UModel Type Library with the UModelPlugin Type Library. The latter can be
used to create your own plug-ins and integrate them into UModel, see Add Reference to UModel Plug-
In Library .797

https://docs.microsoft.com/en-us/dotnet/framework/tools/

800 UModel Programmer's Reference UModel IDE Plug-Ins

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

After you follow the steps above, the UModel Type Library should be available in the list of references of your
Visual Studio solution, for example:

17.2.1.3 Make the Assembly COM-visible

To make your code accessible to COM, you need to change your compiler settings.

1. Right-click your C# project and select Properties.
2. On the Application tab, click Assembly Information... and select the Make assembly COM-Visible

check box at the bottom of the dialog box.

© 2018-2024 Altova GmbH

UModel IDE Plug-Ins 801UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.2.1.4 Expose the COM Wrapper

To expose a COM callable wrapper that can interact with COM objects:

1. Right-click your C# project and select Properties.
2. In the Build tab, select the Register for COM interop check box for all build configurations.

802 UModel Programmer's Reference UModel IDE Plug-Ins

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.2.1.5 Sign the Plug-In With a Strong Name (Optional)

To sign your assembly with a strong name key pair (e.g. for deployment):

1. Right-click your C# project and select Properties.
2. On the Signing tab, select the Sign the assembly check box.
3. Select either Browse... to choose an existing key file or New... to create a new one.

17.2.1.6 Implement IUModelPlugIn Interface

UModel IDE plug-ins must implement the IUModelPlugIn interface. The code below shows a simple
implementation of this interface. It adds a menu item and a separator (available with UModel) to the Edit menu.
Clicking the menu item will display a message box with the text "Hello, World!".

Note: Since this sample displays a message box, ensure that your C# project also references
System.Windows.Forms. To do this, right-click References in Solution Explorer, select Add
Reference, and browse for the System.Windows.Forms assembly).

using System;

using System.Collections.Generic;

using System.Text;

using UModelPlugInLib;

namespace HelloWorldPlugIn

{

 public class MyHelloWorldUModelPlugIn : IUModelPlugIn

 {

 #region IUModelPlugIn Members

 public string GetDescription()

805

811

© 2018-2024 Altova GmbH

UModel IDE Plug-Ins 803UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 {

 return "HelloWorldPlugIn;HelloWorldPlugIn demonstrates a simple

implementation of an IDE plug-in for UModel";

 }

 public string GetUIModifications()

 {

 return "<ConfigurationData>" +

 "<Modifications>" +

 // add "Hello World..." to Edit menu

 "<Modification>" +

 "<Action>Add</Action>" +

 "<UIElement type=\"MenuItem\">" +

 "<ID>1</ID>" +

 "<Name>Hello world...</Name>" +

 "<Info>My hello world</Info>" +

 "<Place>0</Place>" +

 "<MenuID>101</MenuID>" +

 "<Parent>:Edit</Parent>" +

 "</UIElement>" +

 "</Modification>" +

 // add Separator to Edit menu

 "<Modification>" +

 "<Action>Add</Action>" +

 "<UIElement type=\"MenuItem\">" +

 "<ID>0</ID>" +

 "<Place>1</Place>" +

 "<MenuID>101</MenuID>" +

 "<Parent>:Edit</Parent>" +

 "</UIElement>" +

 "</Modification>" +

 // finish modification description

 "</Modifications>" +

 "</ConfigurationData>";

 }

 public void OnInitialize(object pUModel)

 {

 // before processing DDE or batch commands

 }

 public void OnRunning(object pUModel)

 {

 // DDE or batch commands are processed; application is fully initialized

 }

 public void OnShutdown(object pUModel)

 {

 // application will shutdown; release all unused objects

 }

 public UModelUpdateAction OnUpdateCommand(int nID, object pUModel)

 {

 if (nID == 1)

 return UModelUpdateAction.UModelUpdateAction_Enable;

 return UModelUpdateAction.UModelUpdateAction_Disable;

 }

804 UModel Programmer's Reference UModel IDE Plug-Ins

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 public void OnCommand(int nID, object pUModel)

 {

 System.Windows.Forms.MessageBox.Show("Hello world!");

 }

 #endregion

 }

}

17.2.1.7 Build and Run the Plug-In

After you have followed the steps above, build the solution with Visual Studio (on the Build menu, click Build
Solution).

Important notes
· Building the plug-in requires access to registry; therefore, make sure to run Visual Studio as

administrator.
· If you have a 64-bit operating system and are using a 32-bit installation of UModel, add the x86

platform in the solution's Configuration Manager and build the sample using this configuration. To
access Configuration Manager, run the menu command Build | Configuration Manager.

· In Solution Explorer, click the referenced library (UModelPlugInLib). Find the Embed Interop
Types property in the Properties window and make sure that this property is set to False.

After building your C# project, you can add the plug-in to UModel and test it as follows:

1. Start UModel (or restart it if applicable; this ensures that the plug-in information is read correctly from
the registry).

2. On the Tools menu, click Customize.
3. On the Plug-Ins tab, click Add Plug-In..., and select the plug-in .dll file (in this example,

HelloWorldPlugIn.dll):

© 2018-2024 Altova GmbH

UModel IDE Plug-Ins 805UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Note: If you get an error with text similar to "Could not find an implementation of the UModel plug-in interface
in type library", make sure that the Embed Interop Types property is set to False for
UModelPlugInLib library, as described in Add Reference to UModel Plug-In Library .

The Edit menu of UModel now contains a new menu command called Hello world. Run this command to
display a dialog box with the "Hello, World!" message.

17.2.2 Deployment of UModel IDE Plug-Ins

On a development PC, the COM registration takes place when you build the plug-in with Visual Studio; no
manual registration is required under normal circumstances. If you intend to deploy a UModel IDE plug-in to a
target client system, the target PC must have the following prerequisites:

· UModel Professional or Enterprise edition
· If the plug-in is written in .NET, the corresponding Microsoft .NET Framework.

On a deployment PC, the plug-in can be registered either manually or by the setup. For an example of a Visual
Studio setup project, see the "Set Styles" Sample .

To register a UModel IDE plug-in manually:

1. On the Tools menu of UModel, click Customize.
2. Click the Plug-Ins tab.
3. Click Add Plug-In and browse for the .dll file of the plug-in.

797

839

806 UModel Programmer's Reference UModel IDE Plug-Ins

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

You can check whether a UModel plug-in is registered by running regedit.exe at the command line. UModel
maintains the following registry key for all registered plug-ins:

HKEY_CURRENT_USER\Software\Altova\UModel\PlugIns

All values of this key are treated as references to registered plug-ins and must conform to the following format:

Value name: ProgID of the plug-in

Value type: must be REG_SZ

Value data: CLSID of the component

Every time UModel starts, the values of the "PlugIns" key are scanned, and the registered plug-ins are loaded.
If you experience problems, check if the CLSID of your plug-in is correctly registered in the "PlugIns" key. If this
is not the case, the name of your plug-in DLL was probably not sufficiently unique. Use a different name in this
case.

Note: When deploying your UModel IDE plug-in on .NET framework versions prior to 2.0, the plug-in .dll file
must either be installed in the same directory as UModel.exe or signed with a strong name key and
registered into the global assembly cache (GAC).

Should you need to perform various assembly-related tasks manually, be aware of the following tools included
in the .NET Framework SDK:

· Assembly Registration Tool (regasm.exe). Use this to perform manual registration or de-registration of
COM assemblies. For example, to maually register the UModelPlugLib.dll, use:

regasm.exe UModelPlugInLib.dll /codebase

· Strong Name Tool (sn.exe). This can be optionally used to sign your assembly with a strong key, for
example:

sn.exe -k MyKeyFile.snk

The key can also be generated from Visual Studio, see Sign the Plug-In With a Strong Name
(Optional) .

· Global Assembly Cache Tool (gacutil.exe). Use this to add or remove an assembly from the Global
Assembly Cache (GAC). For example, to add MyPlugin.dll to GAC, use:

gacutil.exe /i MyPlugin.dll

For more information about tools included in the .NET Framework, refer to the Microsoft documentation
https://docs.microsoft.com/en-us/dotnet/framework/tools/.

802

https://docs.microsoft.com/en-us/dotnet/framework/tools/

© 2018-2024 Altova GmbH

UModel IDE Plug-Ins 807UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.2.3 Configuration XML

The plug-in allows you to change the user interface (UI) of UModel. This is done by describing each separate
modification using an XML data stream. The XML configuration is passed to UModel using the
GetUIModifications method of the IUModelPlugIn Interface .

The XML file containing the UI modifications for the plug-in must have the following structure:

 <ConfigurationData>

 <ImageFile>path To image file</ImageFile>

 <Modifications>

 <Modification>

 ...

 </Modification>

 ...

 </Modifications>

 </ConfigurationData>

You can define icons, or toolbar buttons for the new menu items which are added to the UI of UModel by the
plug-in. The path to the file containing the images is set using the ImageFile element. Each image must be 16

x 16 pixels. The image references must be arranged from left to right in a single (<ImageFile>...) line. The
rightmost image index value is zero.

The Modifications element can have any number of Modification child elements. Each Modification

element defines a specific change to the standard UI of UModel. It is also possible to remove UI elements from
UModel.

Structure of Modification elements
All Modification elements consist of the following two child elements:

 <Modification>

 <Action>Type of action</Action>

 <UIElement Type="type of UI element">

 </UIElement>

 </Modification>

Valid values for the Action element are:

· Add - used to add the following UI element to UModel.
· Hide - used to hide the following UI element in UModel.
· Remove - used to remove the UI element from the "Commands" list box, in the customize dialog

You can combine values of the Action element e.g. "Hide Remove".

The UIElement element describes any new, or existing UI element for UModel. Possible elements are

currently: new toolbars, buttons, menus, or menu items. The Type attribute defines which UI element is

described by the XML element.

811

808 UModel Programmer's Reference UModel IDE Plug-Ins

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Common UIElement children
The ID and Name elements are valid for all different types of XML UIElement fragments. It is, however, possible

to ignore one of the values for a specific type of UIElement, e.g. Name is ignored for a separator.

 <ID></ID>

 <Name></Name>

If UIElement describes an existing element of the UI, the value of the ID element is predefined by UModel.

Normally these ID values are not known to the public. If the XML fragment describes a new part of the UI, then

the ID is arbitrary and the value should be less than 1000.

The Name element sets the textual value. Existing UI elements can be identified just by name, e.g. menus and

menu items with associated sub menus. For new UI elements, the Name element sets the caption, e.g. the title

of a toolbar, or text for a menu item.

Toolbars and Menus
To define a toolbar, it's necessary to specify the ID and/or the name of the toolbar. An existing toolbar can be

specified using only the name, or by the ID if it is known. To create a new toolbar, both values must be set.
The Type attribute must be equal to "ToolBar".

 <UIElement Type="ToolBar">

 <ID>1</ID>

 <Name>Styles</Name>

 </UIElement>

To specify an UModel menu, you need two parameters:

· The ID of the menu bar which contains the menu. UModel's main menu bar ID is 101.
· The menu name. Menus do not have an associated ID value. The following example defines the "Edit"

menu of the menu bar:

 <UIElement Type="Menu">

 <ID>101</ID>

 <Name>Edit</Name>

 </UIElement>

An additional element is used if you want to create a new menu. The Place element defines the position of the

new menu in the menu bar:

 <UIElement Type="Menu">

 <ID>101</ID>

 <Name>PlugIn Menu</Name>

 <Place>12</Place>

 </UIElement>

© 2018-2024 Altova GmbH

UModel IDE Plug-Ins 809UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

A value of -1 for the Place element sets the new button or menu item at the end of the menu or toolbar.

Commands
If you add a new command through a toolbar button or a menu item, the UIElement fragment can contain any

of these sub elements:

 <Info></Info>

 <ImageID></ImageID>

The Info element contains a short description string which is displayed in the status bar, when the mouse

pointer is over the associated command (button or menu item). ImageID defines the index of the icon in the

external image file. Please note that all icons are stored in one image file.

To define a toolbar button create an UIElement with this structure:

 <UIElement Type="ToolBarItem">

 <!--don't reuse local IDs even the commands do the same-->

 <ID>6</ID>

 <Name>Fill red</Name>

 <!--Set Place To -1 If this is the first button to be inserted-->

 <Place>-1</Place>

 <ImageID>0</ImageID>

 <ToolBarID>1</ToolBarID>

 <!--instead of the toolbar ID the toolbar name could be used-->

 <ToolBarName>Styles</ToolBarName>

 </UIElement>

Additional elements to declare a toolbar button are Place, ToolBarID and ToolBarName. ToolBarID and

ToolBarName are used to identify the toolbar which contains the new or existing button. The textual value of

ToolBarName is case sensitive. The (UIElement) type attribute must equal "ToolBarItem".

To define a menu item, the elements MenuID, Place and Parent are available in addition to the standard

elements used to declare a command. MenuID must be 101. See "Toolbars and Menus" for more information on

these values.

The Parent element is used to identify the menu where the new menu entry should be inserted. As sub menu

items have no unique Windows ID, we need some other way to identify the parent of the menu item.

The value of the Parent element is a path to the menu item.

The text value of the Parent element, must equal the parent menu name of the submenu, where the submenu
name is separated by a colon. If the menu has no parent, because it is not a submenu, add a colon to the
beginning of the name. The type attribute must be set to "MenuItem".

Example for an UIElement defining a menu item:

 <UIElement Type="MenuItem">

 <!--the following element is a Local command ID-->

810 UModel Programmer's Reference UModel IDE Plug-Ins

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 <ID>3</ID>

 <Name>Fill red</Name>

 <Place>-1</Place>

 <MenuID>101</MenuID>

 <Parent>:PlugIn Menu1</Parent>

 <ImageID>0</ImageID>

 </UIElement>

UModel makes it possible to add toolbar separators and menus if the value of the ID element is set to 0.

17.2.4 Plug-Ins as ActiveX Controls

To work as an ActiveX control, the IDE plug-in must implement the IOleControl interface (C++) or derive from
System.Windows.Forms.UserControl (C#, VB.NET). Such plug-ins will appear as a new window in the
graphical user interface, and will also get a new menu command in the View menu.

© 2018-2024 Altova GmbH

UModel IDE Plug-Ins 811UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

The source code for the plug-in illustrated above is available in C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\IDEPlugIn\StatisticsActiveX\Stati
sticsActiveX.cs., see the "Statistics" Sample .

17.2.5 IUModelPlugIn Interface

If a DLL is added to UModel as a plug-in, it is necessary that it registers a COM component that answers to an
IUModelPlugIn interface. The IUModelPlugin interface exposes the following methods, all of which must be
implemented by a client plug-in.

· OnInitialize
· OnRunning
· OnShutdown
· GetUIModifications
· GetDescription
· OnCommand

854

812 UModel Programmer's Reference UModel IDE Plug-Ins

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

· OnUpdateCommand

Method Declaration Usage

OnInitialize(pUModel as

IDispatch)
The OnInitialize method of the interface implementation is
called when the plug-in is initialized and before DDE or batch
commands are processed.

You can attach notifiers and listen to UModel events, but should
not start new commands / modifications until the OnRunning
method is called.

pUModel holds a reference to the dispatch interface of the
Application object of UModel.

OnRunning(pUModel as IDispatch) The OnRunning method of the interface implementation is called
when the plug-in is initialized and after DDE or batch commands
are processed.

The application is now fully initialized and you can start new
commands / modifications and modify UML data.

pUModel holds a reference to the dispatch interface of the
Application object of UModel.

OnShutdown(pUModel as IDispatch) The OnShutdown method of the interface implementation is called
immediately before the plug-in is unloaded (e.g. because the
application will shut down).

pUModel holds a reference to the dispatch interface of the
Application object of UModel.

GetUIModifications() as String The GetUIModifications() method is called during initialization
of the plug-in, to get the configuration XML data that defines the
changes to the UI of UModel.

The method is called when the plug-in is loaded for the first time,
and at every start of UModel.

See Configuration XML for a detailed description on how to
change the UI.

GetDescription() as String GetDescription() is used to define the description string for the
plug-in entries visible in the Customize dialog box.

OnCommand(nID as long, pUModel

as IDispatch)
The OnCommand() method of the interface implementation, is called
each time a command, added by the plug-in (menu item or toolbar
button), is processed.

nID stores the command ID defined by the ID element of the
respective UIElement.

807

© 2018-2024 Altova GmbH

UModel IDE Plug-Ins 813UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Method Declaration Usage

pUModel holds a reference to the dispatch interface of the
Application object of UModel.

OnUpdateCommand(nID as long,

pUModel as IDispatch) as

UModelUpdateAction

The OnUpdateCommand() method is called each time the visible
state of a button, or menu item, needs to be set.

nID stores the command ID defined by the ID element of the
respective UIElement.

pUModel holds a reference to the dispatch interface of the
Application object.

Possible return values (as defined in UModelUpdateAction) to
set the update state are:

UModelUpdateAction_Enable = 1
UModelUpdateAction_Disable = 2
UModelUpdateAction_Check = 4
UModelUpdateAction_Uncheck = 8

Values can be combined using the bitwise OR operator (for
example, UModelUpdateAction_Enable |
UModelUpdateAction_Check).

For a very simple interface implementation example, see Implement IUModelPlugIn Interface . Other sample
implementations are available (as Visual Studio solutions) at the following path: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\IDEPlugIn.

The sequence diagram below shows how UModel interacts with IUModelPlugIn :

878

802

877

814 UModel Programmer's Reference UModel IDE Plug-Ins

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

© 2018-2024 Altova GmbH

The UModel API 815UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.3 The UModel API

The COM-based API of UModel enables clients to access the functionality of UModel from a custom code or
application and automate a wide range of tasks.

The UModel API follows the common specifications for automation servers as set out by Microsoft. UModel is
automatically registered as a COM server object during installation. Once the COM server object is registered,
you can invoke it from within applications and scripting languages that have programming support for COM
calls. This makes it possible to access the UModel API not only from development environments using .NET,
C++ and Visual Basic, but also from scripting languages like JScript and VBScript. In Java, the UModel API is
available through Java-COM bridge libraries.

Note: If you use the UModel API to create an application that you intend to distribute to other clients, UModel
must be installed on each client computer. Also, your custom integration code must be deployed to (or
your application installed on) each client computer.

17.3.1 Accessing the API

To access the COM API, a new instance of the Application object must be created in your application (or
script). Once you have created the application object, you can start using the functionality of UModel. You will
generally either open an existing document, create a new one, or access the active document (IDocument
) . IDocument corresponds to a UModel project and can be used to include sub-projects, generate
documentation, synchronize model and code, while also giving access to the main UMLData objects, see also
Object Model .

Note: When implementing a UModel IDE plugin, there is no need to create an instance of the application
object, because UModel is already running and the current instance of the application object is
provided by IApplication as parameter for all important methods of IUModelPlugIn .

Prerequisites
To make the UModel COM object available in your Visual Studio project, add a reference to the UModel type
library (.tlb) file, see How to Reference the UModel Type Library . A sample UModel API client in C# is
available at: C:\Users\<username>\Documents\Altova\UModel2024\UModelExamples\API\C#.

In Java, the UModel API is available through Java-COM bridge libraries. These libraries are available in the
UModel installation folder: C:\Program Files (x86)\Altova\UModel2024\JavaAPI (note this path is valid when
32-bit UModel runs on 64-bit Windows, otherwise adjust the path accordingly).

· AltovaAutomation.dll: a JNI wrapper for Altova automation servers
· AltovaAutomation.jar: Java classes to access Altova automation servers
· UModelAPI.jar: Java classes that wrap the UModel automation interface
· UModelAPI_JavaDoc.zip: a Javadoc file containing help documentation for the Java API

Note: In order to use the Java API, the .dll and .jar files must be on the Java classpath.

A sample UModel API client in Java is available at: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\API\Java.

895

895 895

816

881 811

835

816 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

In scripting languages such as JScript or VBScript, the UModel COM object is accessible through the
Microsoft Windows Script Host (see https://msdn.microsoft.com/en-us/library/9bbdkx3k.aspx). Such scripts
can be written with a text editor, and do not need compilation, since they are executed by the Windows Script
Host packaged with Windows. (To check that the Windows Script Host is running, type wscript.exe /? at the
command prompt). Several JScript example files that call the UModel API are available at: C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\API\JScript.

Note: For 32-bit UModel, the registered name, or programmatic identifier (ProgId) of the COM object is
UModel.Application. For 64-bit UModel, the name is UModel_64.Application. Be aware, though,
that the calling program will access the CLASSES registry entries in its own registry hive, or group (32-
bit or 64-bit). Therefore, if you run scripts using the standard command prompt and Windows Explorer
on 64-bit Windows, the 64-bit registry entries will be accessed, which point to the 64-bit UModel. For
this reason, if both UModel 32-bit and 64-bit are installed, special handling is required in order to call
the 32-bit UModel. For example, assuming that Windows Scripting Host is the calling program, do the
following:

1. Change the current directory to C:\Windows\SysWOW64.
2. At the command line, type wscript.exe followed by the path to the script that you would like to run, for

example:

C:\Users\...\Documents\Altova\UModel2024\UModelExamples\API\JScript\Start.js

Guidelines
The following guidelines should be considered in your client code:

· Do not hold references to objects in memory longer than you need them. If a user interacts between
two calls of your client, then there is no guarantee that these references are still valid.

· Be aware that if your client code crashes, instances of UModel may still remain in the system. For
details on how to handle error messages, see Error handling .

· Free references explicitly, if using languages such as C or C++. In C# and Visual Basic,
GC.Collect() can be used to force garbage collection.

· UModel API collections are zero-based. For example, the statement
myPackage.InsertPackagedElementAt(0, "Interface"); will insert a new interface as first child of

the package.

17.3.2 Object Model

The starting point for every application which uses the UModel API is the IApplication interface. The
application object consists of the following main parts (each indentation level indicates a child–parent
relationship with the level directly above):

IApplication
IDocument

IDiagramWindows
IDiagramWindow

IFocusedUMLDataNotifier
ITransactionNotifier

IUMLData (and all other derived UML data interfaces)
IUMLDataList

832

881

881

895

891

888

903

952

967

969

https://msdn.microsoft.com/en-us/library/9bbdkx3k.aspx

© 2018-2024 Altova GmbH

The UModel API 817UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

IDialogs
IExportXMIFileDlg
IGenerateDocumentationDlg

IKindSelectionList
IKindSelection

IGenerateSequenceDiagramDlg
IGenerateStateMachineCodeDlg
IImportBinaryTypesDlg

IImportBinaryTypeEntries
IImportBinaryTypeEntry

IImportDatabaseDlg
IImportSourceDirectoryDlg
IImportSourceProjectDlg
IImportXMLSchemaDirectoryDlg
IImportXMLSchemaFileDlg
IIncludeSubprojectDlg

IModelTransformationDlg
IModelTransformationTypeMappings

IModelTransformationTypeMapping
IProjectSettingsDlg
ISaveAllDiagramsAsImagesDlg
ISynchronizationSettingsDlg

IMatchRenamedDlg
IMatchRenamedEntries

IMatchRenamedEntry
IURLDlg

ILocalOptions
ILocalOptionsCodeEngineering
ILocalOptionsDiagramEditing

ICollectionTemplates
ICollectionTemplate

ILocalOptionsEditing
ILocalOptionsFile
ILocalOptionsView

In addition, several Enumerations and Events are part of the model.

17.3.2.1 Object Model UMLData

The starting point to access UML elements is the root package (IUMLPackage), which is a property of the
IDocument interface. All children of the root package are a subtype of IUMLElement and are stored as
defined by the OMG in the UML Superstructure Specification (http://www.uml.org). Specifically, the UML
Superstructure Specification defines the following relationship for UML Element:

893

902

904

928

928

911

913

914

884

885

918

919

923

925

926

927

944

947

946

948

951

951

941

942

943

953

929

931

933

887

886

936

937

939

959 954

1194

895 1043

http://www.uml.org

818 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Which means that every UML element can have a list of owned elements, and every UML element (apart from
the root-package) has an owner.

In the UModel API, an UML element is mapped to IUMLElement having the properties OwnedElement and

Owner. Since these relationships are "read only" in the UML specification, both properties cannot be modified in

the UModel API.

The UML Superstructure Specification also defines the following relationship between Package and

PackageableElement:

This is mapped to IUMLPackageableElement having a property OwningPackage and an IUMLPackage ,

which not only has a property PackagedElements, but also a method InsertPackagedElementAt to insert new

IUMLPackageableElement s (at the specified position). The method EraseFromModel deletes any

IUMLElement (and all its children) from the model.

The sample below shows the mapping of a project which consists of two classes (IUMLClass) with a
dependency (IUMLDependency) between them:

1112

1197 1194

1197

1112

1077

1103

© 2018-2024 Altova GmbH

The UModel API 819UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

This structure is independent of whether these elements are shown on any diagram or not.

The representation of graphical objects on diagrams (as shown in the image below) is stored in a second
structure with elements of kind IUMLGuiElement (also see Graphical Objects).

The starting point to access UML GUI elements is the GuiRoot (IUMLGuiRootElement), which is a property
of the IDocument interface.

Lines are handled by IUMLGuiLineLink s, most other objects (like classes, interfaces, packages,...) by
IUMLGuiNodeLink s.

1260 821

1293

895

1282

1286

820 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.3.2.2 Object Model UMLData Styles

UModel has various styles allowing you to adapt the diagram appearance (i.e. font size, weight, color,
visibility options,...).

The following picture shows how the different styles (IUMLGuiStyles) can be accessed using the UModel
API :

89

1301

815

© 2018-2024 Altova GmbH

The UModel API 821UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

The different styles can be identified by ENUMUMLGuiStyleKind .

17.3.2.3 Graphical Objects

In the UModel API , graphical objects on diagrams are represented by objects derived from the
IUMLGuiElement interface. Most of them can be accessed using the IUMLGuiDiagram property
'GuiLinks'.

For most diagrams, most objects which are lines are instances of IUMLGuiLineLink and most other, solid
objects or 'nodes' are instances of IUMLGuiNodeLink . These interfaces have properties and methods for
manipulating the basic properties of these graphical objects, such as position, color and style.

There are of course more specialized interfaces derived from these general interfaces which provide access to
special properties. The following image shows a sequence diagram and the interface representing each
graphical object on it:

1326

815

1260 1271

1282

1286

822 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.3.3 How to...

17.3.3.1 How to Create Sequence Diagrams

There are two ways to create sequence diagrams programmatically using the UModel API:

· Generating a sequence diagram from existing source code when there is code available that you
want to be reverse engineered and displayed as UML diagram

· Manually create a sequence diagram from scratch using IUMLGuiElements directly

17.3.3.1.1 How to Generate Sequence Diagrams from Code

Sequence diagrams in UModel can be generated programmatically from an IUMLOperation element. The
operation needs to exist in the model and have some source code associated to it.

The operation could possibly have been previously "read" by the reverse engineering functionality of UModel.
Creating new Sequence Diagrams programmatically by reverse engineering source code using the UModel
API involves two short steps:

· Setting up the options for diagram generation
· Invoking the diagram generation function

822

823

1192

815

© 2018-2024 Altova GmbH

The UModel API 823UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

The following C# code shows how to set up the options and start the generation of the sequence diagram:

// starts the sequence diagram generation process based on an operation given as

parameter

public static void reverseEngineerAndCreateSequenceDiagram(IApplication application,

IUMLOperation operation)

{

 GenerateSequenceDiagramDlg dialog = application.Dialogs.GenerateSequenceDiagramDlg;

 // set some options

 dialog.ShowEmptyCombinedFragments = false;

 dialog.UseDedicatedLineForStaticCalls = true;

 dialog.ShowCodeOfMessagesDisplayedDirectlyBelow = true;

 dialog.ShowCodeInNotes = true;

 dialog.ShowDialog = true; // set this to true if you want the dialog to be displayed

 // generated the sequence diagram now

 application.ActiveDocument.GenerateSequenceDiagram(dialog, operation);

}

17.3.3.1.2 How to Create Sequence Diagrams Manually

Creating new Sequence Diagrams programmatically from scratch using the UModel API is basically nothing
more than placing interaction fragments, such as Lifelines on a diagram and connecting them with messages.

Messages can easily be created using the AddUMLLineElement() method of IUMLGuiLineLink , which
removes the necessity of creating multiple underlying UML Elements such as MessageEnds,
ExecutionOccurrences and similar manually.

To make it simple to create Messages between two interaction fragments such as Lifelines, create a small
helper function which calls AddUMLLineElement() and positions the created line:

// Creates a message between two interaction fragments (i.e. lifelines, interaction uses,

// combined fragments or gates) and attaches all necessary elements like events and

activation bars.

// Possible values for 'kind': "Message", "Reply", "Create", "Destruct"

protected static IUMLMessage addMessage(int ypos, string kind,

 IUMLGuiNodeLink from, IUMLGuiNodeLink to,

 DiagramWindow wnd)

{

 // add message

 IUMLGuiLineLink line = wnd.Diagram.AddUMLLineElement(kind, from, to);

 if (line == null)

 return null;

 // set position of the line where we want it to show up

 wnd.UpdateWindow();

 if (from == to && line.Waypoints.Count > 3)

 {

815

1284

824 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 // self-message

 ((IUMLGuiWaypoint)line.Waypoints[1]).SetPos(0, ypos);

 ((IUMLGuiWaypoint)line.Waypoints[4]).SetPos(0, ypos + 25);

 }

 else

 if (line.Waypoints.Count > 1)

 {

 // normal message

 ((IUMLGuiWaypoint)line.Waypoints[1]).SetPos(0, ypos);

 ((IUMLGuiWaypoint)line.Waypoints[2]).SetPos(0, ypos);

 }

 return (IUMLMessage)line.Element;

}

As you can see, IUMLDiagram.AddUMLLineElement() accepts as a parameter not only the string
"Message", to create a Message Line; but also "Reply", "Create" and "Destruct", for Reply Messages, Creation
Messages and Destruction Messages.

In order to create a simple diagram it is only necessary to create a Sequence Diagram in the GuiRoot object,
open the diagram, add a handful of lifelines and connect them with messages using this helper function:

IDocument document = theapplication.ActiveDocument;

// create diagram and open it

IUMLGuiSequenceDiagram sequenceDiagram =

 (IUMLGuiSequenceDiagram)document.GuiRoot.InsertOwnedDiagramAt(0, document.RootPackage,

 "SequenceDiagram");

DiagramWindow wnd = document.OpenDiagram(sequenceDiagram);

// create two lifelines

IUMLGuiNodeLink lifeline1 = sequenceDiagram.AddUMLElement("Lifeline", 0, 0);

IUMLGuiNodeLink lifeline2 = sequenceDiagram.AddUMLElement("Lifeline", 100, 70);

// connect these lifelines using some messages

addMessage(100, "Create", lifeline1, lifeline2, wnd);

addMessage(150, "Message", lifeline1, lifeline2, wnd);

addMessage(200, "Reply", lifeline2, lifeline1, wnd);

The resulting created Diagram will look like this:

1271

© 2018-2024 Altova GmbH

The UModel API 825UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Setting the Type of a Lifeline
To display the Type represented by a Lifeline, be it be a Class, Interface, DataType or similar, use the
IUMLLifeline.Represents property which references a IUMLProperty . If the Type of this property is
set, the Type will show up on the diagram as well.

The following code creates a Lifeline which references a class:

// create a class to be referenced by the lifeline

IUMLClass someclass = (IUMLClass)document.RootPackage.InsertPackagedElementAt(0,

"Class");

// create a lifeline and a property with the class as type in the interaction

// of the sequence diagram to reference this class

IUMLInteraction interaction = (IUMLInteraction)sequenceDiagram.LinkedOwner;

IUMLProperty prop = interaction.InsertOwnedAttributeAt(0);

prop.Type = someclass;

UModelLib.IUMLLifeline lifeline = interaction.InsertLifelineAt(0);

lifeline.Represents = (IUMLConnectableElement)prop;

// show the lifeline on the diagram

sequenceDiagram.AddUMLGuiNodeLink(lifeline, 200, 0);

The resulting lifeline would then look like this:

1165 1207

826 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Setting the Operation of a Message
Messages usually represent the invocation of an operation of an object. Note: based on the type of the
Message (normal Message, Creation, Deletion or Reply) and the existence, or absence of underlying UML
elements, such as MessageOccurenceSpecifications or CallEvents, it is not always possible for a Message to
represent an Operation, and getting the cprrect UML element to point to the Operation is not that trivial.

This is why the IUMLMessage interface in the UModel API, offers the method SetOperation() with makes it
possible to let a Message refer an Operation if it is able to do so:

// create a message, an operation in a class and let the message refer this operation

IUMLMessage msg = addMessage(250, "Message", lifeline1, lifeline2, wnd);

UModelLib.IUMLOperation someoperation = someclass.InsertOwnedOperationAt(0);

someoperation.Name = "SomeOperation";

msg.SetOperation(someoperation);

17.3.3.2 Undo / Redo and UMLData Transaction Handling

When modifying the UML data structure using the UModel API , there is no need to take care of Undo/Redo
or transactions.

The following code makes three modifications:

 public void ChangeClass(IUMLClass iClass)

 {

 iClass.SetName("NewName");

 iClass.Visibility = ENUMUMLVisibilityKind.eVisibility_Public;

 iClass.IsAbstract = true;

 }

and for every modification, a new undo-step is created, in other words: the user will have to press the "Undo"
button three times in UModel to undo these three changes.

1172

815

© 2018-2024 Altova GmbH

The UModel API 827UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

This is not always the required behavior so the UModel API supports "transaction-handling" making it
possible to execute multiple modifications in one step.

IDocument has the functionality to define when a group of modifications starts ("BeginModification") and
when it ends ("EndModification"):

 public void ChangeClass(IUMLClass iClass, IDocument iDoc)

 {

 try

 {

 // make all modifications within one UndoStep; start modification here

 if (!iDoc.BeginModification())

 return;

 iClass.SetName("NewName");

 iClass.Visibility = ENUMUMLVisibilityKind.eVisibility_Public;

 iClass.IsAbstract = true;

 // do not forget to end modification and finish UndoStep

 iDoc.EndModification();

 }

 catch (System.Exception)

 {

 // rollback made changes

 iDoc.AbortModification();

 // add error handling

 }

 }

This kind of transaction handling may only be used for UML data modifications. Other functions, such as e.g.
'synchronize model from code', will create one single Undo step anyway.

17.3.3.3 How to Use Predefined UModel Elements

UModel defines several important elements as "predefined". This includes several internal elements (Root,
Component View and Unknown Externals package) as well as the elements of all profiles installed with UModel
(e.g. the C#, VB and Java profile).

Predefined elements can be uniquely identified by using ENUMUMLPredefinedElement , which allows direct
and easy access to these elements for several functionalities, for example:

· Find a predefined element:

// get the CSharp profile

IUMLProfile iCSharpProfile = (IUMLProfile)

iDoc.RootPackage.FindPredefinedOwnedElement(ENUMUMLPredefinedElement.ePredefined_CSharp_P

rofile, false);

· Apply a predefined stereotype:

// set the CSharp 'delegate' stereotype

815

895

1330

828 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

iClass.ApplyPredefinedStereotype(

 ENUMUMLPredefinedElement.ePredefined_CSharp_delegateStereotypeOfClass);

· Check if a predefined stereotype is applied:

// check if package is a CSharp - namespace (if 'namespace' stereotype is applied)

bool bIsCSharpNamespace =

iPackage.IsPredefinedStereotypeApplied(

 ENUMUMLPredefinedElement.ePredefined_CSharp_namespaceStereotypeOfPackage);

· Set the tagged value of a predefined tag definition:

// set attribute-section "STAThread"
// ...
iStereotypeApp.SetPredefinedTaggedValueAt(-1,
ENUMUMLPredefinedElement.ePredefined_CSharp_attributesStereotypeOfClass_sectionsProperty,
 iSTAThread.Name);

17.3.3.4 How to Work with Stereotypes and Tagged Values

Stereotypes and tagged values are quite complex as defined in the UML Superstructure Specification. UModel
has simplified their handling and treats them similar to IUMLInstanceSpecification s and IUMLSlot s in
UML. In the following sample, the stereotype "attributes" is applied to "Class1", and the tag definition
"sections" has the tagged values "Value1" and "Value2":

UModel API introduces IUMLStereotypeApplication s and maps the sample above to the following UMLData
structure:

1146 1222

1230

© 2018-2024 Altova GmbH

The UModel API 829UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Applying stereotypes and setting tagged values using the UModel API is quite simple:

IUMLStereotype iStereotypeAttributes = ...;

IUMLProperty iTagDefSections = ...;

IUMLClass iClass = ...;

IUMLStereotypeApplication iStereotypeApp = iClass.ApplyStereotype(iStereotypeAttributes);

iStereotypeApp.SetTaggedValueAt(-1, iTagDefSections, "Value1");

iStereotypeApp.SetTaggedValueAt(-1, iTagDefSections, "Value2");

See also the section Predefined UModel elements for information about dealing with predefined stereotypes,
tag definitions and tagged values.

17.3.3.5 How to Use UMLData Events and Event Filters

Event receivers must implement the _IUMLDataEvents interface in order to receive one or more of following
possible events from IUMLData objects:

OnBeforeErase Sent immediately before the UML data is erased from the model. If multiple data are
erased, this event is sent for every IUMLData (not only for the topmost one).

OnAfterAddChild Sent when the UML data is added to the model tree. If multiple data are added in
one step (e.g. a class with multiple attributes is added to a package) only the
topmost IUMLData event is sent.

OnChanged Sent when the UML data has been modified (e.g. when a class name is changed).

827

1322

967

967

967

830 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

OnMoveData Sent when the UML data has been moved to a new parent (e.g. when a class is
moved to another package in the ModelTree).

This event always occurs twice: once when detaching from the old parent, and once
when the UML data is attached to the new parent.

Eventfilter can be set with (combinations of) ENUMUMLDataEventFilter in order to specify which events
should be sent by the UModel API . To keep performance high and the overhead as low as possible, event
receivers should only register for events they need.

For example, the following code registers OnAfterAddChild events when specifically the root-package gets a
new child (no event will arrive if a child of the root-package gets a new child):

// ensure we get informed when m_RootPackage (and only itself; we do not care about its

children) gets a new child

m_RootPackage.EventFilter = (int)ENUMUMLDataEventFilter.eUMLDataEvent_AddChild;

UMLData events work hierarchically, so the event filter can be set to receive events from the attached
IUMLData only, or from the attached IUMLData and any of its children (grandchildren,...).

// ensure we get "OnBeforeErase" events also for *any* erased child (grandchild,...) of

the rootpackage

m_RootPackage.EventFilter |= (int)ENUMUMLDataEventFilter.eUMLDataEvent_EraseDataOrChild;

UMLData events are also sent when UML data is modified by Undo / Redo, but beware that no UML data
modification may be made during Undo / Redo:

public void OnAfterAddChild(IUMLData ipUMLParent, IUMLData ipUMLChild)

{

 // check if child was added by undo/redo

 // (we are not allowed to modify anything during Undo/Redo !!)

 IDocument iDoc = (IDocument)ipUMLChild.Parent;

 if (!iDoc.IsInUndoRedo)

 {

 // ...

 }

}

17.3.3.6 How to Create and Use Hyperlinks

UModel allows hyperlinks between most modeling elements (except for lines) and:

· any diagram in the current ump project
· any element on a diagram
· any element in the Model Tree
· external documents, e.g. PDF, Excel or Word documents
· web pages

See also: Hyperlinking modeling elements .

1325

815

967 967

117

© 2018-2024 Altova GmbH

The UModel API 831UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Hyperlinks are not part of the UML specification and the UModel API introduces the following interfaces for
hyperlinks on

IUMLNamedElement s:

· IUMLHyperlink is the common base interface and can be used to open links as well as to retrieve
the default- and user-defined link name

· IUMLHyperlink2File to handle external documents and web pages
· IUMLHyperlink2GuiElement to handle any diagram in the current ump project or any element on a

diagram
· IUMLHyperlink2Model for hyperlinks to model elements (in the Model Tree)

Examples
Insert a hyperlink to the Altova homepage:

IUMLHyperlink2File iHyperlink = iMyClass.InsertOwnedHyperlink2FileAt(-1,

"http://www.altova.com");

Insert a hyperlink to a diagram of the current ump project:

IUMLGuiDiagram iDiagram = ...;

IUMLHyperlink2GuiElement iHyperlink = iMyClass.InsertOwnedHyperlink2GuiElementAt(-1,

iDiagram, null);

Insert a hyperlink to the representation of a class on a diagram:

IUMLGuiNodeLink iNodeLink = ...;

IUMLHyperlink2GuiElement iHyperlink = iMyClass.InsertOwnedHyperlink2GuiElementAt(-1,

iNodeLink, null);

Insert a hyperlink to an attribute of a class on a diagram:

IUMLGuiNodeLink iNodeLink = ...;

IUMLProperty iAttribute = ...;

IUMLHyperlink2GuiElement iHyperlink = iMyClass.InsertOwnedHyperlink2GuiElementAt(-1,

iNodeLink, iAttribute);

Insert a hyperlink to the same attribute (from above) in the Model Tree:

IUMLHyperlink2Model iHyperlink = iMyClass.InsertOwnedHyperlink2ModelAt(-1, iAttribute);

Open all hyperlinks of an IUMLNamedElement :

foreach (IUMLHyperlink iHyperlink in iMyClass.OwnedHyperlinks)

 iHyperlink.OpenLink();

UModel also allows hyperlinks in notes (IUMLGuiNote) and comments (IUMLComment):

1178

1136

1137

1138

1139

1178

1288 1087

832 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

These are handled by IUMLGuiTextHyperlink s (respectively IUMLCommentTextHyperlinks) and the start-
and end-character position of the hyperlink must be specified, e.g:

IUMLGuiDiagram iDiagram = ...;

IUMLGuiNote iNote = iDiagram.AddUMLGuiNote(200, 100);

iNote.NoteText = "This is my Altova link";

int nStart = iNote.NoteText.IndexOf("Altova");

int nEnd = nStart + "Altova".Length;

IUMLGuiTextHyperlink iHyperlink = iNote.InsertOwnedGuiTextHyperlinkAt(nStart, nEnd,

"http://www.altova.com");

Similar for hyperlinks in comments:

IUMLComment iComment = ...;

IUMLClass iClass2 = ...;

iComment.Body = "This is my link to Class2";

int nStart = iComment.Body.IndexOf("Class2");

int nEnd = nStart + "Class2".Length;

IUMLCommentTextHyperlink iHyperlink = iComment.InsertOwnedCommentTextHyperlinkAt(nStart,

nEnd, "");

iHyperlink.SetHyperlinkModelElementAddress(iClass2);

17.3.3.7 Handle Errors

The UModel API returns errors in two different ways. Every API method returns an HRESULT. This return value

informs the caller about any errors during the execution of the method. If the call was successful, the return
value is equal to S_OK. C/C++ programmers generally use HRESULT to detect errors.

VisualBasic, scripting languages, and other high-level development environments do not give the programmer
access to the returning HRESULT of a COM call. They use the second error-raising mechanism supported by

the UModel API, the IErrorInfo interface. If an error occurs, the API creates a new object that implements

the IErrorInfo interface. The development environment takes this interface and fills its own error-handling

mechanism with the provided information.

The example code listings below show how to deal with errors raised from the UModel API in different
development environments.

1310 1088

© 2018-2024 Altova GmbH

The UModel API 833UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Visual Basic
A common way to handle errors in VisualBasic is to define an error handler. This error handler can be set with
the On Error statement. Usually the handler displays an error message and performs cleanup functions to
avoid spare references and any kind of resource leaks.

VisualBasic fills its own Err object with the information from the IErrorInfo interface.

Sub Validate()

 'place variable declarations here

 'set error handler

 On Error GoTo ErrorHandler

 'if DoSomeWork fails, program execution continues at ErrorHandler:

 objUModel.ActiveDocument.DoSomeWork()

 'additional code comes here

 'exit

 Exit Sub

 ErrorHandler:

 MsgBox("Error: " & (Err.Number - vbObjectError) & Chr(13) &

 "Description: " & Err.Description)

End Sub

JavaScript
The Microsoft implementation of JavaScript (JScript) provides a try-catch mechanism to deal with errors raised
from COM calls. It is very similar to the Visual Basic approach, in that you also declare an error object
containing the necessary information.

 function Generate()

 {

 // please insert variable declarations here

 try

 {

 objUModel.ActiveDocument.DoSomeWork();

 }

 catch(Error)

 {

 sError = Error.description;

 nErrorCode = Error.number & 0xffff;

 return false;

 }

 return true;

 }

C/C++
C/C++ gives you easy access to the HRESULT of the COM call and to the IErrorInterface.

834 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 HRESULT hr;

 // Call DoSomeWork() from the UModel API

 if(FAILED(hr = ipDocument->DoSomeWork()))

 {

 IErrorInfo *ipErrorInfo = Null;

 if(SUCCEEDED(::GetErrorInfo(0, &ipErrorInfo)))

 {

 BSTR bstrDescr;

 ipErrorInfo->GetDescription(&bstrDescr);

 // handle Error information

 wprintf(L"Error message:\t%s\n",bstrDescr);

 ::SysFreeString(bstrDescr);

 // release Error info

 ipErrorInfo->Release();

 }

 }

17.3.4 C# API Examples

To help you get started, your UModel package contains an example C# project, which is located at C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\API.

Importantly, this example project includes a reference to the UModel Type Library, see How to Reference the
UModel Type Library . A reference to the UModel Type Library is required in each project where you need
the UModel API. This makes it possible to instantiate the main application object from your code as follows:

UModelLib.Application um = new UModelLib.Application();

MessageBox.Show(String.Format("Hello from UModel API version {0}.{1}",

um.APIMajorVersion, um.APIMinorVersion));

If you have a 64-bit operating system and are using a 32-bit installation of UModel, add the x86 platform in the
solution's Configuration Manager and build the sample using this configuration. To access Configuration
Manager, run the menu command Build | Configuration Manager.

The example application displays a Windows form with buttons that invoke basic UModel operations:

· Start UModel
· Open Bank_MultiLanguage.ump
· Open All Diagrams
· Generate documentation for the currently active document
· Shows how to listen to UModel events (OnDocumentOpened Event On/Off)
· Shutdown UModel

835

© 2018-2024 Altova GmbH

The UModel API 835UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

The code essentially consists of a series of handlers for the buttons in the user interface shown above. Note
that you may need to adjust the path to the UModel examples folder which is referenced from the code.

17.3.4.1 How to Reference the UModel Type Library

To access the API functionality of UModel from your Visual Studio project, add a reference to the UModel Type
Library in Visual Studio, as follows:

1. Create a new Visual Studio project, or open an existing one.
2. On the Project menu, click Add Reference.
3. In the COM section, select UModel Type Library from the list. If this entry is not available in the COM

section, click Browse and select the file UModel.tlb from the UModel program application folder.

Note: Do not confuse the UModel Type Library with the UModelPlugin Type Library. The latter can be
used to create your own plug-ins and integrate them into UModel, see Add Reference to UModel Plug-

836 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

In Library .

After you follow the steps above, the UModel Type Library should be available in the list of references of your
Visual Studio solution, for example:

17.3.4.2 Importing Binary Types Programmatically

With UModel, you can import binary types from .NET .dll or Java .jar files, either from the graphical user
interface, or programmatically using the UModel API. This example illustrates how to import binary types from
a NET .dll file into UModel using the UModel API. For information about importing binary types from the
graphical user interface, see Importing Java, C# and VB.NET Binaries .

This example uses Microsoft Visual Studio 2019 and C#. The instructions below (except for the code listing)
are similar for VB.NET. To complete this example, you also need a .dll that contains some types (such as
classes or interfaces) that you would like to import into UModel.

To accomplish the task, we will use an existing C# demo application that already integrates into the UModel
API, rather than creating a new project from scratch. Namely, we will add to this demo application a new
button. When clicked, the button will create a new UModel project and import into it types from a .dll file. To
begin, run Visual Studio and open the following solution: C:

797

212

© 2018-2024 Altova GmbH

The UModel API 837UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

\Users\<username>\Documents\Altova\UModel2024\UModelExamples\API\C#\AutomateUModel_VS201
0.sln.

Note: The demo application already includes a reference to the UModel Type Library so it is not necessary to
add a reference explicitly. However, if you are creating a new Visual Studio project, make sure to
reference the UModel Type Library from your project, see How to Reference the UModel Type
Library .

Next, open the Form1.cs in the Design Editor and add a new button. Let's call it Import Binary Types.

Double-click the new button and paste the following code into the body of the handler method. Make sure that
the path to the .dll file is correct and that the .dll qualifies for import of binary types (that is, it must not be
obfuscated).

try

{
 // Create a new document

 UModelDocument = UModel.NewDocument();
 // Instantiate the Import Binary Types dialog

 UModelLib.ImportBinaryTypesDlg dlg = UModel.Dialogs.ImportBinaryTypesDlg;
 // Set the .NET runtime version according to your environment (must be greater than

v2.0) or use "any"

 dlg.Runtime = "any";
 // Set the import language (C# 8.0, in this case)

 dlg.Language = UModelLib.ENUMCodeLangVersion.eCodeLang_CSharp_8_0;
 // No need to show the dialog since we want to do this programmatically

 dlg.ShowDialog = false;

 // Add a new binary type entry to be imported

 UModelLib.IBinaryTypeEntry entry = dlg.CSharp_BinaryTypes.AddItem();
 // Specify the .dll to import (make sure to adjust the path)

 entry.Entry = "C:\\Path\\To\\My.dll";
 // All types shall be imported from this .dll

835

838 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 entry.ImportTypes = true;

 // The .dll is an executable

 entry.Executeable = true;

 // Perform the actual import

 UModelDocument.ImportBinaryTypes(dlg);
}
catch (Exception ex)

{
 MessageBox.Show(ex.Message);
}

Importing all types

The code above essentially creates a new UModel project, sets the import options in the "Import Binary Types"
dialog box, and performs the actual import of binary types.

To run the C# code and import binary types:

1. Press F5 to build and run the Visual Studio solution.
2. On the Windows form that appears, click Start UModel, and be patient while the UModel application

loads.
3. Only after UModel has finished loading, click Import Binary Types, and observe the outcome in the

Messages window of UModel.

If you would like to import only specific types, set the ImportTypes property is false, and supply the types to
be imported as arguments to the TypesToImport method. The list of distinct types can be separated by
comma, semi-colon, or space characters, as illustrated in the code listing below.

try

{
 UModelDocument = UModel.NewDocument();
 UModelLib.ImportBinaryTypesDlg dlg = UModel.Dialogs.ImportBinaryTypesDlg;
 dlg.ShowDialog = false;

 dlg.CSharp_BinaryTypes.RemoveAllItems();
 UModelLib.IBinaryTypeEntry entry = dlg.CSharp_BinaryTypes.AddItem();
 entry.Entry = "C:\\Path\\To\\My.dll";
 entry.ImportTypes = false;

 entry.Executeable = true;

 // import only specific types:

 entry.TypesToImport = "MyNamespace.Class1; MyNamespace.Class2";
 UModelDocument.ImportBinaryTypes(dlg);
}
catch (Exception ex)

{
 MessageBox.Show(ex.Message);
}

Importing distinct types

© 2018-2024 Altova GmbH

The UModel API 839UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.3.4.3 "Set Styles" Sample

The following sample sets multiple styles for selected diagram elements (if style is available and not already
set). The sample uses both the UModel API and the UModel IDE Plug-In library and is available in the following
file: ..\UModelExamples\IDEPlugIn\Styles\Styles.cs.

The solution also includes two setup projects (in .vdproj format, for 32-bit and 64-bit platforms). The setup
installs all necessary files, and registers the IDE plug-in for COM and UModel on your target system, so that
the plug-in is automatically loaded when UModel is started the next time.

Notes:

· To build and run the sample, the same requirements as for other UModel IDE Plug-ins apply, see Build
and Run the Plug-In .

· Visual Studio setup projects are not supported starting with Visual Studio 2012 and require a separate
extension to be opened. See the information messages displayed by the Visual Studio migration
wizard for more details.

using System;

using System.Collections.Generic;

using System.Text;

using System.Windows.Forms;

using UModelLib;

using UModelPlugInLib;

/*

 * Styles sample

 * set following styles for selected diagram elements

 * Fill Color

 * Header Gradient Begin Color

 * Header Gradient End Color

 * if style is available and not already set

 */

namespace Styles

{

 public class UModelStyles : UModelPlugInLib.IUModelPlugIn

 {

 bool m_bPlugInVersionOK = true; // verify if UModel-API has been changed in a way

that a recompile of this plug-in is recommended

 #region helpers

 protected string GetPlugInPath()

 {

 string sDLLPath = System.Reflection.Assembly.GetExecutingAssembly().Location;

 return System.IO.Path.GetDirectoryName(sDLLPath);

 }

 #endregion

 #region IUModelPlugIn Members

 public string GetDescription()

 {

804

840 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 return "Styles sample Plug-in for UModel;This Plug-in demonstrates how to

change several styles of the selected diagram elements.";

 }

 public string GetUIModifications()

 {

 try

 {

 string sPath = GetPlugInPath();

 System.IO.StreamReader myFile = new System.IO.StreamReader(sPath + "\

\config.xml");

 string sRet = myFile.ReadToEnd();

 myFile.Close();

 // this replaces the token "**path**" from the XML file with

 // the actual installation path of the plug-in to get the image file

 return sRet.Replace("**path**", sPath);

 }

 catch (System.Exception ex)

 {

 MessageBox.Show("Error in GetUIModifications:" + ex.Message);

 throw ex;

 }

 }

 public void OnInitialize(object pUModel)

 {

 // before processing DDE or batch commands

 }

 public void OnRunning(object pUModel)

 {

 // DDE or batch commands are processed; application is fully initialized

 // verify if UModel-API has been changed in a way that a recompile of this

plug-in is recommended:

 IApplication iApp = (IApplication)pUModel;

 if (iApp == null || iApp.APIMajorVersion != 5) // this plug-in was compiled

for API major version '5'!

 {

 MessageBox.Show("'Styles': This Plug-in has been made with a previous

version of the UModel-API and should be recompiled.\nDisabled Plug-in commands in the

meantime.");

 m_bPlugInVersionOK = false;

 }

 }

 public void OnShutdown(object pUModel)

 {

 // application will shutdown; release all unused objects

 GC.Collect();

 }

 public UModelUpdateAction OnUpdateCommand(int nID, object pUModel)

 {

 UModelUpdateAction action = UModelUpdateAction.UModelUpdateAction_Disable;

 if (!m_bPlugInVersionOK)

 return action;

© 2018-2024 Altova GmbH

The UModel API 841UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 // check for "fill red"

 if (nID == 3 || nID == 6)

 action = OnUpdateSetStyles((IApplication)pUModel);

 // check for "fill green"

 if (nID == 4 || nID == 7)

 action = OnUpdateSetStyles((IApplication)pUModel);

 // release unused objects

 GC.Collect();

 return action;

 }

 public void OnCommand(int nID, object pUModel)

 {

 if (!m_bPlugInVersionOK)

 return;

 // fill red

 if (nID == 3 || nID == 6)

 OnSetStyles((IApplication)pUModel, "red");

 // fill green

 if (nID == 4 || nID == 7)

 OnSetStyles((IApplication)pUModel, "green");

 // release unused objects

 GC.Collect();

 }

 #endregion

 #region SetStyles // set styles of selected diagram elements

 UModelUpdateAction OnUpdateSetStyles(IApplication pUModel)

 {

 if (pUModel == null)

 return UModelUpdateAction.UModelUpdateAction_Disable;

 // get the active document of the application

 IDocument iDoc = pUModel.ActiveDocument;

 if (iDoc == null)

 return UModelUpdateAction.UModelUpdateAction_Disable;

 // get the active diagram window

 IDiagramWindow iActiveDiagram = iDoc.ActiveDiagramWindow;

 if (iActiveDiagram == null)

 return UModelUpdateAction.UModelUpdateAction_Disable;

 // get the selected elements on the active diagram

 IUMLDataList iSelection = iActiveDiagram.SelectedGuiElements;

 if (iSelection == null)

 return UModelUpdateAction.UModelUpdateAction_Disable;

 // search all selected elements, if at least one has one of the styles to

change

 foreach (IUMLGuiElement iSelGuiElement in iSelection)

842 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 {

 // verify if it is a GuiVisibleElement (with Styles) and if it may be

modified

 if (iSelGuiElement is IUMLGuiVisibleElement &&

iSelGuiElement.IsEditable)

 {

 IUMLGuiVisibleElement iVisGuiElement = (IUMLGuiVisibleElement)

iSelGuiElement;

 if

(iVisGuiElement.Styles.GetStyle(ENUMUMLGuiStyleKind.eUMLGuiStyle_FillColor) != null ||

 iVisGuiElement.Styles.GetStyle(ENUMUMLGuiStyleKind.eUMLGuiStyle_

HeaderGradientBeginColor) != null ||

 iVisGuiElement.Styles.GetStyle(ENUMUMLGuiStyleKind.eUMLGuiStyle_

HeaderGradientEndColor) != null)

 {

 return UModelUpdateAction.UModelUpdateAction_Enable;

 }

 }

 }

 // nothing found => disable command

 return UModelUpdateAction.UModelUpdateAction_Disable;

 }

 public void OnSetStyles(IApplication pUModel, string sColor)

 {

 if (pUModel == null)

 return;

 // get the active document of the application

 IDocument iDoc = pUModel.ActiveDocument;

 if (iDoc == null)

 return;

 // get the active diagram window

 IDiagramWindow iActiveDiagram = iDoc.ActiveDiagramWindow;

 if (iActiveDiagram == null)

 return;

 // get the selected elements on the active diagram

 IUMLDataList iSelection = iActiveDiagram.SelectedGuiElements;

 if (iSelection == null)

 return;

 try

 {

 // make all modifications within one UndoStep; start modification here

 if (!iDoc.BeginModification())

 return;

 // search all selected elements, and change the style if the wanted value

is not already used (directly applied or through style-chain)

 foreach (IUMLGuiElement iSelGuiElement in iSelection)

 {

 // verify if it is a GuiVisibleElement (with Styles) and if it may be

modified

 if (iSelGuiElement is IUMLGuiVisibleElement &&

iSelGuiElement.IsEditable)

© 2018-2024 Altova GmbH

The UModel API 843UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 {

 IUMLGuiVisibleElement iVisGuiElement = (IUMLGuiVisibleElement)

iSelGuiElement;

 // set Fill Color if possible and not already set

 IUMLGuiStyle iStyle =

iVisGuiElement.Styles.GetStyle(ENUMUMLGuiStyleKind.eUMLGuiStyle_FillColor);

 if (iStyle != null && iStyle.UsedValue != sColor)

 iStyle.Value = sColor;

 // set Header Gradient Begin Color if possible and not already

set

 iStyle =

iVisGuiElement.Styles.GetStyle(ENUMUMLGuiStyleKind.eUMLGuiStyle_HeaderGradientBeginColor)

;

 if (iStyle != null && iStyle.UsedValue != sColor)

 iStyle.Value = sColor;

 // set Header Gradient End Color if possible and not already set

 iStyle =

iVisGuiElement.Styles.GetStyle(ENUMUMLGuiStyleKind.eUMLGuiStyle_HeaderGradientEndColor);

 if (iStyle != null && iStyle.UsedValue != sColor)

 iStyle.Value = sColor;

 }

 }

 // do not forget to end modification and finish UndoStep

 iDoc.EndModification();

 }

 catch(System.Exception)

 {

 // rollback made changes

 iDoc.AbortModification();

 // add error handling

 }

 }

 #endregion

 }

}

17.3.4.4 "C# Delegate" Sample

The following sample inserts a new C# delegate at the top/left corner of the active diagram window (if this
diagram is inside a C# namespace root). The sample uses both the UModel API and the UModel IDE Plug-In
library and is available in the following file: ..
\UModelExamples\IDEPlugIn\CSharpDelegate\UModelCSharpDelegate.cs.

To build and run the sample, the same requirements as for other UModel IDE Plug-ins apply, see Build and
Run the Plug-In .

using System;

804

844 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

using System.Collections.Generic;

using System.Text;

using UModelLib;

using UModelPlugInLib;

/*

 * CSharp delegate sample

 * add a new CSharp delegate on the top/left corner of the active class diagram if

possible

 * (i.e. when diagram is inside a C# root namespace)

 */

namespace CSharpDelegate

{

 public class UModelCSharpDelegate : UModelPlugInLib.IUModelPlugIn

 {

 #region helpers

 protected string GetPlugInPath()

 {

 string sDLLPath = System.Reflection.Assembly.GetExecutingAssembly().Location;

 return System.IO.Path.GetDirectoryName(sDLLPath);

 }

 #endregion

 #region IUModelPlugIn Members

 public string GetDescription()

 {

 return "CSharpDelegate sample Plug-in for UModel;This Plug-in demonstrates

how to create a new CSharp delegate on a class diagram.";

 }

 public string GetUIModifications()

 {

 try

 {

 string sPath = GetPlugInPath();

 System.IO.StreamReader myFile = new System.IO.StreamReader(sPath + "\

\config.xml");

 string sRet = myFile.ReadToEnd();

 myFile.Close();

 // this replaces the token "**path**" from the XML file with

 // the actual installation path of the plug-in to get the image file

 return sRet.Replace("**path**", sPath);

 }

 catch (System.Exception ex)

 {

 System.Windows.Forms.MessageBox.Show("Error in GetUIModifications:" +

ex.Message);

 throw ex;

 }

 }

 public void OnInitialize(object pUModel)

© 2018-2024 Altova GmbH

The UModel API 845UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 {

 // before processing DDE or batch commands

 }

 public void OnRunning(object pUModel)

 {

 // DDE or batch commands are processed; application is fully initialized

 }

 public void OnShutdown(object pUModel)

 {

 // application will shutdown; release all unused objects

 GC.Collect();

 }

 public UModelUpdateAction OnUpdateCommand(int nID, object pUModel)

 {

 UModelUpdateAction action = UModelUpdateAction.UModelUpdateAction_Disable;

 // check if we can add a new CSharpDelegate on the active diagram

 if (nID == 3 || nID == 4)

 action = OnUpdateAddNewCSharpDelegate((IApplication)pUModel);

 // release unused objects

 GC.Collect();

 return action;

 }

 public void OnCommand(int nID, object pUModel)

 {

 // add a new CSharpDelegate on the active diagram

 if (nID == 3 || nID == 4)

 OnAddNewCSharpDelegate((IApplication)pUModel);

 // release unused objects

 GC.Collect();

 }

 #endregion

 #region AddNewCSharpDelegate // add new CSharp delegate on active diagram

 UModelUpdateAction OnUpdateAddNewCSharpDelegate(IApplication pUModel)

 {

 if (pUModel == null)

 return UModelUpdateAction.UModelUpdateAction_Disable;

 // get the active document of the application

 IDocument iDoc = pUModel.ActiveDocument;

 if (iDoc == null)

 return UModelUpdateAction.UModelUpdateAction_Disable;

 // get the active diagram window

 IDiagramWindow iActiveDiagram = iDoc.ActiveDiagramWindow;

 if (iActiveDiagram == null)

 return UModelUpdateAction.UModelUpdateAction_Disable;

 // get the UML diagram of the diagram window

846 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 IUMLGuiDiagram iUMLDiagram = iActiveDiagram.Diagram;

 // check if it is a class diagram

 if (!(iUMLDiagram is IUMLGuiClassDiagram))

 return UModelUpdateAction.UModelUpdateAction_Disable;

 // verify if the diagram may be modified

 if (!iUMLDiagram.IsEditable)

 return UModelUpdateAction.UModelUpdateAction_Disable;

 // get the UML element, which "owns" the class diagram

 IUMLElement iDiagramOwner = iUMLDiagram.LinkedOwner;

 if (iDiagramOwner == null)

 return UModelUpdateAction.UModelUpdateAction_Disable;

 // verify if we are inside a CSharp namespace root (otherwise adding a CSharp

delegate makes no sense)

 IUMLElement iFindNamespaceRoot = iDiagramOwner;

 while(iFindNamespaceRoot != null)

 {

 if (iFindNamespaceRoot is IUMLPackage)

 {

 IUMLPackage iPackage = (IUMLPackage) iFindNamespaceRoot;

 if

(iPackage.IsCodeLangNamespaceRoot(ENUMCodeLang.eCodeLang_CSharp))

 return UModelUpdateAction.UModelUpdateAction_Enable;

 }

 iFindNamespaceRoot = iFindNamespaceRoot.Owner;

 }

 // nothing found => disable command

 return UModelUpdateAction.UModelUpdateAction_Disable;

 }

 public void OnAddNewCSharpDelegate(IApplication pUModel)

 {

 if (pUModel == null)

 return;

 // get the active document of the application

 IDocument iDoc = pUModel.ActiveDocument;

 if (iDoc == null)

 return;

 // get the active diagram window

 IDiagramWindow iActiveDiagram = iDoc.ActiveDiagramWindow;

 if (iActiveDiagram == null)

 return;

 // get the UML diagram of the diagram window

 IUMLGuiDiagram iUMLDiagram = iActiveDiagram.Diagram;

 // get the CSharp profile

 IUMLProfile iCSharpProfile = (IUMLProfile)

iDoc.RootPackage.FindPredefinedOwnedElement(ENUMUMLPredefinedElement.ePredefined_CSharp_P

rofile, false);

 if (iCSharpProfile == null)

 return;

© 2018-2024 Altova GmbH

The UModel API 847UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 try

 {

 // make all modifications within one UndoStep; start modification here

 if (!iDoc.BeginModification())

 return;

 // get top left corner of the visible diagram area

 int nInsertPosX = iActiveDiagram.ScrollPosX;

 int nInsertPosY = iActiveDiagram.ScrollPosY;

 // add new class on diagram

 IUMLGuiNodeLink iClassNode = iUMLDiagram.AddUMLElement("Class",

nInsertPosX + 100, nInsertPosY + 100);

 IUMLClass iClass = (IUMLClass) iClassNode.Element;

 // use SetName (instead of Name) that UModel automatically generates a

valid, unique name starting with "NewDelegate"

 iClass.SetName("NewDelegate");

 // set the CSharp 'delegate' stereotype

 iClass.ApplyPredefinedStereotype(

 ENUMUMLPredefinedElement.ePredefined_CSharp_delegateStereotypeOfClass);

 // set attribute-section "STAThread"

 IUMLStereotypeApplication iStereotypeApp =

iClass.ApplyPredefinedStereotype(ENUMUMLPredefinedElement.ePredefined_CSharp_attributesSt

ereotypeOfClass);

 IUMLEnumerationLiteral iSTAThread = (IUMLEnumerationLiteral)

iCSharpProfile.FindPredefinedOwnedElement(ENUMUMLPredefinedElement.ePredefined_CSharp_Att

ributePresetsEnumeration_STAThreadEnumerationLiteral, true);

 iStereotypeApp.SetPredefinedTaggedValueAt(-1,

ENUMUMLPredefinedElement.ePredefined_CSharp_attributesStereotypeOfClass_sectionsProperty,

 iSTAThread.Name);

 // add delegate operation:

 IUMLOperation iOperation = iClass.InsertOwnedOperationAt(-1);

 iOperation.SetName("delegate");

 // per default set operation-return type "void"

 IUMLPrimitiveType iTypeVoid = (IUMLPrimitiveType)

iCSharpProfile.FindPredefinedOwnedElement(ENUMUMLPredefinedElement.ePredefined_CSharp_voi

dPrimitiveType, true);

 iOperation.Type = iTypeVoid;

 // do not forget to end modification and finish UndoStep

 iDoc.EndModification();

 // at last focus newly inserted delegate on the diagram:

 iActiveDiagram.SelectGuiElement(iClassNode, true);

 }

 catch(System.Exception)

 {

 // rollback made changes

 iDoc.AbortModification();

 // add error handling

 }

 }

848 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 #endregion

 }

}

17.3.4.5 "Set Prefix" Sample

The following sample automatically sets a prefix when new attributes or enumeration literals are added to your
UModel project. The sample uses both the UModel API and the UModel IDE Plug-In library and is available in
the following file: ..\UModelExamples\IDEPlugIn\DefaultPrefix\DefaultPrefix.cs.

To build and run the sample, the same requirements as for other UModel IDE Plug-ins apply, see Build and
Run the Plug-In .

using System;

using System.Collections.Generic;

using System.Text;

using System.Diagnostics;

using System.Runtime.InteropServices.ComTypes;

using UModelLib;

using UModelPlugInLib;

/*

 * DefaultPrefix sample

 * listen for newly added UML data and

 * set the prefix of properties ('m_') and EnumerationLiterals ('k_')

 * if the corresponding option is turned on

 */

namespace DefaultPrefix

{

 /* UModelDefaultPrefix is the main class of this plugin and implements

UModelPlugInLib.IUModelPlugIn

 * it is also responsible for attaching/detaching UModelApplicationEvents to/from

UModels IApplication interface

 * and implements the handling of turning on/off the whole "SetPrefix" functionality

 */

 public class UModelDefaultPrefix : UModelPlugInLib.IUModelPlugIn

 {

 // variable which defines whether "SetPrefix" functionality is turned on or off

 bool m_bSetPrefix = true;

 // reference to UModelApplicationEvents; is only used when "SetPrefix"

functionality is turned on (to reduce overhead in the other case)

 UModelApplicationEvents m_AppEvents = null;

 #region helpers

 protected string GetPlugInPath()

 {

 string sDLLPath = System.Reflection.Assembly.GetExecutingAssembly().Location;

 return System.IO.Path.GetDirectoryName(sDLLPath);

 }

804

© 2018-2024 Altova GmbH

The UModel API 849UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 #endregion

 // create UModelApplicationEvents and attach it to IApplication

 protected void AttachAppEvents(IApplication iUModelApp)

 {

 if (m_AppEvents == null && iUModelApp != null)

 {

 m_AppEvents = new UModelApplicationEvents();

 m_AppEvents.Attach(iUModelApp);

 }

 }

 // detach UModelApplicationEvents;

 protected void DetachAppEvents()

 {

 if (m_AppEvents != null)

 {

 m_AppEvents.Detach();

 m_AppEvents = null;

 }

 }

 #region IUModelPlugIn Members

 public string GetDescription()

 {

 return "DefaultPrefix sample Plug-in for UModel;This Plug-in demonstrates how

to attach to several callback interfaces and how to add a prefix to newly inserted

elements.";

 }

 public string GetUIModifications()

 {

 try

 {

 string sPath = GetPlugInPath();

 System.IO.StreamReader myFile = new System.IO.StreamReader(sPath + "\

\config.xml");

 string sRet = myFile.ReadToEnd();

 myFile.Close();

 // this replaces the token "**path**" from the XML file with

 // the actual installation path of the plug-in to get the image file

 return sRet.Replace("**path**", sPath);

 }

 catch (System.Exception ex)

 {

 System.Windows.Forms.MessageBox.Show("Error in GetUIModifications:" +

ex.Message);

 throw ex;

 }

 }

 public void OnInitialize(object pUModel)

 {

 // before processing DDE or batch commands

 }

850 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 public void OnRunning(object pUModel)

 {

 // DDE or batch commands are processed; application is fully initialized

 // and we can attach UModelApplicationEvents

 AttachAppEvents((IApplication)pUModel);

 }

 public void OnShutdown(object pUModel)

 {

 // detach UModelApplicationEvents; stop receiving events

 DetachAppEvents();

 // application will shutdown; release all unused objects

 GC.Collect();

 }

 public UModelUpdateAction OnUpdateCommand(int nID, object pUModel)

 {

 UModelUpdateAction action = UModelUpdateAction.UModelUpdateAction_Disable;

 // check if automatically setting the prefix is turned on:

 if (nID == 3 || nID == 4)

 {

 action = UModelUpdateAction.UModelUpdateAction_Enable;

 if (m_bSetPrefix)

 action |= UModelUpdateAction.UModelUpdateAction_Check;

 }

 // release unused objects

 //GC.Collect(); not necessary since we do not access objects here

 return action;

 }

 public void OnCommand(int nID, object pUModel)

 {

 // toggle automatically setting the prefix:

 if (nID == 3 || nID == 4)

 m_bSetPrefix = !m_bSetPrefix;

 // attach UModelApplicationEvents when "SetPrefix" functionality is turned

on; detach otherwise

 if (m_bSetPrefix)

 AttachAppEvents((IApplication)pUModel);

 else

 DetachAppEvents();

 // release unused objects

 GC.Collect();

 }

 #endregion

 }

 /* UModelApplicationEvents is an eventhandler to receive _IApplicationEvents

 * that we know when UModel documents are opened or closed

© 2018-2024 Altova GmbH

The UModel API 851UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 * and that we can Attach/Detach UModelDataEvents

 * We are interested in all _IApplicationEvents and use a connectionpoint to connect

to all these events

 */

 public class UModelApplicationEvents : UModelLib._IApplicationEvents

 {

 // connection point to _IApplicationEvents

 System.Runtime.InteropServices.ComTypes.IConnectionPoint m_cpApplicationEvents =

null;

 // connection cookie

 int m_nApplicationtEventsCookie = 0;

 // we always hold a reference to UModelDataEvents

 UModelDataEvents m_UMLDataEvents = new UModelDataEvents();

 public void Attach(IApplication iApp)

 {

 if (m_cpApplicationEvents == null && iApp != null)

 {

 // find connection point of _IApplicationEvents

 IConnectionPointContainer icpc = (IConnectionPointContainer)iApp;

 Guid IID = typeof(UModelLib._IApplicationEvents).GUID;

 icpc.FindConnectionPoint(ref IID, out m_cpApplicationEvents);

 // advise UModelApplicationEvents as sink for _IApplicationEvents

 m_cpApplicationEvents.Advise(this, out m_nApplicationtEventsCookie);

 // also attach UModelDataEvents to the current document and start

receiving events there

 m_UMLDataEvents.Attach(iApp.ActiveDocument);

 }

 }

 public void Detach()

 {

 if (m_cpApplicationEvents != null)

 {

 // also detach UModelDataEvents and stop receiving events there

 m_UMLDataEvents.Detach();

 // terminate established connection to _IApplicationEvents

 m_cpApplicationEvents.Unadvise(m_nApplicationtEventsCookie);

 m_cpApplicationEvents = null;

 }

 }

 #region _IApplicationEvents Members

 public void OnNewDocument(Document ipDocument)

 {

 Debug.WriteLine("UModelApplicationEvents.OnNewDocument " + ipDocument.Name);

 // a new document has been created in UModel => (re-)connect UModelDataEvents

 m_UMLDataEvents.Attach(ipDocument);

 }

 public void OnDocumentOpened(Document ipDocument)

 {

 Debug.WriteLine("UModelApplicationEvents.OnDocumentOpened " +

ipDocument.Name);

 // a document has been opened in UModel => (re-)connect UModelDataEvents

 m_UMLDataEvents.Attach(ipDocument);

 }

852 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 public void OnDocumentClosed(Document ipDocument)

 {

 Debug.WriteLine("UModelApplicationEvents.OnDocumentClosed " +

ipDocument.Name);

 // document has been closed in UModel => disconnect UModelDataEvents

 m_UMLDataEvents.Detach();

 }

 public void OnShutdown()

 {

 Debug.WriteLine("UModelApplicationEvents.OnShutdown");

 }

 #endregion

 }

 /* UModelDataEvents is an eventhandler to receive _IUMLDataEvents

 * from the root-package and all its children.

 * We are only interested in 'OnAfterAddChild' events, so we use a delegate to

connect to this event.

 */

 public class UModelDataEvents : UModelLib._IUMLDataEvents

 {

 // hold a reference to the current UML Root package; this is safe as long as we

listen to when it is deleted

 protected UMLData m_RootPackage = null;

 // attach this eventhandler to the root-package of the (current) document

 public void Attach(IDocument iDoc)

 {

 if (m_RootPackage == null && iDoc != null && iDoc.RootPackage != null)

 {

 // hold a reference to the current UML Root package

 m_RootPackage = (UMLData)iDoc.RootPackage;

 // ensure we get 'OnAfterAddChild' events for *any* added child of the

rootpackage

 // (added to the root-package or one of its children)

 m_RootPackage.EventFilter = (int)

ENUMUMLDataEventFilter.eUMLDataEvent_AddChildOrGrandChild;

 // ensure we get informed when m_RootPackage (and only itself; we do not

care about its chidlren) is deleted

 m_RootPackage.EventFilter |= (int)

ENUMUMLDataEventFilter.eUMLDataEvent_EraseData;

 // we are only interested in 'OnAfterAddChild' and 'OnBeforeErase' events

so use and connect the delegates

 m_RootPackage.OnAfterAddChild += new

_IUMLDataEvents_OnAfterAddChildEventHandler(OnAfterAddChild);

 m_RootPackage.OnBeforeErase += new

_IUMLDataEvents_OnBeforeEraseEventHandler(OnBeforeErase);

 }

 }

 // detach eventhandler from the current UML Root package

 public void Detach()

 {

© 2018-2024 Altova GmbH

The UModel API 853UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 if (m_RootPackage != null)

 {

 m_RootPackage.OnAfterAddChild -= OnAfterAddChild;

 m_RootPackage.OnBeforeErase -= OnBeforeErase;

 m_RootPackage = null;

 // release unused objects

 GC.Collect();

 }

 }

 #region _IUMLDataEvents Members

 public void OnAfterAddChild(IUMLData ipUMLParent, IUMLData ipUMLChild)

 {

 if (ipUMLParent == null || ipUMLChild == null)

 return;

 Debug.WriteLine("UModelDataEvents.OnAfterAddChild " + GetName(ipUMLChild) + "

to " + GetName(ipUMLParent));

 // verify if newly added child is of interesting kind:

 bool bIsEnumerationLiteral = (ipUMLChild is IUMLEnumerationLiteral);

 bool bIsProperty = (ipUMLChild is IUMLProperty);

 if (bIsProperty || bIsEnumerationLiteral)

 {

 try

 {

 // check if child was added by undo/redo

 // (we are not allowed to modify anything during Undo/Redo !!)

 IDocument iDoc = (IDocument)ipUMLChild.Parent;

 if (!iDoc.IsInUndoRedo)

 {

 // we only make one single modification here

 // no need to use iDoc.BeginModification / iDoc.EndModification

in this case

 // get the wanted prefix for the element kind

 string sPrefix = null;

 if (bIsProperty)

 sPrefix = "m_";

 if (bIsEnumerationLiteral)

 sPrefix = "k_";

 IUMLNamedElement iNamedChild = (IUMLNamedElement)ipUMLChild;

 // set prefix only if not already set:

 if (sPrefix != null && !iNamedChild.Name.StartsWith(sPrefix))

 {

 // use SetName (instead of Name) that UModel automatically

generates a valid, unique name starting with 'sPrefix + iNamedChild.Name'

 iNamedChild.SetName(sPrefix + iNamedChild.Name);

 }

 }

 }

 catch (System.Exception e)

 {

854 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 Debug.WriteLine("EXCEPTION: " + e.Message);

 }

 }

 // release unused objects

 GC.Collect();

 }

 public void OnBeforeErase(IUMLData ipUMLData)

 {

 if (ipUMLData != null && m_RootPackage != null &&

ipUMLData.IsSameUMLData((IUMLData)m_RootPackage)) // should always be

 {

 // Detach ourself, since the UML data of m_RootPackage has been deleted

in UModel and we may not access it anymore

 Detach();

 }

 }

 public void OnChanged(IUMLData ipUMLData, string strHint)

 {

 // unused

 }

 public void OnMoveData(IUMLData ipUMLParent, IUMLData ipUMLChild, bool bAttach)

 {

 // unused

 }

 #endregion

 protected string GetName(IUMLData iUMLData)

 {

 if (iUMLData is IUMLNamedElement)

 return ((IUMLNamedElement)iUMLData).Name;

 return "";

 }

 }

}

17.3.4.6 "Statistics" Sample

The "Statistics" sample listens for data modifications and counts elements of different element kinds. The
sample uses both the UModel API and the UModel IDE Plug-In library. Since the plug-in derives from
System.Windows.Forms.UserControl, it also acts as an ActiveX control and the results can be shown in a
custom window inside UModel:

© 2018-2024 Altova GmbH

The UModel API 855UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

This code is available in the following file: ..
\UModelExamples\IDEPlugIn\StatisticsActiveX\StatisticsActiveX.cs.

To build and run the sample, the same requirements as for other UModel IDE Plug-ins apply, see Build and
Run the Plug-In .

using System;

using System.Collections;

using System.Collections.Generic;

using System.Text;

using System.Drawing;

using System.Runtime.InteropServices.ComTypes;

using System.Windows.Forms;

using UModelLib;

using UModelPlugInLib;

804

856 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

/*

 * StatisticsActiveX sample

 * listen for data modifications and count the elements of the different element kinds

 * show the result in a listview of an ActiveX control

 */

namespace StatisticsActiveX

{

 /* StatisticsActiveX is the main class of this plugin and implements

UModelPlugInLib.IUModelPlugIn

 * it is also responsible for attaching/detaching _IApplicationEvents and

_ITransactionEvents

 */

 public partial class StatisticsActiveX : UserControl,

 IUModelPlugIn,

 _IApplicationEvents,

 _ITransactionEvents

 {

 // a sorted dictionary to count the different element kinds

 private Statistics m_Statistics;

 // reference to the transaction notifier of a UModel document

 private TransactionNotifier m_TransactionNotifier;

 // connection point to _IApplicationEvents

 private IConnectionPoint m_cpApplicationEvents = null;

 // connection cookie

 int m_nApplicationtEventsCookie = 0;

 public StatisticsActiveX()

 {

 InitializeComponent();

 }

 #region IUModelPlugIn Members

 public string GetDescription()

 {

 return "PlugIn with ActiveX;This Plug-in demonstrates how to show an ActiveX

control inside UModel.";

 }

 public string GetUIModifications()

 {

 // We don't add any menu or toolbar modifications.

 return "<ConfigurationData><Modifications/></ConfigurationData>";

 }

 public void OnInitialize(object pUModel)

 {

 // before processing DDE or batch commands

 }

 public void OnRunning(object pUModel)

 {

 // DDE or batch commands are processed; application is fully initialized

 // and we can attach to get _IApplicationEvents

 IApplication iApp = (IApplication)pUModel;

 if (m_cpApplicationEvents == null && iApp != null)

© 2018-2024 Altova GmbH

The UModel API 857UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 {

 // find connection point of _IApplicationEvents

 IConnectionPointContainer icpc = (IConnectionPointContainer)iApp;

 Guid IID = typeof(UModelLib._IApplicationEvents).GUID;

 icpc.FindConnectionPoint(ref IID, out m_cpApplicationEvents);

 // advise UModelApplicationEvents as sink for _IApplicationEvents

 m_cpApplicationEvents.Advise(this, out m_nApplicationtEventsCookie);

 }

 AttachTransactionEvents(iApp.ActiveDocument);

 }

 public void OnShutdown(object pUModel)

 {

 // detach application events; stop receiving events

 DetachTransactionEvents();

 if (m_cpApplicationEvents != null)

 {

 // terminate established connection to _IApplicationEvents

 m_cpApplicationEvents.Unadvise(m_nApplicationtEventsCookie);

 m_cpApplicationEvents = null;

 }

 // application will shutdown; release all unused objects

 GC.Collect();

 }

 public void OnCommand(int nID, object pUModel)

 {

 // unused; we did not add any menu- or toolbar-commands

 }

 public UModelUpdateAction OnUpdateCommand(int nID, object pUModel)

 {

 // unused; we did not add any menu- or toolbar-commands

 return UModelUpdateAction.UModelUpdateAction_Disable;

 }

 #endregion

 private void AttachTransactionEvents(IDocument iDoc)

 {

 if (iDoc != null)

 {

 m_TransactionNotifier = iDoc.TransactionNotifier;

 if (m_TransactionNotifier != null)

 {

 // we are only interested in 'OnEndDataModification' events so use

and connect the delegate

 m_TransactionNotifier.OnEndDataModification += new

_ITransactionEvents_OnEndDataModificationEventHandler(OnEndDataModification);

 }

 }

 UpdateStatistics(iDoc);

 }

858 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 // detach eventhandler from the transaction notifier

 private void DetachTransactionEvents()

 {

 if (m_TransactionNotifier != null)

 {

 m_TransactionNotifier.OnEndDataModification -= OnEndDataModification;

 m_TransactionNotifier = null;

 }

 UpdateStatistics(null);

 }

 void UpdateStatistics(IDocument iDoc)

 {

 // count current elements

 Statistics statistics = new Statistics();

 if (iDoc != null && iDoc.RootPackage != null)

 CountElements(iDoc.RootPackage, ref statistics);

 // anything changed to last update ?

 if (!statistics.IsEqual(m_Statistics))

 {

 m_Statistics = statistics;

 PopulateListView(m_Statistics);

 }

 // release unused objects

 GC.Collect();

 }

 private void CountElements(IUMLElement iElem, ref Statistics statistics)

 {

 // we only count editable elements

 if (iElem == null || iElem.IsEditable == false)

 return;

 string sKindName = iElem.KindName;

 if (!statistics.ContainsKey(sKindName))

 statistics[sKindName] = 1;

 else

 statistics[sKindName]++;

 foreach (IUMLElement iChild in iElem.OwnedElements)

 CountElements(iChild, ref statistics);

 }

 private void PopulateListView(Statistics statistics)

 {

 listView1.BeginUpdate();

 listView1.Items.Clear();

 foreach (KeyValuePair<string, int> kvp in statistics)

 {

 ListViewItem item = new ListViewItem(kvp.Key);

 item.SubItems.Add(Convert.ToString(kvp.Value));

 listView1.Items.Add(item);

 }

© 2018-2024 Altova GmbH

The UModel API 859UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 listView1.EndUpdate();

 }

 #region _ITransactionEvents Members

 public void OnBeginDataModification(Document ipDocument)

 {

 // begin of transaction

 }

 public void OnEndDataModification(Document ipDocument)

 {

 // end of transaction - update statistics

 if (ipDocument != null && ipDocument.TransactionNotifier ==

m_TransactionNotifier)

 UpdateStatistics(ipDocument);

 }

 #endregion

 #region _IApplicationEvents Members

 public void OnNewDocument(Document ipDocument)

 {

 // a new document has been created in UModel => (re-)connect transaction

events

 AttachTransactionEvents(ipDocument);

 }

 public void OnDocumentOpened(Document ipDocument)

 {

 // a document has been opened in UModel => (re-)connect transaction events

 AttachTransactionEvents(ipDocument);

 }

 public void OnDocumentClosed(Document ipDocument)

 {

 // document has been closed in UModel => disconnect transaction events

 if (ipDocument != null && ipDocument.TransactionNotifier ==

m_TransactionNotifier)

 DetachTransactionEvents();

 }

 public void OnShutdown()

 {

 }

 #endregion

 #region Statistics dictionary

 private class Statistics : SortedDictionary<string, int>

 {

 public bool IsEqual(Statistics other)

 {

 if (other == null)

 return false;

860 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 if (Count != other.Count)

 return false;

 Enumerator e1 = GetEnumerator();

 Enumerator e2 = other.GetEnumerator();

 while (e1.MoveNext() && e2.MoveNext())

 {

 if ((e1.Current.Key != e2.Current.Key) ||

 (e1.Current.Value != e2.Current.Value))

 return false;

 }

 return true;

 }

 }

 #endregion

 }

}

17.3.5 Java API Example

The UModel installation package contains an example Java project, located at C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\API. This folder contains Java
examples for the UModel API. You can test it directly from the command line using the batch file
BuildAndRun.bat, or you can compile and run the example project from within Eclipse. See below for
instructions on how to use these procedures.

The Java examples folder contains all the files required to run the example project. These files are listed below:

AltovaAutomation.dll Java-COM bridge: DLL part

AltovaAutomation.jar Java-COM bridge: Java library part

UModelAPI.jar Java classes of the UModel API

RunUModel.java Java example source code

BuildAndRun.bat Batch file to compile and run example code from the command line
prompt. Expects folder where Java Virtual Machine resides as parameter.

.classpath Eclipse project helper file

.project Eclipse project file

UModelAPI_JavaDoc.zip Javadoc file containing help documentation for the Java API

Readme.txt This file

The example starts up UModel and performs a few operations, including opening and closing documents. When
done, UModel stays open. You must close it manually.

© 2018-2024 Altova GmbH

The UModel API 861UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Running the example from the command line
To run the example from the command line, open a command prompt window, go to the Java folder of the API
Examples folder (see above for location), and then type:

buildAndRun.bat "<Path-to-the-Java-bin-folder>"

The Java binary folder must be that of a JDK 1.7 or later installation on your computer.

Press the Return key. The Java source in RunUModel.java will be compiled and then executed.

Loading the example in Eclipse
Open Eclipse and use the File | Import... | General | Existing Projects into Workspace command to add
the Eclipse project file (.project) located in the Java folder of the API Examples folder (see above for
location). The project RunUModel will then appear in your Package Explorer or Navigator.

Select the project and then the command Run as | Java Application to execute the example.

Note: You can select a class name or method of the Java API and press F1 to get help for that class or
method.

Potential issues with instanceof and cast operators
There could be some issues with the instanceof and cast operators. For example, the instanceof and cast
operators do not work when you receive instances of a base class type (e.g.,
UMLElement.getOwnedElements()). Note the following recommendations:

· You should not use the instanceof operator and class casts when you receive instances of base
classes directly from the API.

· Use a member function instead to determine the type of the element. Then create a new instance of
the derived class.

An extract of the code listing from RunUModel.java will give you an idea about how to work around potential

issues with the instanceof and cast operators:

private static void printUMLTree(UMLData i_data, String tab) throws AutomationException

{

// Java's 'instanceof' operator does not work where we receive instances of
a base class type like with 'UMLElement.getOwnedElements()'.

if (i_data.isKindOf("Package"))

{

// the Java cast operator does not work for these objects either.
Instead, create a new instance with the appropriate class type.

UMLPackage umlPackage = new UMLPackage(i_data); // (UMLPackage)
i_data

if (umlPackage.getIsShared())

System.out.println(tab + "Shared Package " +
umlPackage.getName());

else

862 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

System.out.println(tab + "Package " + umlPackage.getName());

}

else if (i_data.isKindOf("Class"))

{

System.out.println(tab + "Class " + new UMLClass(i_data).getName());

}

// recurse

tab += " ";

if (i_data.isKindOf("Element"))

for (UMLData elem : new UMLElement(i_data).getOwnedElements())

printUMLTree(elem, tab);

}

17.3.6 JScript Examples

This section contains listings of JScript code that demonstrate the following basic functionality:

· Start application
· Document Access
· Generate documentation
· Generate code
· Update Documentation

Example files
The code listings in this section are available in example files that you can test as is or modify to suit your
needs. The JScript example files are located at C:
\Users\<username>\Documents\Altova\UModel2024\UModelExamples\API.

The example files can be run in one of two ways:

· From the command line: Open a command prompt window, change the directory to the path above,
and type the name of one of the example scripts (for example, Start.js).

· From Windows Explorer: In Windows Explorer, browse for the JScript file and double-click it.

The script is executed by Windows Script Host that is packaged with Windows operating system. For more
information about Windows Script Host, refer to MSDN documentation (https://msdn.microsoft.com).

17.3.6.1 Start application

The JScript below starts the application and shuts it down. If an instance of the application is already running,
the running instance will be returned.

Note: For 32-bit UModel, the registered name, or programmatic identifier (ProgId) of the COM object is
UModel.Application. For 64-bit UModel, the name is UModel_x64.Application.

862

863

864

865

870

https://msdn.microsoft.com

© 2018-2024 Altova GmbH

The UModel API 863UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

This code is available in the sample file ..\UModelExamples\API\JScript\Start.js (see also Example
Files).

// Initialize application's COM object. This will start a new instance of the application

and

// return its main COM object. Depending on COM settings, a the main COM object of an

already

// running application might be returned.

try { objUModel = WScript.GetObject("", "UModel.Application"); }

catch(err) {}

if(typeof(objUModel) == "undefined")

{

 try { objUModel = WScript.GetObject("", "UModel_x64.Application") }

 catch(err)

 {

 WScript.Echo("Can't access or create UModel.Application");

 WScript.Quit();

 }

}

// if newly started, the application will start without its UI visible. Set it to

visible.

objUModel.Visible = true;

WScript.Echo(objUModel.Edition + " has successfully started. ");

objUModel.Visible = false; // will shutdown application if it has no more COM connections

//objUModel.Visible = true; // will keep application running with UI visible

17.3.6.2 Document Access

The JScript listing below shows how to open documents, set a document as the active document, iterate
through the open documents, and close documents.

This code is available in the sample file ..\UModelExamples\API\JScript\DocumentAccess.js (see also
Example Files).

// Initialize application's COM object. This will start a new instance of the application

and

// return its main COM object. Depending on COM settings, a the main COM object of an

already

// running application might be returned.

try { objUModel = WScript.GetObject("", "UModel.Application"); }

catch(err) {}

if(typeof(objUModel) == "undefined")

{

 try { objUModel = WScript.GetObject("", "UModel_x64.Application") }

 catch(err)

 {

 WScript.Echo("Can't access or create UModel.Application");

 WScript.Quit();

 }

862

862

864 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

}

// if newly started, the application will start without its UI visible. Set it to

visible.

objUModel.Visible = true;

// **************************** code snippet for "Simple Document Access"

// Locate examples using property PersonalDataDirectory

objDoc = objUModel.OpenDocument(objUModel.PersonalDataDirectory + "\\UModelExamples\

\Bank_MultiLanguage.ump");

// open all diagrams

objDoc.OpenAllDiagrams();

// **************************** code snippet for "Simple Document Access"

// **************************** code snippet for "Iteration"

objName = "";

count = 0;

// go through all open diagrams using a JScript Enumerator

for (var iterDiagrams = new Enumerator(objDoc.DiagramWindows); !iterDiagrams.atEnd();

iterDiagrams.moveNext())

{

 objName += "\t" + ++count + " " + iterDiagrams.item().Name + "\n";

}

WScript.Echo("Opened diagrams: \n" + objName);

// go through all open diagrams using index-based access to the document collection

for (i = objDoc.DiagramWindows.Count; i > 0; i--)

 objDoc.DiagramWindows.Item(i).Close();

// **************************** code snippet for "Iteration"

//objUModel.Visible = false; // will shutdown application if it has no more COM

connections

objUModel.Visible = true; // will keep application running with UI visible

17.3.6.3 Generate Documentation

The JScript listing below shows how to generate documentation for the Bank_MultiLanguage.ump file in the
UModelExamples folder.

This code is available in the sample file ..\UModelExamples\API\JScript\GenerateDoc.js (see also
Example Files).

// Initialize application's COM object. This will start a new instance of the application

862

© 2018-2024 Altova GmbH

The UModel API 865UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

and

// return its main COM object. Depending on COM settings, a the main COM object of an

already

// running application might be returned.

try { objUModel = WScript.GetObject("", "UModel.Application"); }

catch(err) {}

if(typeof(objUModel) == "undefined")

{

 try { objUModel = WScript.GetObject("", "UModel_x64.Application") }

 catch(err)

 {

 WScript.Echo("Can't access or create UModel.Application");

 WScript.Quit();

 }

}

// if newly started, the application will start without its UI visible. Set it to

visible.

objUModel.Visible = true;

// Locate examples via USERPROFILE shell variable.

objWshShell = WScript.CreateObject("WScript.Shell");

majorVersionYear = objUModel.MajorVersion + 1998

strExamplesFolder = objWshShell.ExpandEnvironmentStrings("%USERPROFILE%") + "\\Documents\

\Altova\\UModel" + majorVersionYear + "\\UModelExamples\\";

objDoc = objUModel.OpenDocument(strExamplesFolder + "Bank_MultiLanguage.ump");

// generate documentation

dlgs = objUModel.Dialogs;

docDlg = dlgs.GenerateDocumentationDlg;

docDlg.OutputFormat = 0; // ENUMDocumentationOutputFormat.eDocumentationOutputFormat_HTML

var myObject = new ActiveXObject("Scripting.FileSystemObject");

strDocOutputFolder = strExamplesFolder + "GeneraredDocFromJScriptExample\\";

if (!myObject.FolderExists(strDocOutputFolder))

 myObject.CreateFolder(strDocOutputFolder);

strResultFile = strDocOutputFolder + "Bank_MultiLanguage.html";

objDoc.generateDocumentation(docDlg, strResultFile);

//objUModel.Visible = false; // will shutdown application if it has no more COM

connections

objUModel.Visible = true; // will keep application running with UI visible

17.3.6.4 Generate Code

The following JScript sample creates a new UModel project, creates some classes and generates code.

This code is available in the sample file ..\UModelExamples\API\JScript\UModelCreateCode.js (see
Example Files).

// ###

// access runing UModel.Application or

862

866 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

// launch new one and access it

// ##

// ##

// CreateCode sample

// shows forward engineering from scratch

// it creates some coding elements in a new UModel project and generates code (saving the

project afterwards)

// ##

// //////////// global variables /////////////////

var objUModel = null;

var objWshShell = null;

var objFSO = null;

// /////////////////////// Helpers //////////////////////////////

function Exit(strErrorText)

{

 WScript.Echo(strErrorText);

 if (objUModel != null)

 objUModel.Quit();

 WScript.Quit(-1);

}

function CreateGlobalObjects ()

{

 // the Shell and FileSystemObject of the windows scripting host often always useful

 try

 {

 objWshShell = WScript.CreateObject("WScript.Shell");

 objFSO = WScript.CreateObject("Scripting.FileSystemObject");

 }

 catch(err)

 {

 Exit("Can't create WScript.Shell object");

 }

 // create the UModel connection

 // if there is a running instance of UModel (that never had a connection) - use it

 // otherwise, we automatically create a new instance

 try { objUModel = WScript.GetObject("", "UModel.Application"); }

 catch(err) {}

 if(typeof(objUModel) == "undefined")

 {

 try { objUModel = WScript.GetObject("", "UModel_x64.Application") }

 catch(err)

 {

 objUModel = null;

 Exit("Can't access or create UModel.Application");

 }

 }

}

© 2018-2024 Altova GmbH

The UModel API 867UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

function GetSourceCodeDirectory()

{

 // get directory for source code

 var path = objUModel.PersonalDataDirectory + "\\UModelExamples\\API\\JScript\

\CreateCode";

 var codeDirectory = objFSO.BuildPath(path, "SampleCode");

 return codeDirectory;

}

function GetUMPFilePath()

{

 // get file path to save UModel projectfile

 return objUModel.PersonalDataDirectory + "\\UModelExamples\\API\\JScript\\CreateCode\

\CreateCode.ump";

}

function IncludeCSharpProfile(objDocument)

{

 try

 {

 // get dialog for including subprojects:

 var objIncludeSubProjectDialog = objUModel.Dialogs.IncludeSubprojectDlg;

 objIncludeSubProjectDialog.ProjectFile = objUModel.InstallationDirectory + "\

\UModelInclude\\c# Profile.ump";

 return objDocument.IncludeSubproject(objIncludeSubProjectDialog);

 }

 catch(err)

 {

 Exit("Can't include CSharp profile");

 }

}

// /////////////////////// MAIN //////////////////////////////

CreateGlobalObjects();

objUModel.Visible = true;

// open a new, empty document

var objDocument = objUModel.NewDocument();

// get the root-package

var objRootPackage = objDocument.RootPackage;

if (objDocument != null &&

 objRootPackage != null &&

 IncludeCSharpProfile(objDocument))

{

 // create coding elements

 try

 {

 // make all modifications within one UndoStep; start modification here

 if (!objDocument.BeginModification())

 Exit("No modifications allowed");

 // create a namespace root package

 var objCSharpRootNamespace = objRootPackage.InsertPackagedElementAt(-1,

868 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

"Package");

 objCSharpRootNamespace.SetName("CSharp");

 // find C# Profile...

 var objCSharpProfile = objRootPackage.FindPredefinedOwnedElement(159, false);//

ePredefined_CSharp_Profile = 159,

 // ...and apply it to the package, which is now a CSharp namespace root

 objCSharpRootNamespace.InsertProfileApplicationAt(-1, objCSharpProfile);

 // create a C# namespace package...

 var objCSharpNamespace = objCSharpRootNamespace.InsertPackagedElementAt(-1,

"Package");

 objCSharpNamespace.SetName("Namespace1");

 // ... and apply the predefined C# namespace stereotype

 objCSharpNamespace.ApplyPredefinedStereotype(223); //

ePredefined_CSharp_namespaceStereotypeOfPackage = 223,

 // create new class within the C# namespace

 var objClass = objCSharpNamespace.InsertPackagedElementAt(-1, "Class");

 var objClass2 = objCSharpNamespace.InsertPackagedElementAt(-1, "Class");

 var objBaseClass = objCSharpNamespace.InsertPackagedElementAt(-1, "Class");

 objClass .SetName("MyClass");

 objClass2 .SetName("MyClass2");

 objBaseClass.SetName("MyBaseClass");

 // set attribute-section "STAThread"

 var objAttributesStereotypeApplication =

objClass.ApplyPredefinedStereotype(191);//

ePredefined_CSharp_attributesStereotypeOfClass = 191

 var objSTAThread = objCSharpProfile.FindPredefinedOwnedElement(185, true); //

ePredefined_CSharp_AttributePresetsEnumeration_STAThreadEnumerationLiteral = 185

 objAttributesStereotypeApplication.SetPredefinedTaggedValueAt(-1, 192,

objSTAThread.Name); // ePredefined_CSharp_attributesStereotypeOfClass_sectionsProperty =

192

 // insert new attribute

 var objProperty = objClass.InsertOwnedAttributeAt(-1);

 objProperty.SetName("m_Att");

 objProperty.Visibility = 2; // eVisibility_Private = 2

 objProperty.Type = objClass2;

 // insert new operation

 var objOperation = objClass.InsertOwnedOperationAt(-1);

 objOperation.SetName("GetAtt");

 objOperation.Type = objClass2;

 // derive MyClass from MyBaseClass

 objClass.InsertGeneralizationAt(-1, objBaseClass);

 // find the component view package

 var objComponentView = objRootPackage.FindPredefinedOwnedElement(1, false);//

ePredefined_ComponentViewPackage = 1

 // create a new component for C# 3.0 and set the source code directory, where we

want to generate the source code

 var objComponent = objComponentView.InsertPackagedElementAt(-1, "Component");

 objComponent.CodeLangVersion= 5; // eCodeLang_CSharp_3_0 = 5,

© 2018-2024 Altova GmbH

The UModel API 869UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 objComponent.CodeProjectFileOrDirectory = GetSourceCodeDirectory();

 objComponent.IsCodeProjectFile = false;

 // this component should realize our classes:

 objComponent.InsertRealizationAt(-1, objClass);

 objComponent.InsertRealizationAt(-1, objClass2);

 objComponent.InsertRealizationAt(-1, objBaseClass);

 // do not forget to end modification and finish UndoStep

 objDocument.EndModification();

 }

 catch(err)

 {

 // rollback made changes

 objDocument.AbortModification();

 Exit("Error when creating UML model elements");

 }

 // update code from model

 try

 {

 // explicitely run a syntax check

 if (objDocument.CheckProjectSyntax())

 {

 // get dialog for code <=> model synchonizations and set the wanted options:

 var objSynchronizationSettingsDlg =

objUModel.Dialogs.SynchronizationSettingsDlg;

 objSynchronizationSettingsDlg.CodeFromModel_Synchronization = 0; //

eSynchronization_Merge = 0

 objSynchronizationSettingsDlg.CodeFromModel_UserDefinedSPLTemplatesOverrideDefau

lt = true;

 // update code from model

 if (!objDocument.SynchronizeCodeFromModel(objSynchronizationSettingsDlg))

 Exit("Update code from model failed");

 }

 else

 Exit("Syntax check failed");

 }

 catch(err)

 {

 Exit("Error when updating code from model");

 }

 // save project

 objDocument.SaveAs(GetUMPFilePath());

 WScript.Echo("Finished successfully");

}

// if something went wrong (and we did not save the project),

// we also do not want get asked for saving => set ModifiedFlag to false

if (objDocument != null)

 objDocument.ModifiedFlag = false;

objUModel.Visible = false; // will shutdown application if it was started by this

script

870 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.3.6.5 Update Documentation

The following JScript sample, when running for the first time, reverse engineers all UModel API C# samples
found in the ..\UModelExamples\IDEPlugIn directory and creates HTML and RTF documentation as well as
an XMI export of the UModel project. The resulting UMP files, as well as the generated documentation output,
are saved to the ..\UModelExamples\API\JScript\UpdateDocumentation directory. On subsequent runs, it
opens the previously generated UModel project files, and creates HTML and RTF documentation, as well as
XMI export, provided that something has changed in the UML model.

This code is available in the sample file ..\UModelExamples\API\JScript\UModelUpdateDocumentation.js
(see Example Files).

// ###

// access runing UModel.Application or

// launch new one and access it

// ##

// ##

// UpdateDocumentation sample

// *) When running the first time (= when no UMP file exists), reverse engineer all C#

UModelAPI samples

// and create HTML and RTF documentation, make XMI export and save UMP file

// *) when UMP file already exists, open it and synchronize model from code

// create HTML and RTF documentation and XMI export only if something has been changed

(listen to all different UML data events)

// ##

var bRunVisible = true;

var bShowDialogs = bRunVisible && false;

// //////////// global variables /////////////////

var objUModel = null;

var objWshShell = null;

var objFSO = null;

var bChangedAnything = false;

var nAddedClasses = 0;

var nAddedInterfaces= 0;

var nAddedProperties= 0;

var nAddedOperations= 0;

// /////////////////////// Helpers //////////////////////////////

function Exit(strErrorText)

{

 WScript.Echo(strErrorText);

 if (objUModel != null)

 objUModel.Quit();

 WScript.Quit(-1);

862

© 2018-2024 Altova GmbH

The UModel API 871UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

}

function CreateGlobalObjects ()

{

 // the Shell and FileSystemObject of the windows scripting host often always useful

 try

 {

 objWshShell = WScript.CreateObject("WScript.Shell");

 objFSO = WScript.CreateObject("Scripting.FileSystemObject");

 }

 catch(err)

 {

 Exit("Can't create WScript.Shell object");

 }

 // create the UModel connection

 // if there is a running instance of UModel (that never had a connection) - use it

 // otherwise, we automatically create a new instance

 try { objUModel = WScript.GetObject("", "UModel.Application"); }

 catch(err) {}

 if(typeof(objUModel) == "undefined")

 {

 try { objUModel = WScript.GetObject("", "UModel_x64.Application") }

 catch(err)

 {

 objUModel = null;

 Exit("Can't access or create UModel.Application");

 }

 }

}

// /////////////////////// get different filepathes / ensure folders are

created //////////////////////////////

function GetScriptPath()

{

 var path = objUModel.PersonalDataDirectory + "\\UModelExamples\\API\\JScript\

\UpdateDocumentation";

 if (!objFSO.FolderExists(path))

 objFSO.CreateFolder(path);

 return path;

}

function GetFilePath(subdir, filename)

{

 var path = objFSO.BuildPath(GetScriptPath(), subdir);

 if (!objFSO.FolderExists(path))

 objFSO.CreateFolder(path);

 return path + "\\" + filename;

}

function GetUMPFilePath () { return GetFilePath("UMP", "UModelAPI.ump"); }

function GetXMIFilePath () { return GetFilePath("Output_XMI", "UModelAPI.xmi"); }

function GetHTMLFilePath() { return GetFilePath("Output_HTML","UModelAPI.html"); }

function GetRTFFilePath () { return GetFilePath("Output_RTF", "UModelAPI.rtf"); }

872 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

// /////////////////////// UML data event handlers //////////////////////////////

function objRootPackage_OnChanged(objData, strHint)

{

 bChangedAnything = true;

}

// recursively count newly added classes, interfaces, properties and operations

function CountAddedElements(objNewChild)

{

 if (objNewChild != null)

 {

 if (objNewChild.KindName == "Class") ++nAddedClasses;

 if (objNewChild.KindName == "Interface") ++nAddedInterfaces;

 if (objNewChild.KindName == "Property") ++nAddedProperties;

 if (objNewChild.KindName == "Operation") ++nAddedOperations;

 var ownedElements = objNewChild.OwnedElements;

 var itr = new Enumerator(ownedElements);

 for (; !itr.atEnd(); itr.moveNext())

 CountAddedElements(itr.item());

 }

}

function objRootPackage_OnAfterAddChild(objParent, objNewChild)

{

 bChangedAnything = true;

 // recursively count newly added classes, interfaces, properties and operations

 CountAddedElements(objNewChild);

}

function objRootPackage_OnBeforeErase(objData)

{

 bChangedAnything = true;

}

function objRootPackage_OnMoveData(objParent, objChild, bAttach)

{

 bChangedAnything = true;

}

// /////////////////////// MAIN //////////////////////////////

CreateGlobalObjects();

if (bRunVisible)

 objUModel.Visible = true;

var objDocument = null;

try

{

 // open document if it exists; create new one otherwise

 var bDocumentExisted = false;

 if (objFSO.FileExists(GetUMPFilePath()))

 {

 objDocument = objUModel.OpenDocument(GetUMPFilePath());

© 2018-2024 Altova GmbH

The UModel API 873UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 bDocumentExisted = true;

 }

 else

 {

 objDocument = objUModel.NewDocument();

 objDocument.SaveAs(GetUMPFilePath());

 }

 if (objDocument == null)

 Exit("Cannot create or open UModel projectfile");

 // connect to receive _IUMLDataEvents from the root-package and all its children:

 var objRootPackage = objDocument.RootPackage;

 WScript.ConnectObject (objRootPackage, "objRootPackage_");

 // ensure we get *all* events from root-package and *all* children:

 objRootPackage.EventFilter = 2 + // eUMLDataEvent_EraseDataOrChild = 2,

 8 + // eUMLDataEvent_AddChildOrGrandChild = 8,

 32 + // eUMLDataEvent_ChangeDataOrChild = 32,

 128; // eUMLDataEvent_MoveChildOrGrandChild = 128

 if (bDocumentExisted)

 {

 // UModel projectfile already exists => update model from code

 // get dialog for code <=> model synchonizations and set the wanted options:

 var objSynchronizationSettingsDlg = objUModel.Dialogs.SynchronizationSettingsDlg;

 objSynchronizationSettingsDlg.ShowDialog = bShowDialogs;

 objSynchronizationSettingsDlg.ModelFromCode_Synchronization = 0; //

eSynchronization_Merge = 0

 // update model from code

 if (!objDocument.SynchronizeModelFromCode(objSynchronizationSettingsDlg))

 Exit("Update model from code failed");

 }

 else

 {

 // UModel projectfile did not exist => newly import code into model

 var objImportSourceDirectoryDlg = objUModel.Dialogs.ImportSourceDirectoryDlg;

 objImportSourceDirectoryDlg.ShowDialog = bShowDialogs;

 // set source code directory to import

 objImportSourceDirectoryDlg.Directory = objUModel.PersonalDataDirectory + "\

\UModelExamples\\IDEPlugIn";

 objImportSourceDirectoryDlg.ProcessSubdirectories = true;

 // set source code language to import (C# 3.0)

 objImportSourceDirectoryDlg.Language = 5; // eCodeLang_CSharp_3_0 = 5

 objImportSourceDirectoryDlg.Synchronization = 0; // eSynchronization_Merge = 0

 // import in a new package

 objImportSourceDirectoryDlg.ImportInNewPackage = true;

 objImportSourceDirectoryDlg.DiagramGeneration = true;

 // content diagram generation settings

 objImportSourceDirectoryDlg.Content_GenerateSingleDiagram = true;

 objImportSourceDirectoryDlg.Content_GenerateDiagramPerPackage = true;

 objImportSourceDirectoryDlg.Content_ShowNestedClassifiersSeparately = false;

 objImportSourceDirectoryDlg.Content_ShowAnonymousBoundElements = false;

874 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 objImportSourceDirectoryDlg.Content_HyperlinkPackagesToDiagrams = true;

 objImportSourceDirectoryDlg.Content_ShowAttributesCompartment = true;

 objImportSourceDirectoryDlg.Content_ShowOperationsCompartment = true;

 objImportSourceDirectoryDlg.Content_ShowNestedClassifiersCompartment = false;

 objImportSourceDirectoryDlg.Content_ShowEnumerationLiteralsCompartment = true;

 objImportSourceDirectoryDlg.Content_ShowTaggedValues = true;

 objImportSourceDirectoryDlg.Content_Autolayout = 1; //

eDiagramLayout_Hierarchic = 1

 // open diagrams that autolayout is done:

 objImportSourceDirectoryDlg.Content_OpenDiagrams = true;

 // package dependency diagram generation settings (disabled)

 objImportSourceDirectoryDlg.PackageDependency_GenerateDiagram = false;

 // import source directory

 if (!objDocument.ImportSourceDirectory(objImportSourceDirectoryDlg))

 {

 // also delete newly created (empty) UMP file that source code directory import

is retried the next time

 objFSO.DeleteFile(GetUMPFilePath());

 Exit("Error on importing source directory");

 }

 }

 // disconnect from getting root-package events

 WScript.DisconnectObject(objRootPackage);

}

catch(err)

{

 // also delete newly created (empty) UMP file that source code directory import is

retried the next time

 objFSO.DeleteFile(GetUMPFilePath());

 Exit("Error on importing source directory");

}

//if something has changed, update the outputs:

if (bChangedAnything)

{

 try

 {

 // make XMI export for UML2.1.2

 var objIExportXMIFileDlg = objUModel.Dialogs.ExportXMIFileDlg;

 objIExportXMIFileDlg.ShowDialog = bShowDialogs;

 objIExportXMIFileDlg.XMIFile = GetXMIFilePath();

 objIExportXMIFileDlg.PrettyPrintXMIOutput = true;

 objIExportXMIFileDlg.ExportUUIDs = true;

 objIExportXMIFileDlg.ExportExtensions = true;

 objIExportXMIFileDlg.ExportDiagrams = true;

 objIExportXMIFileDlg.XMIType = 1; // eXMI21ForUML212 = 1

 // export to XMI file:

 if (!objDocument.ExportToXMIFile(objIExportXMIFileDlg))

 {

 // error on XMI generation

 }

 }

 catch(err)

 {

 // error on XMI generation

© 2018-2024 Altova GmbH

The UModel API 875UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 }

 try

 {

 var objIDocumentationGenerationDlg = objUModel.Dialogs.GenerateDocumentationDlg;

 objIDocumentationGenerationDlg.ShowDialog = bShowDialogs;

 objIDocumentationGenerationDlg.GenerateLinksToLocalFiles = 1; //

eDocumentationFilePath_RelativeToResultFile = 1

 objIDocumentationGenerationDlg.SplitOutputToMultipleFiles = true;

 objIDocumentationGenerationDlg.ShowResultFileAfterGeneration = true;

 objIDocumentationGenerationDlg.Details_SelectAll();

 // show up to 10 base class/interface hierarchies

 objIDocumentationGenerationDlg.Details_HierarchyDiagramNestingDepthUp = 10;

 // only show directly derived classes/interfaces

 objIDocumentationGenerationDlg.Details_HierarchyDiagramNestingDepthDown = 1;

 // keep hierarchy diagram as small as possible => expand each element only once

 objIDocumentationGenerationDlg.Details_HierarchyDiagramExpandItemsOnlyOnce = true;

 objIDocumentationGenerationDlg.Include_SelectAllDiagrams();

 objIDocumentationGenerationDlg.Include_SelectNoElements();

 objIDocumentationGenerationDlg.Include_Index = true;

 objIDocumentationGenerationDlg.Include_IncludedSubprojects = false;

 objIDocumentationGenerationDlg.Include_NamedElementsOnly = true;

 objIDocumentationGenerationDlg.Include_UnknownExternals = false;

 var objIncludeElements = objIDocumentationGenerationDlg.Include_Elements;

 var itrIncludeElements = new Enumerator(objIncludeElements);

 for (; !itrIncludeElements.atEnd(); itrIncludeElements.moveNext())

 {

 var objElemSel = itrIncludeElements.item();

 if (objElemSel.KindName == "Class" ||

 objElemSel.KindName == "Interface" ||

 objElemSel.KindName == "Enumeration" ||

 objElemSel.KindName == "Operation" ||

 objElemSel.KindName == "Package")

 {

 objElemSel.Selection = true;

 }

 }

 // generate HTML documentation (with PNG pictures)

 objIDocumentationGenerationDlg.OutputFormat = 0; // eDocumentationOutputFormat_HTML

 = 0

 objIDocumentationGenerationDlg.DiagramImageFormat = 0; // eOutputImageFormat_PNG =

0

 objIDocumentationGenerationDlg.EmbedDiagrams = false;

 if (!objDocument.GenerateDocumentation(objIDocumentationGenerationDlg,

GetHTMLFilePath()))

 {

 // error on HTML documentation generation

 }

 // generate RTF documentation (with embeded EMF pictures)

 objIDocumentationGenerationDlg.ShowDialog = false; // don't show dialog again

 objIDocumentationGenerationDlg.OutputFormat = 2; // eDocumentationOutputFormat_RTF

 = 2

876 UModel Programmer's Reference The UModel API

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 objIDocumentationGenerationDlg.DiagramImageFormat = 1; // eOutputImageFormat_EMF =

1

 objIDocumentationGenerationDlg.EmbedDiagrams = true;

 if (!objDocument.GenerateDocumentation(objIDocumentationGenerationDlg,

GetRTFFilePath()))

 {

 // error on RTF documentation generation

 }

 }

 catch(err)

 {

 // error on documentation generation

 }

 // show the number of newly added classes, interfaces, properties and operations

 if (bRunVisible)

 {

 WScript.Echo("Added classes: " + nAddedClasses +

 "\nAdded interfaces: " + nAddedInterfaces +

 "\nAdded properties: " + nAddedProperties +

 "\nAdded operations: " + nAddedOperations);

 }

}

else

{

 if (bRunVisible)

 WScript.Echo("Nothing has changed");

}

// always save document (although it's not really necessary when nothing has been

changed)

objDocument.Save();

if (bRunVisible)

 objUModel.Visible = false; // will shutdown application if it was started by this

script

© 2018-2024 Altova GmbH

UModel API Reference 877UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4 UModel API Reference

This documentation section describes the interfaces, operations, enumerations and events of the UModel
API . The content is organized into the following sub-sections:

· UModel Plug-ins - Provides reference to interfaces required for integrating your own plug-ins into
UModel

· UModel API Interfaces - Provides reference to all interfaces of the UModel API except for UML data
interfaces (see the next bullet)

· UMLData Interfaces - Provides references to interfaces at the UML data level. These interfaces are
also part of the UModel API but are described separately. They specifically provide access to UML
elements in a UModel document.

17.4.1 UModel Plug-Ins

This section provides reference to the API interfaces required for integrating your own plug-ins into UModel. For
conceptual information and instructions about creating UModel IDE plug-ins, see UModel IDE Plug-Ins .

For C# code samples illustrating plug-ins integrated into UModel, see the following topics:

· "Set Styles" Sample
· "C# Delegate" Sample
· "Set Prefix" Sample
· "Statistics" Sample

17.4.1.1 UModelAPI - IUModelPlugIn

Interface IUModelPlugIn

diagram

Operation IUModelPlugIn::GetDescription

parameter name direction type type modifier multiplicity default
return return string

Operation IUModelPlugIn::GetUIModifications

879

877

879

966

796

839

843

848

854

878 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return string

Operation IUModelPlugIn::OnCommand

parameter name direction type type modifier multiplicity default
nID in int
pUModel in IDispatch
return return void

Operation IUModelPlugIn::OnInitialize

parameter name direction type type modifier multiplicity default
pUModel in IDispatch
return return void

Operation IUModelPlugIn::OnRunning

parameter name direction type type modifier multiplicity default
pUModel in IDispatch
return return void

Operation IUModelPlugIn::OnShutdown

parameter name direction type type modifier multiplicity default
pUModel in IDispatch
return return void

Operation IUModelPlugIn::OnUpdateCommand

parameter name direction type type modifier multiplicity default
nID in int
pUModel in IDispatch
return return UModelUpdateAc

tion

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.1.2 UModelAPI - UModelUpdateAction

Enumeration UModelUpdateAction

diagram

typedElem
ents

Interface IUModelPlugIn Operation OnUpdateCommand

878

877 878

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 879UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2 UModel API Interfaces

This section provides reference to the objects of the UModel COM API. The objects are described in a generic
manner, since the API may be used with virtually any language that supports calling a COM object. For
language-specific examples, see:

· Example C# Project
· Example Java Project
· JScript Examples

The API reference contains two main sections, each describing the interfaces and the enumeration types used
in the API, respectively. The enumeration values contain both the string name and a numeric value. If your
scripting environment does not support enumerations, use the number-values instead.

In .NET, for every interface of the UModel COM automation interface, a .NET class exists with the same name.
Also, COM types will be converted to the appropriate .NET type. For example, a type such as Long in the COM
API would appear as System.Int32 in .NET.

In Java, note the following syntax variations:

· Classes and class names. For every interface of the COM automation interface, a Java class exists
with the name of the interface.

· Method names. Method names on the Java interface are the same as used on the COM interfaces,
but start with a small letter to conform to Java naming conventions. To access COM properties, Java
methods that prefix the property name with get and set can be used. If a property does not support
write-access, no setter method is available. For example, for the Name property of the Document
interface, the Java methods getName and setName are available.

· Enumerations. For every enumeration defined in the automation interface, a Java enumeration is
defined with the same name and values.

· Events and event handlers. For every interface in the automation interface that supports events, a
Java interface with the same name plus 'Event' is available. To simplify the overloading of single events,
a Java class with default implementations for all events is provided. The name of this Java class is the
name of the event interface plus 'DefaultHandler'. For example:

Application // Java class to access the application
ApplicationEvents // Events interface for the application
ApplicationEventsDefaultHandler // Default handler for "ApplicationEvents"

UModel API Errors
The UModel API may return the error codes listed below.

1000 The application object is no longer valid.

1001 Invalid parameter or invalid address for the return parameter was specified.

834

860

862

http://www.altova.com/umodel
http://www.altova.com/umodel

880 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

1002 UModel API is not available in the current edition.

1003 Model Transformations are not supported in the current edition.

1050 Macro not found

1051 Invalid (nested) macro execution

1100 Error when saving file, probably the file name is invalid.

1101 Invalid (duplicate) call to BeginModification.

1102 EndModification called without BeginModification

1200 Error deleting file at URL.

1201 Error creating directory at URL.

The UMLData interfaces have specific errors, see UMLData Interfaces .966

© 2018-2024 Altova GmbH

UModel API Reference 881UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.1 UModelAPI - IApplication

Interface IApplication

diagram

Operation IApplication::ActiveDocument

parameter name direction type type modifier multiplicity default
return return IDocument

Operation IApplication::APIMajorVersion

parameter name direction type type modifier multiplicity default
return return int

document
ation

A change in the APIMajorVersion of the type library (e.g. 1.0 => 2.0) means that non-scripting clients (e.g. IDE
PlugIns written in C#, VB.NET, C++,...) should be recompiled.

Operation IApplication::APIMinorVersion

parameter name direction type type modifier multiplicity default
return return int

895

882 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IApplication::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IApplication::Dialogs

parameter name direction type type modifier multiplicity default
return return IDialogs

Operation IApplication::Edition

parameter name direction type type modifier multiplicity default
return return string

Operation IApplication::ImportFromXMIFile

parameter name direction type type modifier multiplicity default
strXMIFile in string
return return IDocument

Operation IApplication::ImportFromXMIFileFromURL

parameter name direction type type modifier multiplicity default
IURLDlg in IURLDlg

return return IDocument

Operation IApplication::InstallationDirectory

parameter name direction type type modifier multiplicity default
return return string

Operation IApplication::IsAPISupported

parameter name direction type type modifier multiplicity default
return return bool

Operation IApplication::LogMessage

parameter name direction type type modifier multiplicity default
strText in string
nLogType in ENUMMessageLo

gType

return return void

Operation IApplication::LogMessageWithUMLDataLink

parameter name direction type type modifier multiplicity default
strText in string
ipUMLData in IUMLData

nLogType in ENUMMessageLo
gType

return return void

Operation IApplication::MajorVersion

parameter name direction type type modifier multiplicity default
return return int

893

895

953

895

967

© 2018-2024 Altova GmbH

UModel API Reference 883UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IApplication::MinorVersion

parameter name direction type type modifier multiplicity default
return return int

Operation IApplication::Name

parameter name direction type type modifier multiplicity default
return return string

Operation IApplication::NewDocument

parameter name direction type type modifier multiplicity default
return return IDocument

Operation IApplication::OpenDocument

parameter name direction type type modifier multiplicity default
strModelFilePath in string
return return IDocument

Operation IApplication::OpenDocumentFromURL

parameter name direction type type modifier multiplicity default
IURLDlg in IURLDlg

return return IDocument

Operation IApplication::Options

parameter name direction type type modifier multiplicity default
return return ILocalOptions

Operation IApplication::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IApplication::PersonalDataDirectory

parameter name direction type type modifier multiplicity default
return return string

Operation IApplication::Quit

parameter name direction type type modifier multiplicity default
return return void

Operation IApplication::RunMacro

parameter name direction type type modifier multiplicity default
strName in string
return return void

Operation IApplication::ServicePackVersion

parameter name direction type type modifier multiplicity default
return return int

895

895

953

895

929

884 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IApplication::Status

parameter name direction type type modifier multiplicity default
return return ENUMApplication

Status

Operation IApplication::Visible

parameter name direction type type modifier multiplicity default
return return bool

Operation IApplication::WindowHandle

parameter name direction type type modifier multiplicity default
return return long

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.2 UModelAPI - IBinaryTypeEntries

Interface IBinaryTypeEntries

diagram

typedElem
ents

Interface IImportBinaryTypesDlg Operation CSharp_BinaryTypes

 Java_BinaryTypes

 VBasic_BinaryTypes

Operation IBinaryTypeEntries::AddItem

parameter name direction type type modifier multiplicity default
return return IBinaryTypeEntry

Operation IBinaryTypeEntries::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IBinaryTypeEntries::Count

959

914 915

916

917

885

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 885UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return int

Operation IBinaryTypeEntries::Item

parameter name direction type type modifier multiplicity default
nIdx in int
return return IBinaryTypeEntry

Operation IBinaryTypeEntries::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IBinaryTypeEntries::RemoveAllItems

parameter name direction type type modifier multiplicity default
return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.3 UModelAPI - IBinaryTypeEntry

Interface IBinaryTypeEntry

diagram

typedElem
ents

Interface IBinaryTypeEntries Operation AddItem Item

Operation IBinaryTypeEntry::Entry

parameter name direction type type modifier multiplicity default
return return string

Operation IBinaryTypeEntry::Executeable

parameter name direction type type modifier multiplicity default
return return bool

Operation IBinaryTypeEntry::ImportTypes

parameter name direction type type modifier multiplicity default

885

884 884 885

http://www.altova.com/umodel
http://www.altova.com/umodel

886 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return bool

Operation IBinaryTypeEntry::TypesToImport

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.4 UModelAPI - ICollectionTemplate

Interface ICollectionTemplate

diagram

typedElem
ents

Interface ICollectionTemplates Operation InsertItemAt Item

Operation ICollectionTemplate::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ICollectionTemplate::Name

parameter name direction type type modifier multiplicity default
return return string

Operation ICollectionTemplate::ParameterPosition

parameter name direction type type modifier multiplicity default
return return int

Operation ICollectionTemplate::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

887 887 887

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 887UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.5 UModelAPI - ICollectionTemplates

Interface ICollectionTemplates

diagram

typedElem
ents

Interface

ILocalOptionsDiagramEditing

Operation CollectionTemplates_CSharp

 CollectionTemplates_Java

 CollectionTemplates_UML

 CollectionTemplates_VBasic

Operation ICollectionTemplates::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ICollectionTemplates::Count

parameter name direction type type modifier multiplicity default
return return int

Operation ICollectionTemplates::DeleteItemAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation ICollectionTemplates::InsertItemAt

parameter name direction type type modifier multiplicity default
nIdx in int
strName in string
nParameterPositi
on

in int

return return ICollectionTempla

te

Operation ICollectionTemplates::Item

parameter name direction type type modifier multiplicity default
nIdx in int
return return ICollectionTempla

te

933

934

934

934

934

886

886

888 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation ICollectionTemplates::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ICollectionTemplates::SetDefaults

parameter name direction type type modifier multiplicity default
return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.6 UModelAPI - IDiagramWindow

Interface IDiagramWindow

diagram

typedElem
ents

Interface

_IDiagramWindowEvents

Operation OnDiagramWindowClosed

Interface _IDocumentEvents Operation OnActivateDiagramWindow

 OnDiagramWindowClosed

 OnDiagramWindowOpened

Interface IDiagramWindows Operation Item

955

955

956 956

956

956

891 891

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 889UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Interface IDocument Operation ActiveDiagramWindow

 OpenDiagram

Operation IDiagramWindow::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IDiagramWindow::Autolayout

parameter name direction type type modifier multiplicity default
nVal in ENUMDiagramLa

youtKind

return return void

Operation IDiagramWindow::AutolayoutSelection

parameter name direction type type modifier multiplicity default
nVal in ENUMDiagramLa

youtKind

return return void

Operation IDiagramWindow::Close

parameter name direction type type modifier multiplicity default
return return void

Operation IDiagramWindow::CopyAsBitmap

parameter name direction type type modifier multiplicity default
return return void

Operation IDiagramWindow::CopySelectionAsBitmap

parameter name direction type type modifier multiplicity default
return return void

Operation IDiagramWindow::Diagram

parameter name direction type type modifier multiplicity default
return return IUMLGuiDiagram

Operation IDiagramWindow::FocusedData

parameter name direction type type modifier multiplicity default
return return IUMLData

Operation IDiagramWindow::FocusedGuiElement

parameter name direction type type modifier multiplicity default
return return IUMLGuiLink

Operation IDiagramWindow::Name

parameter name direction type type modifier multiplicity default
return return string

895 896

900

961

961

1271

967

1284

890 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IDiagramWindow::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IDiagramWindow::SaveDiagramAsImage

parameter name direction type type modifier multiplicity default
strFile in string
ImageFormat in ENUMOutputIma

geFormat

return return void

Operation IDiagramWindow::ScrollPosX

parameter name direction type type modifier multiplicity default
return return int

Operation IDiagramWindow::ScrollPosY

parameter name direction type type modifier multiplicity default
return return int

Operation IDiagramWindow::ScrollToGuiElement

parameter name direction type type modifier multiplicity default
ipGuiLink in IUMLGuiLink

return return void

Operation IDiagramWindow::SelectedGuiElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLGuiElement .

Operation IDiagramWindow::SelectGuiElement

parameter name direction type type modifier multiplicity default
ipItemToSelect in IUMLGuiLink

bClearSelectionBe
fore

in bool

return return void

Operation IDiagramWindow::SetActiveDiagramWindow

parameter name direction type type modifier multiplicity default
return return void

Operation IDiagramWindow::UpdateWindow

parameter name direction type type modifier multiplicity default
return return void

Operation IDiagramWindow::ZoomFactor

parameter name direction type type modifier multiplicity default

964

1284

969

1276

1284

© 2018-2024 Altova GmbH

UModel API Reference 891UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return int

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.7 UModelAPI - IDiagramWindows

Interface IDiagramWindows

diagram

typedElem
ents

Interface IDocument Operation DiagramWindows

Operation IDiagramWindows::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IDiagramWindows::Count

parameter name direction type type modifier multiplicity default
return return int

Operation IDiagramWindows::Item

parameter name direction type type modifier multiplicity default
nIdx in int
return return IDiagramWindow

Operation IDiagramWindows::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

895 896

888

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

892 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.2.8 UModelAPI - IDialog

Interface IDialog

diagram

hierarchy

Operation IDialog::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IDialog::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IDialog::ShowDialog

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 893UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.9 UModelAPI - IDialogs

Interface IDialogs

diagram

typedElem
ents

Interface IApplication Operation Dialogs

Operation IDialogs::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IDialogs::ExportXMIFileDlg

parameter name direction type type modifier multiplicity default
return return IExportXMIFileDlg

Operation IDialogs::GenerateDocumentationDlg

parameter name direction type type modifier multiplicity default
return return IGenerateDocume

ntationDlg

Operation IDialogs::GenerateSequenceDiagramDlg

881 882

902

904

894 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IGenerateSequenc

eDiagramDlg

Operation IDialogs::GenerateStateMachineCodeDlg

parameter name direction type type modifier multiplicity default
return return IGenerateStateMa

chineCodeDlg

Operation IDialogs::ImportBinaryTypesDlg

parameter name direction type type modifier multiplicity default
return return IImportBinaryTyp

esDlg

Operation IDialogs::ImportDatabaseDlg

parameter name direction type type modifier multiplicity default
return return IImportDatabaseD

lg

Operation IDialogs::ImportSourceDirectoryDlg

parameter name direction type type modifier multiplicity default
return return IImportSourceDire

ctoryDlg

Operation IDialogs::ImportSourceProjectDlg

parameter name direction type type modifier multiplicity default
return return IImportSourceProj

ectDlg

Operation IDialogs::ImportXMLSchemaDirectoryDlg

parameter name direction type type modifier multiplicity default
return return IImportXMLSche

maDirectoryDlg

Operation IDialogs::ImportXMLSchemaFileDlg

parameter name direction type type modifier multiplicity default
return return IImportXMLSche

maFileDlg

Operation IDialogs::IncludeSubprojectDlg

parameter name direction type type modifier multiplicity default
return return IIncludeSubprojec

tDlg

Operation IDialogs::ModelTransformationDlg

parameter name direction type type modifier multiplicity default

911

913

914

918

919

923

925

926

927

© 2018-2024 Altova GmbH

UModel API Reference 895UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IModelTransform

ationDlg

Operation IDialogs::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IDialogs::ProjectSettingsDlg

parameter name direction type type modifier multiplicity default
return return IProjectSettingsDl

g

Operation IDialogs::SaveAllDiagramsAsImagesDlg

parameter name direction type type modifier multiplicity default
return return ISaveAllDiagrams

AsImagesDlg

Operation IDialogs::SynchronizationSettingsDlg

parameter name direction type type modifier multiplicity default
return return ISynchronizationS

ettingsDlg

Operation IDialogs::URLOpenDialog

parameter name direction type type modifier multiplicity default
return return IURLDlg

Operation IDialogs::URLSaveDialog

parameter name direction type type modifier multiplicity default
return return IURLDlg

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.10 UModelAPI - IDocument

Interface IDocument

diagram The diagram is not included because of page size constraints; however, it is available in the
HTML version of the manual (https://www.altova.com/manual/en/umodelenterprise/2024.2/).

typedElem
ents

Interface _IApplicationEvents Operation OnDocumentClosed

 OnDocumentOpened

 OnNewDocument

Interface _IDocumentEvents Operation OnAfterReloadDocument

 OnBeforeReloadDocument

 OnDocumentClosed

 OnDocumentSaved

944

948

951

951

953

953

954 954

954

955

956 956

956

956

957

http://www.altova.com/umodel
http://www.altova.com/umodel
https://www.altova.com/manual/en/umodelenterprise/2024.2/

896 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 OnDocumentSavedAs

 OnModifiedFlagChanged

Interface _ITransactionEvents Operation OnBeginDataModification

 OnEndDataModification

Interface IApplication Operation ActiveDocument

 ImportFromXMIFile

 ImportFromXMIFileFromURL

 NewDocument

 OpenDocument

 OpenDocumentFromURL

Operation IDocument::AbortModification

parameter name direction type type modifier multiplicity default
return return void

Operation IDocument::ActiveDiagramWindow

parameter name direction type type modifier multiplicity default
return return IDiagramWindow

Operation IDocument::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IDocument::BeginModification

parameter name direction type type modifier multiplicity default
return return bool

Operation IDocument::CanFocusUMLDataInModelTree

parameter name direction type type modifier multiplicity default
ipUMLData in IUMLData

return return bool

Operation IDocument::CheckProjectSyntax

parameter name direction type type modifier multiplicity default
return return bool

Operation IDocument::DiagramWindows

parameter name direction type type modifier multiplicity default
return return IDiagramWindow

s

Operation IDocument::ElementFamilyStyles

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLGuiStyles

Operation IDocument::EndModification

957

957

958 958

958

881 881

882

882

883

883

883

888

967

891

1301

© 2018-2024 Altova GmbH

UModel API Reference 897UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return void

Operation IDocument::ExportToXMIFile

parameter name direction type type modifier multiplicity default
ipDlg in IExportXMIFileDlg

return return bool

Operation IDocument::FocusedUMLData

parameter name direction type type modifier multiplicity default
return return IUMLData

document
ation

Get the focused UML data of the docoument.
Normally this is the one which is shown in the "Properties" window.

Operation IDocument::FocusedUMLDataNotifier

parameter name direction type type modifier multiplicity default
return return IFocusedUMLDat

aNotifier

Operation IDocument::FocusUMLDataInModelTree

parameter name direction type type modifier multiplicity default
ipUMLData in IUMLData

bFocusModelTree

in bool

bEnsureModelTre
eVisible

in bool

return return void

Operation IDocument::FullName

parameter name direction type type modifier multiplicity default
return return string

Operation IDocument::GenerateDocumentation

parameter name direction type type modifier multiplicity default
ipDlg in IGenerateDocume

ntationDlg

strResultFile in string
return return bool

Operation IDocument::GenerateSequenceDiagram

parameter name direction type type modifier multiplicity default
ipDlg in IGenerateSequenc

eDiagramDlg

ipOp in IUMLOperation

return return bool

Operation IDocument::GenerateSequenceDiagramsForAllOperations

parameter name direction type type modifier multiplicity default

902

967

903

967

904

911

1192

898 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

bAllPublicOnly in bool
bIncludeGettersA
ndSetters

in bool

return return void

Operation IDocument::GenerateStateMachineCode

parameter name direction type type modifier multiplicity default
ipDlg in IGenerateStateMa

chineCodeDlg

ipStateMachine in IUMLStateMachin

e

return return bool

Operation IDocument::GuiRoot

parameter name direction type type modifier multiplicity default
return return IUMLGuiRootEle

ment

Operation IDocument::ImportBinaryTypes

parameter name direction type type modifier multiplicity default
ipDlg in IImportBinaryTyp

esDlg

return return bool

Operation IDocument::ImportDatabase

parameter name direction type type modifier multiplicity default
ipDlg in IImportDatabaseD

lg

return return bool

Operation IDocument::ImportSourceDirectory

parameter name direction type type modifier multiplicity default
ipDlg in IImportSourceDire

ctoryDlg

return return bool

Operation IDocument::ImportSourceProject

parameter name direction type type modifier multiplicity default
ipDlg in IImportSourceProj

ectDlg

return return bool

Operation IDocument::ImportXMLSchemaDirectory

parameter name direction type type modifier multiplicity default
ipDlg in IImportXMLSche

maDirectoryDlg

return return bool

Operation IDocument::ImportXMLSchemaFile

913

1227

1293

914

918

919

923

925

© 2018-2024 Altova GmbH

UModel API Reference 899UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
ipDlg in IImportXMLSche

maFileDlg

return return bool

Operation IDocument::IncludeSubproject

parameter name direction type type modifier multiplicity default
ipDlg in IIncludeSubprojec

tDlg

return return bool

Operation IDocument::IsInUndoRedo

parameter name direction type type modifier multiplicity default
return return bool

Operation IDocument::IsLoadedFromPreviousFileFormat

parameter name direction type type modifier multiplicity default
return return bool

document
ation

True, when the document has been loaded from a project file with a previous file format version. When
saving the document, previous versions of UModel will not be able to load this file anymore.

Operation IDocument::LineStyles

parameter name direction type type modifier multiplicity default
return return IUMLGuiStyles

Operation IDocument::MergeProject

parameter name direction type type modifier multiplicity default
strProjectFile in string
return return bool

Operation IDocument::MergeProject3Way

parameter name direction type type modifier multiplicity default
strProjectFile in string
strCommonAnces
torFile

in string

return return bool

Operation IDocument::MergeProjectFromURL

parameter name direction type type modifier multiplicity default
IURLDlg in IURLDlg

return return bool

Operation IDocument::ModelTransformation

parameter name direction type type modifier multiplicity default
ipDlg in IModelTransform

ationDlg

return return bool

926

927

1301

953

944

900 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IDocument::ModifiedFlag

parameter name direction type type modifier multiplicity default
return return bool

Operation IDocument::Name

parameter name direction type type modifier multiplicity default
return return string

Operation IDocument::NodeStyles

parameter name direction type type modifier multiplicity default
return return IUMLGuiStyles

Operation IDocument::OpenAllDiagrams

parameter name direction type type modifier multiplicity default
return return void

Operation IDocument::OpenDiagram

parameter name direction type type modifier multiplicity default
ipUMLDiagram in IUMLGuiDiagram

return return IDiagramWindow

Operation IDocument::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IDocument::Path

parameter name direction type type modifier multiplicity default
return return string

Operation IDocument::ProjectSettings

parameter name direction type type modifier multiplicity default
ipDlg in IProjectSettingsDl

g

return return void

Operation IDocument::ProjectStyles

parameter name direction type type modifier multiplicity default
return return IUMLGuiStyles

Operation IDocument::Reload

parameter name direction type type modifier multiplicity default
return return bool

Operation IDocument::RootPackage

1301

1271

888

948

1301

© 2018-2024 Altova GmbH

UModel API Reference 901UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IDocument::Save

parameter name direction type type modifier multiplicity default
return return void

Operation IDocument::SaveAllDiagramsAsImages

parameter name direction type type modifier multiplicity default
ipDlg in ISaveAllDiagrams

AsImagesDlg

return return bool

Operation IDocument::SaveAs

parameter name direction type type modifier multiplicity default
strFileName in string
return return void

Operation IDocument::SaveCopyAs

parameter name direction type type modifier multiplicity default
strFileName in string
return return void

Operation IDocument::Saved

parameter name direction type type modifier multiplicity default
return return bool

Operation IDocument::SaveToURL

parameter name direction type type modifier multiplicity default
IURLDlg in IURLDlg

return return void

Operation IDocument::SynchronizationSettings

parameter name direction type type modifier multiplicity default
ipDlg in ISynchronizationS

ettingsDlg

return return void

Operation IDocument::SynchronizeCodeFromModel

parameter name direction type type modifier multiplicity default
ipDlg in ISynchronizationS

ettingsDlg

return return bool

Operation IDocument::SynchronizeModelFromCode

parameter name direction type type modifier multiplicity default
ipDlg in ISynchronizationS

ettingsDlg

return return bool

1194

951

953

951

951

951

902 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IDocument::TransactionNotifier

parameter name direction type type modifier multiplicity default
return return ITransactionNotifi

er

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.11 UModelAPI - IExportXMIFileDlg

Interface IExportXMIFileDlg

diagram

hierarchy

typedElem
ents

Interface IDialogs Operation ExportXMIFileDlg

Interface IDocument Operation ExportToXMIFile

Operation IExportXMIFileDlg::Encoding

parameter name direction type type modifier multiplicity default
return return string

Operation IExportXMIFileDlg::ExportDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation IExportXMIFileDlg::ExportExtensions

parameter name direction type type modifier multiplicity default
return return bool

952

893 893

895 897

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 903UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IExportXMIFileDlg::ExportUUIDs

parameter name direction type type modifier multiplicity default
return return bool

Operation IExportXMIFileDlg::PrettyPrintXMIOutput

parameter name direction type type modifier multiplicity default
return return bool

Operation IExportXMIFileDlg::URLDlg

parameter name direction type type modifier multiplicity default
return return IURLDlg

Operation IExportXMIFileDlg::XMIFile

parameter name direction type type modifier multiplicity default
return return string

Operation IExportXMIFileDlg::XMIType

parameter name direction type type modifier multiplicity default
return return ENUMExportXMI

Type

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.12 UModelAPI - IFocusedUMLDataNotifier

Interface IFocusedUMLDataNotifier

diagram

typedElem
ents

Interface IDocument Operation FocusedUMLDataNotifier

Operation IFocusedUMLDataNotifier::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IFocusedUMLDataNotifier::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

953

963

895 897

http://www.altova.com/umodel
http://www.altova.com/umodel

904 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.13 UModelAPI - IGenerateDocumentationDlg

Interface IGenerateDocumentationDlg

diagram The diagram is not included because of page size constraints; however, it is available in the
HTML version of the manual (https://www.altova.com/manual/en/umodelenterprise/2024.2/).

hierarchy

typedElem
ents

Interface IDialogs Operation GenerateDocumentationDlg

Interface IDocument Operation GenerateDocumentation

Operation IGenerateDocumentationDlg::CreateFolderForDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_Associations

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_BoundElements

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_Constraints

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_Diagram

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_Documentation

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_DocumentationAsHTML

parameter name direction type type modifier multiplicity default
return return bool

893 893

895 897

http://www.altova.com/umodel
http://www.altova.com/umodel
https://www.altova.com/manual/en/umodelenterprise/2024.2/

© 2018-2024 Altova GmbH

UModel API Reference 905UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IGenerateDocumentationDlg::Details_Generals

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_HierarchyDiagram

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_HierarchyDiagramExpandItemsOnlyOnce

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_HierarchyDiagramNestingDepthDown

parameter name direction type type modifier multiplicity default
return return int

Operation IGenerateDocumentationDlg::Details_HierarchyDiagramNestingDepthUp

parameter name direction type type modifier multiplicity default
return return int

Operation IGenerateDocumentationDlg::Details_Hyperlinks

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_ImplementedInterfaces

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_OperationParameters

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_OwnedDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_OwnedMembers

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_Owner

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_Properties

906 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_SelectAll

parameter name direction type type modifier multiplicity default
return return void

Operation IGenerateDocumentationDlg::Details_SelectNone

parameter name direction type type modifier multiplicity default
return return void

Operation IGenerateDocumentationDlg::Details_ShownOnDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_SourceTargetOfRelations

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_Specifics

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_TemplateParameters

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_TemplateParameterSubstitutions

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Details_TypedElements

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::DiagramImageFormat

parameter name direction type type modifier multiplicity default
return return ENUMOutputIma

geFormat

Operation IGenerateDocumentationDlg::EmbedCSSinHTML

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::EmbedDiagrams

parameter name direction type type modifier multiplicity default

964

© 2018-2024 Altova GmbH

UModel API Reference 907UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return bool

Operation IGenerateDocumentationDlg::Fonts_GetFace

parameter name direction type type modifier multiplicity default
nSetting in ENUMDocumenta

tionFontSetting

return return string

Operation IGenerateDocumentationDlg::Fonts_GetSize

parameter name direction type type modifier multiplicity default
nSetting in ENUMDocumenta

tionFontSetting

return return int

Operation IGenerateDocumentationDlg::Fonts_GetTextColor

parameter name direction type type modifier multiplicity default
nSetting in ENUMDocumenta

tionFontSetting

return return int

Operation IGenerateDocumentationDlg::Fonts_IsBold

parameter name direction type type modifier multiplicity default
nSetting in ENUMDocumenta

tionFontSetting

return return bool

Operation IGenerateDocumentationDlg::Fonts_IsItalic

parameter name direction type type modifier multiplicity default
nSetting in ENUMDocumenta

tionFontSetting

return return bool

Operation IGenerateDocumentationDlg::Fonts_IsUnderline

parameter name direction type type modifier multiplicity default
nSetting in ENUMDocumenta

tionFontSetting

return return bool

Operation IGenerateDocumentationDlg::Fonts_SetBold

parameter name direction type type modifier multiplicity default
nSetting in ENUMDocumenta

tionFontSetting

bVal in bool
return return void

962

962

962

962

962

962

962

908 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IGenerateDocumentationDlg::Fonts_SetDefaults

parameter name direction type type modifier multiplicity default
return return void

Operation IGenerateDocumentationDlg::Fonts_SetFace

parameter name direction type type modifier multiplicity default
nSetting in ENUMDocumenta

tionFontSetting

strNewVal in string
return return void

Operation IGenerateDocumentationDlg::Fonts_SetItalic

parameter name direction type type modifier multiplicity default
nSetting in ENUMDocumenta

tionFontSetting

bVal in bool
return return void

Operation IGenerateDocumentationDlg::Fonts_SetSize

parameter name direction type type modifier multiplicity default
nSetting in ENUMDocumenta

tionFontSetting

nNewVal in int
return return void

Operation IGenerateDocumentationDlg::Fonts_SetTextColor

parameter name direction type type modifier multiplicity default
nSetting in ENUMDocumenta

tionFontSetting

nNewVal in int
return return void

Operation IGenerateDocumentationDlg::Fonts_SetUnderline

parameter name direction type type modifier multiplicity default
nSetting in ENUMDocumenta

tionFontSetting

bVal in bool
return return void

Operation IGenerateDocumentationDlg::GenerateLinksToLocalFiles

parameter name direction type type modifier multiplicity default
return return ENUMDocumenta

tionFilePathKind

Operation IGenerateDocumentationDlg::Include_Diagrams

parameter name direction type type modifier multiplicity default

962

962

962

962

962

962

© 2018-2024 Altova GmbH

UModel API Reference 909UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IKindSelectionList

Operation IGenerateDocumentationDlg::Include_Elements

parameter name direction type type modifier multiplicity default
return return IKindSelectionList

Operation IGenerateDocumentationDlg::Include_IncludedPredefinedSubprojects

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Include_IncludedSubprojects

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Include_Index

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Include_NamedElementsOnly

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::Include_SelectAllDiagrams

parameter name direction type type modifier multiplicity default
return return void

Operation IGenerateDocumentationDlg::Include_SelectAllElements

parameter name direction type type modifier multiplicity default
return return void

Operation IGenerateDocumentationDlg::Include_SelectAllKindsOf

parameter name direction type type modifier multiplicity default
strKindName in string
bVal in bool
return return void

Operation IGenerateDocumentationDlg::Include_SelectDefaults

parameter name direction type type modifier multiplicity default
return return void

Operation IGenerateDocumentationDlg::Include_SelectKind

parameter name direction type type modifier multiplicity default
strKindName in string
bVal in bool
return return void

928

928

910 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IGenerateDocumentationDlg::Include_SelectNoDiagrams

parameter name direction type type modifier multiplicity default
return return void

Operation IGenerateDocumentationDlg::Include_SelectNoElements

parameter name direction type type modifier multiplicity default
return return void

Operation IGenerateDocumentationDlg::Include_UnknownExternals

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::OutputFormat

parameter name direction type type modifier multiplicity default
return return ENUMDocumenta

tionOutputForma

t

Operation IGenerateDocumentationDlg::ShowResultFileAfterGeneration

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::SplitOutputToMultipleFiles

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateDocumentationDlg::SPSFile

parameter name direction type type modifier multiplicity default
return return string

Operation IGenerateDocumentationDlg::UseFixedDesign

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

963

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 911UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.14 UModelAPI - IGenerateSequenceDiagramDlg

Interface IGenerateSequenceDiagramDlg

diagram

hierarchy

typedElem
ents

Interface IDialogs Operation GenerateSequenceDiagramDlg

Interface IDocument Operation GenerateSequenceDiagram

Operation IGenerateSequenceDiagramDlg::AddNotesOnSeparateLayer

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateSequenceDiagramDlg::AutomaticlyUpdateDiagramWhenModelIsUpdatedFromCode

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateSequenceDiagramDlg::DiagramOwner

parameter name direction type type modifier multiplicity default
return return IUMLElement

Operation IGenerateSequenceDiagramDlg::MaximalInvocationDepth

parameter name direction type type modifier multiplicity default
return return int

893 893

895 897

1112

912 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IGenerateSequenceDiagramDlg::NotDisplaybleInvocationNoteColor

parameter name direction type type modifier multiplicity default
return return string

Operation IGenerateSequenceDiagramDlg::OperationIgnoreList

parameter name direction type type modifier multiplicity default
return return string

Operation IGenerateSequenceDiagramDlg::ShowCodeInNotes

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateSequenceDiagramDlg::ShowCodeOfMessagesDisplayedDirectlyBelow

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateSequenceDiagramDlg::ShowEmptyCombinedFragments

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateSequenceDiagramDlg::ShowUnknownInvocations

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateSequenceDiagramDlg::SplitIntoSmallerDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateSequenceDiagramDlg::TypeIgnoreList

parameter name direction type type modifier multiplicity default
return return string

Operation IGenerateSequenceDiagramDlg::UseDedicatedLineForStaticCalls

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateSequenceDiagramDlg::UseSpecialColorForNotesOfNotDisplayableInvocations

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 913UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.15 UModelAPI - IGenerateStateMachineCodeDlg

Interface IGenerateStateMachineCodeDlg

diagram

hierarchy

typedElem
ents

Interface IDialogs Operation GenerateStateMachineCodeDlg

Interface IDocument Operation GenerateStateMachineCode

Operation IGenerateStateMachineCodeDlg::AdditionalImportsAndDeclarations

parameter name direction type type modifier multiplicity default
return return string

Operation IGenerateStateMachineCodeDlg::AutomaticallyUpdateStateMachineCode

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateStateMachineCodeDlg::GenerateDebugMessages

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateStateMachineCodeDlg::GetCallEvents

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateStateMachineCodeDlg::IRegion_GetName

parameter name direction type type modifier multiplicity default
return return bool

893 894

895 898

914 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IGenerateStateMachineCodeDlg::IRegion_GetStates

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateStateMachineCodeDlg::IState_GetId

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateStateMachineCodeDlg::IState_GetName

parameter name direction type type modifier multiplicity default
return return bool

Operation IGenerateStateMachineCodeDlg::IState_GetRegions

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.16 UModelAPI - IImportBinaryTypesDlg

Interface IImportBinaryTypesDlg

diagram The diagram is not included because of page size constraints; however, it is available in the
HTML version of the manual (https://www.altova.com/manual/en/umodelenterprise/2024.2/).

hierarchy

typedElem
ents

Interface IDialogs Operation ImportBinaryTypesDlg

Interface IDocument Operation ImportBinaryTypes

Operation IImportBinaryTypesDlg::Content_GenerateDiagramPerPackage

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::Content_GenerateSingleDiagram

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::Content_HyperlinkPackagesToDiagrams

893 894

895 898

http://www.altova.com/umodel
http://www.altova.com/umodel
https://www.altova.com/manual/en/umodelenterprise/2024.2/

© 2018-2024 Altova GmbH

UModel API Reference 915UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::Content_ShowAnonymousBoundElements

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::Content_ShowNestedClassifiersSeparately

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::CSharp_BinaryTypes

parameter name direction type type modifier multiplicity default
return return IBinaryTypeEntrie

s

Operation IImportBinaryTypesDlg::CSharp_ImportReferencedTypes

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::CSharp_ImportReferencedTypesRestriction

parameter name direction type type modifier multiplicity default
return return string

Operation IImportBinaryTypesDlg::CSharp_ImportTypesOnly

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::CSharp_ImportVisibility

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::CSharp_ImportVisibilityRestriction

parameter name direction type type modifier multiplicity default
return return string

Operation IImportBinaryTypesDlg::CSharp_OneAttributePerAttributeSection

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::CSharp_OverridePathForNativeLibraries

parameter name direction type type modifier multiplicity default
return return string

Operation IImportBinaryTypesDlg::CSharp_ReflectionOnly

parameter name direction type type modifier multiplicity default

884

916 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return bool

Operation IImportBinaryTypesDlg::CSharp_SuppressAttributeSections

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::CSharp_SuppressAttributeSuffix

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::Java_BinaryTypes

parameter name direction type type modifier multiplicity default
return return IBinaryTypeEntrie

s

Operation IImportBinaryTypesDlg::Java_ImportReferencedTypes

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::Java_ImportReferencedTypesRestriction

parameter name direction type type modifier multiplicity default
return return string

Operation IImportBinaryTypesDlg::Java_ImportTypesOnly

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::Java_ImportVisibility

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::Java_ImportVisibilityRestriction

parameter name direction type type modifier multiplicity default
return return string

Operation IImportBinaryTypesDlg::Java_OverridePathForNativeLibraries

parameter name direction type type modifier multiplicity default
return return string

Operation IImportBinaryTypesDlg::Java_SuppressAnnotationModifiers

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::Runtime

parameter name direction type type modifier multiplicity default
return return string

884

© 2018-2024 Altova GmbH

UModel API Reference 917UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IImportBinaryTypesDlg::VBasic_BinaryTypes

parameter name direction type type modifier multiplicity default
return return IBinaryTypeEntrie

s

Operation IImportBinaryTypesDlg::VBasic_ImportReferencedTypes

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::VBasic_ImportReferencedTypesRestriction

parameter name direction type type modifier multiplicity default
return return string

Operation IImportBinaryTypesDlg::VBasic_ImportTypesOnly

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::VBasic_ImportVisibility

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::VBasic_ImportVisibilityRestriction

parameter name direction type type modifier multiplicity default
return return string

Operation IImportBinaryTypesDlg::VBasic_OneAttributePerAttributeSection

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::VBasic_OverridePathForNativeLibraries

parameter name direction type type modifier multiplicity default
return return string

Operation IImportBinaryTypesDlg::VBasic_ReflectionOnly

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::VBasic_SuppressAttributeSections

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportBinaryTypesDlg::VBasic_SuppressAttributeSuffix

parameter name direction type type modifier multiplicity default
return return bool

884

918 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.17 UModelAPI - IImportDatabaseDlg

Interface IImportDatabaseDlg

diagram

hierarchy

typedElem
ents

Interface IDialogs Operation ImportDatabaseDlg

Interface IDocument Operation ImportDatabase

Operation IImportDatabaseDlg::DatabaseElementCount

parameter name direction type type modifier multiplicity default
return return int

Operation IImportDatabaseDlg::GetDatabaseElementName

parameter name direction type type modifier multiplicity default
nIdx in int
return return string

Operation IImportDatabaseDlg::IsDatabaseElementSelectedForImport

parameter name direction type type modifier multiplicity default
strDatabaseEleme
ntName

in string

return return bool

Operation IImportDatabaseDlg::SelectNewDataSourceByConnectionString

parameter name direction type type modifier multiplicity default
strConnectionNa
me

in string

eMethod in ENUMUMLDBDat
aSourceMethod

strConnectionStri
ng

in string

893 894

895 898

1325

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 919UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return bool

Operation IImportDatabaseDlg::SelectNewDataSourceByDialog

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportDatabaseDlg::SetDatabaseElementSelectedForImport

parameter name direction type type modifier multiplicity default
strDatabaseEleme
ntName

in string

bVal in bool
return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.18 UModelAPI - IImportSourceDirectoryDlg

Interface IImportSourceDirectoryDlg

diagram

hierarchy

typedElem
ents

Interface IDialogs Operation ImportSourceDirectoryDlg

Interface IDocument Operation ImportSourceDirectory

Operation IImportSourceDirectoryDlg::Content_GenerateDiagramPerPackage

parameter name direction type type modifier multiplicity default

893 894

895 898

http://www.altova.com/umodel
http://www.altova.com/umodel

920 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return bool

Operation IImportSourceDirectoryDlg::Content_GenerateSingleDiagram

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDirectoryDlg::Content_HyperlinkPackagesToDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDirectoryDlg::Content_ShowAnonymousBoundElements

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDirectoryDlg::Content_ShowNestedClassifiersSeparately

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDirectoryDlg::Directory

parameter name direction type type modifier multiplicity default
return return string

Operation IImportSourceDirectoryDlg::ImportDirectoriesRelative

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDirectoryDlg::ProcessSubdirectories

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 921UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.19 UModelAPI - IImportSourceDlg

Interface IImportSourceDlg

diagram

hierarchy

Operation IImportSourceDlg::Content_Autolayout

parameter name direction type type modifier multiplicity default
return return ENUMDiagramLa

youtKind

Operation IImportSourceDlg::Content_OpenDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::Content_ShowAttributesCompartment

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::Content_ShowDotNetPropertyCompartment

961

922 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::Content_ShowEnumerationLiteralsCompartment

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::Content_ShowNestedClassifiersCompartment

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::Content_ShowOperationsCompartment

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::Content_ShowTaggedValues

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::Content_UseDotNetPropertyCompartment

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::DiagramGeneration

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::ImportInNewPackage

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::ImportTarget

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IImportSourceDlg::Language

parameter name direction type type modifier multiplicity default
return return ENUMCodeLangV

ersion

Operation IImportSourceDlg::PackageDependency_Autolayout

parameter name direction type type modifier multiplicity default
return return ENUMDiagramLa

youtKind

Operation IImportSourceDlg::PackageDependency_GenerateDiagram

1194

961

961

© 2018-2024 Altova GmbH

UModel API Reference 923UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::PackageDependency_HyperlinkPackageToDiagram

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::PackageDependency_IgnoreExternalPackages

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::PackageDependency_OpenDiagram

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceDlg::Synchronization

parameter name direction type type modifier multiplicity default
return return ENUMSynchroniz

ationKind

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.20 UModelAPI - IImportSourceProjectDlg

Interface IImportSourceProjectDlg

diagram

965

http://www.altova.com/umodel
http://www.altova.com/umodel

924 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IDialogs Operation ImportSourceProjectDlg

Interface IDocument Operation ImportSourceProject

Operation IImportSourceProjectDlg::Content_GenerateDiagramPerPackage

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceProjectDlg::Content_GenerateSingleDiagram

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceProjectDlg::Content_HyperlinkPackagesToDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceProjectDlg::Content_ShowAnonymousBoundElements

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceProjectDlg::Content_ShowNestedClassifiersSeparately

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceProjectDlg::ImportProjectRelative

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportSourceProjectDlg::ProjectFile

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

893 894

895 898

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 925UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.21 UModelAPI - IImportXMLSchemaDirectoryDlg

Interface IImportXMLSchemaDirectoryDlg

diagram

hierarchy

typedElem
ents

Interface IDialogs Operation ImportXMLSchemaDirectoryDlg

Interface IDocument Operation ImportXMLSchemaDirectory

Operation IImportXMLSchemaDirectoryDlg::Content_GenerateDiagramsForXSDGlobals

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportXMLSchemaDirectoryDlg::Content_HyperlinkDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportXMLSchemaDirectoryDlg::Directory

parameter name direction type type modifier multiplicity default
return return string

Operation IImportXMLSchemaDirectoryDlg::ImportDirectoriesRelative

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportXMLSchemaDirectoryDlg::ProcessSubdirectories

parameter name direction type type modifier multiplicity default
return return bool

893 894

895 898

926 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.22 UModelAPI - IImportXMLSchemaFileDlg

Interface IImportXMLSchemaFileDlg

diagram

hierarchy

typedElem
ents

Interface IDialogs Operation ImportXMLSchemaFileDlg

Interface IDocument Operation ImportXMLSchemaFile

Operation IImportXMLSchemaFileDlg::Content_GenerateDiagramsForXSDGlobals

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportXMLSchemaFileDlg::Content_HyperlinkDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportXMLSchemaFileDlg::ImportFileRelative

parameter name direction type type modifier multiplicity default
return return bool

Operation IImportXMLSchemaFileDlg::XMLSchemaFile

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

893 894

895 898

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 927UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.23 UModelAPI - IIncludeSubprojectDlg

Interface IIncludeSubprojectDlg

diagram

hierarchy

typedElem
ents

Interface IDialogs Operation IncludeSubprojectDlg

Interface IDocument Operation IncludeSubproject

Operation IIncludeSubprojectDlg::IncludeByReference

parameter name direction type type modifier multiplicity default
return return bool

Operation IIncludeSubprojectDlg::IncludeEditable

parameter name direction type type modifier multiplicity default
return return bool

Operation IIncludeSubprojectDlg::ProjectFile

parameter name direction type type modifier multiplicity default
return return string

Operation IIncludeSubprojectDlg::RetainDiagramStyles

parameter name direction type type modifier multiplicity default
return return bool

Operation IIncludeSubprojectDlg::URLDlg

parameter name direction type type modifier multiplicity default
return return IURLDlg

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

893 894

895 899

953

http://www.altova.com/umodel
http://www.altova.com/umodel

928 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.2.24 UModelAPI - IKindSelection

Interface IKindSelection

diagram

typedElem
ents

Interface IKindSelectionList Operation Item

Operation IKindSelection::IsKindOf

parameter name direction type type modifier multiplicity default
strKindName in string
return return bool

Operation IKindSelection::KindName

parameter name direction type type modifier multiplicity default
return return string

Operation IKindSelection::Selection

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.25 UModelAPI - IKindSelectionList

Interface IKindSelectionList

diagram

typedElem
ents

Interface

IGenerateDocumentationDlg

Operation Include_Diagrams

 Include_Elements

928 929

904

908

909

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 929UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IKindSelectionList::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IKindSelectionList::Count

parameter name direction type type modifier multiplicity default
return return int

Operation IKindSelectionList::Item

parameter name direction type type modifier multiplicity default
nIdx in int
return return IKindSelection

Operation IKindSelectionList::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.26 UModelAPI - ILocalOptions

Interface ILocalOptions

diagram

typedElem
ents

Interface IApplication Operation Options

Operation ILocalOptions::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ILocalOptions::CodeEngineering

928

881 883

http://www.altova.com/umodel
http://www.altova.com/umodel

930 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return ILocalOptionsCod

eEngineering

Operation ILocalOptions::DiagramEditing

parameter name direction type type modifier multiplicity default
return return ILocalOptionsDia

gramEditing

Operation ILocalOptions::Editing

parameter name direction type type modifier multiplicity default
return return ILocalOptionsEditi

ng

Operation ILocalOptions::File

parameter name direction type type modifier multiplicity default
return return ILocalOptionsFile

Operation ILocalOptions::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ILocalOptions::View

parameter name direction type type modifier multiplicity default
return return ILocalOptionsVie

w

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

931

933

936

937

939

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 931UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.27 UModelAPI - ILocalOptionsCodeEngineering

Interface ILocalOptionsCodeEngineering

diagram

typedElem
ents

Interface ILocalOptions Operation CodeEngineering

Operation ILocalOptionsCodeEngineering::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ILocalOptionsCodeEngineering::CodeFromModel_GenerateMissingCodeFileNames

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsCodeEngineering::CodeFromModel_GenerateMissingComponentRealizations

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsCodeEngineering::CodeFromModel_Indentation_InsertNSpaces

parameter name direction type type modifier multiplicity default
return return int

Operation ILocalOptionsCodeEngineering::CodeFromModel_Indentation_InsertTabs

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsCodeEngineering::CodeFromModel_UseNamespaceForCodeFilePath_CSharp

929 929

932 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsCodeEngineering::CodeFromModel_UseNamespaceForCodeFilePath_Java

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsCodeEngineering::CodeFromModel_UseNamespaceForCodeFilePath_VBasic

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsCodeEngineering::CodeFromModel_UseSyntaxCheck

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsCodeEngineering::ModelFromCode_DirectoriesToIgnore

parameter name direction type type modifier multiplicity default
return return string

Operation ILocalOptionsCodeEngineering::ModelFromCode_IgnoreDirectories

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsCodeEngineering::OpenMessageWindow

parameter name direction type type modifier multiplicity default
return return ENUMOpenMess

ageWindow

Operation ILocalOptionsCodeEngineering::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ILocalOptionsCodeEngineering::SyntaxCheck

parameter name direction type type modifier multiplicity default
return return ENUMSyntaxChec

kKind

Operation ILocalOptionsCodeEngineering::XMLSpyCatalogFile

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

964

965

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 933UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.28 UModelAPI - ILocalOptionsDiagramEditing

Interface ILocalOptionsDiagramEditing

diag
ram

type
dEle

ment
s

Interface ILocalOptions Operation DiagramEditing

Operation ILocalOptionsDiagramEditing::AlwaysShowStyleDialogBeforeAddingItems

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsDiagramEditing::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ILocalOptionsDiagramEditing::AskBeforeAddingMoreThanItemsCount

parameter name direction type type modifier multiplicity default
return return int

929 930

934 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation ILocalOptionsDiagramEditing::AutomaticallyCreateAssociations

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsDiagramEditing::CollectionTemplates_CSharp

parameter name direction type type modifier multiplicity default
return return ICollectionTempla

tes

Operation ILocalOptionsDiagramEditing::CollectionTemplates_Java

parameter name direction type type modifier multiplicity default
return return ICollectionTempla

tes

Operation ILocalOptionsDiagramEditing::CollectionTemplates_UML

parameter name direction type type modifier multiplicity default
return return ICollectionTempla

tes

Operation ILocalOptionsDiagramEditing::CollectionTemplates_VBasic

parameter name direction type type modifier multiplicity default
return return ICollectionTempla

tes

Operation ILocalOptionsDiagramEditing::EnableAutomaticEntryHelper

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsDiagramEditing::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ILocalOptionsDiagramEditing::ResetExistingAssociations

parameter name direction type type modifier multiplicity default
return return void

Operation ILocalOptionsDiagramEditing::ResolveCollections

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsDiagramEditing::ResolveCollectionsToUnknownExternalsUnqualified

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsDiagramEditing::ShowAttributesCompartment

parameter name direction type type modifier multiplicity default

887

887

887

887

© 2018-2024 Altova GmbH

UModel API Reference 935UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return bool

Operation ILocalOptionsDiagramEditing::ShowDotNetPropertyCompartment

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsDiagramEditing::ShowEnumerationLiteralsCompartment

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsDiagramEditing::ShowExtensionPointsCompartment

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsDiagramEditing::ShowNestedClassifierCompartment

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsDiagramEditing::ShowOperationsCompartment

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsDiagramEditing::ShowTaggedValues

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsDiagramEditing::UseDotNetPropertyCompartment

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel

936 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.2.29 UModelAPI - ILocalOptionsEditing

Interface ILocalOptionsEditing

diagram

typedElem
ents

Interface ILocalOptions Operation Editing

Operation ILocalOptionsEditing::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ILocalOptionsEditing::AskBeforeEraseFromProjectInDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsEditing::AskBeforeEraseFromProjectInFavoritesTree

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsEditing::ComponentsDefaultCodeLangVersion

parameter name direction type type modifier multiplicity default
return return ENUMCodeLangV

ersion

Operation ILocalOptionsEditing::ConstrainOwnerOfNewConstraints

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsEditing::OpenNewDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsEditing::OperationsDefaultVisibility

929 930

961

© 2018-2024 Altova GmbH

UModel API Reference 937UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return ENUMUMLVisibili

tyKind

Operation ILocalOptionsEditing::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ILocalOptionsEditing::PropertiesDefaultVisibility

parameter name direction type type modifier multiplicity default
return return ENUMUMLVisibili

tyKind

Operation ILocalOptionsEditing::SyntaxErrorBubbleDisappearDelay

parameter name direction type type modifier multiplicity default
return return int

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.30 UModelAPI - ILocalOptionsFile

Interface ILocalOptionsFile

diagram

typedElem
ents

Interface ILocalOptions Operation File

Operation ILocalOptionsFile::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ILocalOptionsFile::AskBeforeReloadChangedFile

parameter name direction type type modifier multiplicity default

1332

1332

929 930

http://www.altova.com/umodel
http://www.altova.com/umodel

938 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return bool

Operation ILocalOptionsFile::LoadAndSaveFavoritesWithProjectFile

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsFile::LoadAndSaveOpenDiagramsWithProjectFile

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsFile::OpenLastProjectOnProgramStart

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsFile::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ILocalOptionsFile::PrettyPrintFileContentWhenSaving

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsFile::WatchForFileChanges

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 939UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.31 UModelAPI - ILocalOptionsView

Interface ILocalOptionsView

diagram

typedElem
ents

Interface ILocalOptions Operation View

Operation ILocalOptionsView::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ILocalOptionsView::AutolayoutHierarchic_GrowDirection

parameter name direction type type modifier multiplicity default
return return ENUMAutolayout

GrowDirectionKin

d

Operation ILocalOptionsView::AutolayoutHierarchic_MinXDistance

parameter name direction type type modifier multiplicity default
return return int

Operation ILocalOptionsView::AutolayoutHierarchic_MinYDistance

parameter name direction type type modifier multiplicity default
return return int

Operation ILocalOptionsView::EnableSnapLines

929 930

960

940 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsView::FrameTitle

parameter name direction type type modifier multiplicity default
return return ENUMApplication

FrameTitle

Operation ILocalOptionsView::HierarchyWindow_ExpandItemsOnlyOnce

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsView::HierarchyWindow_NestingDepthDown

parameter name direction type type modifier multiplicity default
return return int

Operation ILocalOptionsView::HierarchyWindow_NestingDepthUp

parameter name direction type type modifier multiplicity default
return return int

Operation ILocalOptionsView::ListClassifiersNotUsedInAnyDiagram

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsView::ListElementsNotUsedInAnyDiagram_IgnoreIncludedElements

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsView::ListInstanceSpecificationsNotUsedInAnyDiagram

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsView::ListPackagesNotUsedInAnyDiagram

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsView::ListRelationsNotUsedInAnyDiagram

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsView::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ILocalOptionsView::SelectFocusedDiagramItemInModelTree

parameter name direction type type modifier multiplicity default

959

© 2018-2024 Altova GmbH

UModel API Reference 941UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return bool

Operation ILocalOptionsView::ShowProgramLogoOnDiagram

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsView::ShowProgramLogoOnPrint

parameter name direction type type modifier multiplicity default
return return bool

Operation ILocalOptionsView::ShowProgramLogoOnStartup

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.32 UModelAPI - IMatchRenamedDlg

Interface IMatchRenamedDlg

diagram

hierarchy

typedElem
ents

Interface

_ISynchronizationEvents

Operation OnMatchRenamed

Operation IMatchRenamedDlg::IsValid

parameter name direction type type modifier multiplicity default
return return bool

Operation IMatchRenamedDlg::MatchRenamedEntries

parameter name direction type type modifier multiplicity default
return return IMatchRenamedE

ntries

958

958

942

http://www.altova.com/umodel
http://www.altova.com/umodel

942 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.33 UModelAPI - IMatchRenamedEntries

Interface IMatchRenamedEntries

diagram

typedElem
ents

Interface IMatchRenamedDlg Operation MatchRenamedEntries

Operation IMatchRenamedEntries::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IMatchRenamedEntries::Count

parameter name direction type type modifier multiplicity default
return return int

Operation IMatchRenamedEntries::Item

parameter name direction type type modifier multiplicity default
nIdx in int
return return IMatchRenamedE

ntry

Operation IMatchRenamedEntries::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

941 941

943

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 943UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.34 UModelAPI - IMatchRenamedEntry

Interface IMatchRenamedEntry

diagram

typedElem
ents

Interface IMatchRenamedEntries Operation Item

Operation IMatchRenamedEntry::IsValid

parameter name direction type type modifier multiplicity default
return return bool

Operation IMatchRenamedEntry::KindName

parameter name direction type type modifier multiplicity default
return return string

Operation IMatchRenamedEntry::MatchingName

parameter name direction type type modifier multiplicity default
return return string

Operation IMatchRenamedEntry::Name

parameter name direction type type modifier multiplicity default
return return string

Operation IMatchRenamedEntry::Namespace

parameter name direction type type modifier multiplicity default
return return string

Operation IMatchRenamedEntry::PossibleMatchingNames

parameter name direction type type modifier multiplicity default
return return IDispatch

document
ation

Returns an array of values of type string.

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

942 942

http://www.altova.com/umodel
http://www.altova.com/umodel

944 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.2.35 UModelAPI - IModelTransformationDlg

Interface IModelTransformationDlg

diagram

hierarchy

typedElem
ents

Interface IDialogs Operation ModelTransformationDlg

Interface IDocument Operation ModelTransformation

Operation IModelTransformationDlg::AutomaticallyUpdateTransformationAfterUpdateModelFromCode

parameter name direction type type modifier multiplicity default
return return bool

Operation

IModelTransformationDlg::AutomaticallyUpdateTransformationBeforeUpdateCodeFromModel

parameter name direction type type modifier multiplicity default
return return bool

Operation IModelTransformationDlg::GenerateComponentsAndComponentRealizations

parameter name direction type type modifier multiplicity default
return return bool

Operation IModelTransformationDlg::OpenNewDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation IModelTransformationDlg::SourcePackage

parameter name direction type type modifier multiplicity default

893 894

895 899

© 2018-2024 Altova GmbH

UModel API Reference 945UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLPackage

Operation IModelTransformationDlg::Synchronization

parameter name direction type type modifier multiplicity default
return return ENUMSynchroniz

ationKind

Operation IModelTransformationDlg::TargetPackage

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IModelTransformationDlg::TransformClassDiagrams

parameter name direction type type modifier multiplicity default
return return bool

Operation IModelTransformationDlg::TransformFromLanguage

parameter name direction type type modifier multiplicity default
return return ENUMCodeLang

Operation IModelTransformationDlg::TransformInNewPackage

parameter name direction type type modifier multiplicity default
return return bool

Operation IModelTransformationDlg::TransformToLanguage

parameter name direction type type modifier multiplicity default
return return ENUMCodeLang

Operation IModelTransformationDlg::TypeMappings

parameter name direction type type modifier multiplicity default
return return IModelTransform

ationTypeMappin

gs

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1194

965

1194

960

960

947

http://www.altova.com/umodel
http://www.altova.com/umodel

946 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.2.36 UModelAPI - IModelTransformationTypeMapping

Interface IModelTransformationTypeMapping

diagram

typedElem
ents

Interface
IModelTransformationTypeMapping

s

Operation InsertItemAt Item

Operation IModelTransformationTypeMapping::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IModelTransformationTypeMapping::FromType

parameter name direction type type modifier multiplicity default
return return string

Operation IModelTransformationTypeMapping::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IModelTransformationTypeMapping::ToType

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

947

947 947

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 947UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.37 UModelAPI - IModelTransformationTypeMappings

Interface IModelTransformationTypeMappings

di
a

gr
a
m

ty
p
e
d
El
e
m
e

nt
s

Interface IModelTransformationDlg Operation TypeMappings

Operation IModelTransformationTypeMappings::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IModelTransformationTypeMappings::Count

parameter name direction type type modifier multiplicity default
return return int

Operation IModelTransformationTypeMappings::DeleteItemAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IModelTransformationTypeMappings::InsertItemAt

parameter name direction type type modifier multiplicity default
nIdx in int
strFromType in string
strToType in string
return return IModelTransform

ationTypeMappin

g

Operation IModelTransformationTypeMappings::Item

944 945

946

948 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nIdx in int
return return IModelTransform

ationTypeMappin

g

Operation IModelTransformationTypeMappings::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IModelTransformationTypeMappings::SetDefaults

parameter name direction type type modifier multiplicity default
return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.38 UModelAPI - IProjectSettingsDlg

Interface IProjectSettingsDlg

diagram

946

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 949UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IDialogs Operation ProjectSettingsDlg

Interface IDocument Operation ProjectSettings

Operation IProjectSettingsDlg::Cpp_AdditionalArguments

parameter name direction type type modifier multiplicity default
return return string

Operation IProjectSettingsDlg::Cpp_AutoDetectSysIncludes

parameter name direction type type modifier multiplicity default
return return bool

Operation IProjectSettingsDlg::Cpp_Defines

parameter name direction type type modifier multiplicity default
return return string

Operation IProjectSettingsDlg::Cpp_HeaderImportMode

parameter name direction type type modifier multiplicity default
return return bool

Operation IProjectSettingsDlg::Cpp_IncludeDirs

parameter name direction type type modifier multiplicity default
return return string

Operation IProjectSettingsDlg::Cpp_MSCompatibility

parameter name direction type type modifier multiplicity default
return return bool

Operation IProjectSettingsDlg::Cpp_MSVersion

parameter name direction type type modifier multiplicity default
return return int

Operation IProjectSettingsDlg::Cpp_SysIncludeDirs

parameter name direction type type modifier multiplicity default
return return string

Operation IProjectSettingsDlg::Cpp_TreatHFilesAsCpp

parameter name direction type type modifier multiplicity default
return return bool

Operation IProjectSettingsDlg::CSharp_DefinedSymbols

893 895

895 900

950 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return string

Operation IProjectSettingsDlg::CSharp_DocCommentsAsDocumention

parameter name direction type type modifier multiplicity default
return return bool

Operation IProjectSettingsDlg::CSharp_ResolveAliases

parameter name direction type type modifier multiplicity default
return return bool

Operation IProjectSettingsDlg::CSharp_WriteDocumentationAsDocComments

parameter name direction type type modifier multiplicity default
return return bool

Operation IProjectSettingsDlg::Java_JavaDocsAsDocumentation

parameter name direction type type modifier multiplicity default
return return bool

Operation IProjectSettingsDlg::Java_WriteDocumentationAsJavaDocs

parameter name direction type type modifier multiplicity default
return return bool

Operation IProjectSettingsDlg::VBasic_DefinedSymbols

parameter name direction type type modifier multiplicity default
return return string

Operation IProjectSettingsDlg::VBasic_DocCommentsAsDocumention

parameter name direction type type modifier multiplicity default
return return bool

Operation IProjectSettingsDlg::VBasic_ResolveAliases

parameter name direction type type modifier multiplicity default
return return bool

Operation IProjectSettingsDlg::VBasic_WriteDocumentationAsDocComments

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 951UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.39 UModelAPI - ISaveAllDiagramsAsImagesDlg

Interface ISaveAllDiagramsAsImagesDlg

diagram

hierarchy

typedElem
ents

Interface IDialogs Operation SaveAllDiagramsAsImagesDlg

Interface IDocument Operation SaveAllDiagramsAsImages

Operation ISaveAllDiagramsAsImagesDlg::Folder

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.40 UModelAPI - ISynchronizationSettingsDlg

Interface ISynchronizationSettingsDlg

diagram

hierarchy

typedElem
ents

Interface IDialogs Operation SynchronizationSettingsDlg

Interface IDocument Operation SynchronizationSettings

 SynchronizeCodeFromModel

893 895

895 901

893 895

895 901

901

http://www.altova.com/umodel
http://www.altova.com/umodel

952 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 SynchronizeModelFromCode

Operation ISynchronizationSettingsDlg::CodeFromModel_DeletingCode

parameter name direction type type modifier multiplicity default
return return ENUMSynchroniz

ationDeleteKind

Operation ISynchronizationSettingsDlg::CodeFromModel_Synchronization

parameter name direction type type modifier multiplicity default
return return ENUMSynchroniz

ationKind

Operation ISynchronizationSettingsDlg::CodeFromModel_UserDefinedSPLTemplatesOverrideDefault

parameter name direction type type modifier multiplicity default
return return bool

Operation ISynchronizationSettingsDlg::ModelFromCode_Synchronization

parameter name direction type type modifier multiplicity default
return return ENUMSynchroniz

ationKind

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.41 UModelAPI - ITransactionNotifier

Interface ITransactionNotifier

diagram

typedElem
ents

Interface IDocument Operation TransactionNotifier

document
ation

Use this interface to register for _ITransactionEvents .

Operation ITransactionNotifier::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation ITransactionNotifier::Parent

901

964

965

965

895 902

958

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 953UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IDispatch

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.42 UModelAPI - IURLDlg

Interface IURLDlg

diagram

hierarchy

typedElem
ents

Interface IApplication Operation ImportFromXMIFileFromURL

 OpenDocumentFromURL

Interface IDialogs Operation URLOpenDialog

 URLSaveDialog

Interface IDocument Operation MergeProjectFromURL

 SaveToURL

Interface IExportXMIFileDlg Operation URLDlg

Interface IIncludeSubprojectDlg Operation URLDlg

Operation IURLDlg::Delete

parameter name direction type type modifier multiplicity default
strURL in string
return return void

Operation IURLDlg::NewFolder

parameter name direction type type modifier multiplicity default
strURL in string
return return void

Operation IURLDlg::NoCache

parameter name direction type type modifier multiplicity default

881 882

883

893 895

895

895 899

901

902 903

927 927

http://www.altova.com/umodel
http://www.altova.com/umodel

954 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return bool

Operation IURLDlg::Password

parameter name direction type type modifier multiplicity default
return return string

Operation IURLDlg::URL

parameter name direction type type modifier multiplicity default
return return string

Operation IURLDlg::UserName

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.43 Events

This is a list of all events sent by the UModel API.

A list of events sent on UMLData level can be found here .

17.4.2.43.1 UModelAPI - _IApplicationEvents

Interface _IApplicationEvents

diagram

Operation _IApplicationEvents::OnDocumentClosed

parameter name direction type type modifier multiplicity default
ipDocument in IDocument

return return void

Operation _IApplicationEvents::OnDocumentOpened

parameter name direction type type modifier multiplicity default
ipDocument in IDocument

return return void

1322

895

895

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 955UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation _IApplicationEvents::OnNewDocument

parameter name direction type type modifier multiplicity default
ipDocument in IDocument

return return void

Operation _IApplicationEvents::OnShutdown

parameter name direction type type modifier multiplicity default
return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.43.2 UModelAPI - _IDiagramWindowEvents

Interface _IDiagramWindowEvents

diagram

Operation _IDiagramWindowEvents::OnDiagramWindowClosed

parameter name direction type type modifier multiplicity default
ipDiagram in IDiagramWindow

return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

895

888

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

956 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.2.43.3 UModelAPI - _IDocumentEvents

Interface _IDocumentEvents

diagram

Operation _IDocumentEvents::OnActivateDiagramWindow

parameter name direction type type modifier multiplicity default
ipDiagram in IDiagramWindow

bActivate in bool
return return void

Operation _IDocumentEvents::OnAfterReloadDocument

parameter name direction type type modifier multiplicity default
ipDocument in IDocument

return return void

Operation _IDocumentEvents::OnBeforeReloadDocument

parameter name direction type type modifier multiplicity default
ipDocument in IDocument

return return void

Operation _IDocumentEvents::OnDiagramWindowClosed

parameter name direction type type modifier multiplicity default
ipDiagram in IDiagramWindow

return return void

Operation _IDocumentEvents::OnDiagramWindowOpened

parameter name direction type type modifier multiplicity default
ipDiagram in IDiagramWindow

return return void

Operation _IDocumentEvents::OnDocumentClosed

888

895

895

888

888

© 2018-2024 Altova GmbH

UModel API Reference 957UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
ipDocument in IDocument

return return void

Operation _IDocumentEvents::OnDocumentSaved

parameter name direction type type modifier multiplicity default
ipDocument in IDocument

return return void

Operation _IDocumentEvents::OnDocumentSavedAs

parameter name direction type type modifier multiplicity default
ipDocument in IDocument

return return void

Operation _IDocumentEvents::OnModifiedFlagChanged

parameter name direction type type modifier multiplicity default
bIsModified in bool
ipDocument in IDocument

return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.43.4 UModelAPI - _IFocusedUMLDataEvents

Interface _IFocusedUMLDataEvents

diagram

Operation _IFocusedUMLDataEvents::OnFocusedUMLData

parameter name direction type type modifier multiplicity default
ipUMLData in IUMLData

return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

895

895

895

895

967

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

958 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.2.43.5 UModelAPI - _ISynchronizationEvents

Interface _ISynchronizationEvents

diagram

Operation _ISynchronizationEvents::OnMatchRenamed

parameter name direction type type modifier multiplicity default
ipMatchRenamed
Dlg

in IMatchRenamedD

lg

return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.43.6 UModelAPI - _ITransactionEvents

Interface _ITransactionEvents

diagram

document
ation

Use ITransactionNotifier to register for these events

Operation _ITransactionEvents::OnBeginDataModification

parameter name direction type type modifier multiplicity default
ipDocument in IDocument

return return void

Operation _ITransactionEvents::OnEndDataModification

parameter name direction type type modifier multiplicity default
ipDocument in IDocument

return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

941

952

895

895

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 959UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.44 Enumerations

This is a list of all enumerations used by the UModel API. If your scripting environment does not support
enumerations use the number-values instead.

A list of enumerations defined on UMLData level can be found here .

17.4.2.44.1 UModelAPI - ENUMApplicationFrameTitle

Enumeration ENUMApplicationFrameTitle

diagram

typedElem
ents

Interface ILocalOptionsView Operation FrameTitle

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.44.2 UModelAPI - ENUMApplicationStatus

Enumeration ENUMApplicationStatus

diagram

typedElem
ents

Interface IApplication Operation Status

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1323

939 940

881 884

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

960 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.2.44.3 UModelAPI - ENUMAutolayoutGrowDirectionKind

Enumeration ENUMAutolayoutGrowDirectionKind

diagram

typedElem
ents

Interface ILocalOptionsView Operation AutolayoutHierarchic_GrowDirection

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.44.4 UModelAPI - ENUMCodeLang

Enumeration ENUMCodeLang

diagram

typedElem
ents

Interface

IModelTransformationDlg

Operation TransformFromLanguage

 TransformToLanguage

Interface IUMLComponent Operation CodeLang

Interface IUMLDataAll Operation CodeLang

 IsCodeLangNamespace

 IsCodeLangNamespaceRoot

Interface IUMLPackage Operation IsCodeLangNamespace

 IsCodeLangNamespaceRoot

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

939

939

944

945

945

1090 1090

974 980

1008

1008

1194 1196

1196

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 961UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.44.5 UModelAPI - ENUMCodeLangVersion

Enumeration ENUMCodeLangVersion

diagram The diagram is not included because of page size constraints; however, it is available in the
HTML version of the manual (https://www.altova.com/manual/en/umodelenterprise/2024.2/).

typedElem
ents

Interface IImportSourceDlg Operation Language

Interface ILocalOptionsEditing Operation ComponentsDefaultCodeLangVersio

n

Interface IUMLComponent Operation CodeLangVersion

Interface IUMLDataAll Operation CodeLangVersion

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.44.6 UModelAPI - ENUMDiagramLayoutKind

Enumeration ENUMDiagramLayoutKind

diagram

typedElem
ents

Interface IDiagramWindow Operation Autolayout

 AutolayoutSelection

Interface IImportSourceDlg Operation Content_Autolayout
 PackageDependency_Autolayout

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

921 922

936

936

1090 1090

974 980

888 889

889

921 921

922

https://www.altova.com/manual/en/umodelenterprise/2024.2/
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

962 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.2.44.7 UModelAPI - ENUMDocumentationFilePathKind

Enumeration ENUMDocumentationFilePathKind

diagram

typedElem
ents

Interface

IGenerateDocumentationDlg

Operation GenerateLinksToLocalFiles

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.44.8 UModelAPI - ENUMDocumentationFontSetting

Enumeration ENUMDocumentationFontSetting

diagram

typedElem
ents

Interface

IGenerateDocumentationDlg

Operation Fonts_GetFace Fonts_GetSize

 Fonts_GetTextColor

 Fonts_IsBold Fonts_IsItalic

 Fonts_IsUnderline

 Fonts_SetBold Fonts_SetFace

 Fonts_SetItalic Fonts_SetSize

 Fonts_SetTextColor

 Fonts_SetUnderline

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

904

908

904

907 907

907

907 907

907

907 908

908 908

908

908

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 963UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.2.44.9 UModelAPI - ENUMDocumentationOutputFormat

Enumeration ENUMDocumentationOutputFormat

diagram

typedElem
ents

Interface

IGenerateDocumentationDlg

Operation OutputFormat

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.44.10 UModelAPI - ENUMExportXMIType

Enumeration ENUMExportXMIType

diagram

typedElem
ents

Interface IExportXMIFileDlg Operation XMIType

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

904

910

902 903

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

964 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.2.44.11 UModelAPI - ENUMOpenMessageWindow

Enumeration ENUMOpenMessageWindow

diagram

typedElem
ents

Interface

ILocalOptionsCodeEngineering

Operation OpenMessageWindow

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.44.12 UModelAPI - ENUMOutputImageFormat

Enumeration ENUMOutputImageFormat

diagram

typedElem
ents

Interface IDiagramWindow Operation SaveDiagramAsImage
Interface

IGenerateDocumentationDlg

Operation DiagramImageFormat

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.44.13 UModelAPI - ENUMSynchronizationDeleteKind

Enumeration ENUMSynchronizationDeleteKind

diagram

931

932

888 890

904

906

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 965UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

typedElem
ents

Interface

ISynchronizationSettingsDlg

Operation CodeFromModel_DeletingCode

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.44.14 UModelAPI - ENUMSynchronizationKind

Enumeration ENUMSynchronizationKind

diagram

typedElem
ents

Interface IImportSourceDlg Operation Synchronization
Interface

IModelTransformationDlg

Operation Synchronization

Interface

ISynchronizationSettingsDlg

Operation CodeFromModel_Synchronization

 ModelFromCode_Synchronization

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.2.44.15 UModelAPI - ENUMSyntaxCheckKind

Enumeration ENUMSyntaxCheckKind

diagram

typedElem
ents

Interface

ILocalOptionsCodeEngineering

Operation SyntaxCheck

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

951

952

921 923

944

945

951 952

952

931

932

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

966 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3 UMLData Interfaces

The UMLData interfaces allow direct UML-level access to a UModel document. Using these interfaces, you can
read and directly modify the UML representation of the document.

IUMLData is the common base interface of IUMLElement and IUMLGuiElement .

IUMLElements contains elements as defined by the UML specification (see http://www.uml.org).

IUMLGuiElements contains Altova-specific elements for diagrams, and members used to show
IUMLElements on diagrams.

For examples of modifying UML elements and GUI elements, see Object model UMLData .

Errors
The IUMLData interfaces may return the API error codes listed below.

1000 The application object is no longer valid.

1001 Invalid parameter or invalid address for the return parameter was specified.

1002 UModel API is not available in the current edition.

1400 Invalid UMLData modification.

1401 Invalid Waypoint modification.

1402 No changes allowed.

1403 No changes allowed during Undo/Redo.

1404 Element is hidden by Element Style (visibility).

1405 Predefined element not found.

1406 Predefined element is of invalid kind.

For the error codes specific to the UModel API in general, see UModel API Errors .

966 1043 1260

1043

1260

1043

817

879

http://www.uml.org

© 2018-2024 Altova GmbH

UModel API Reference 967UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.1 UModelAPI - IUMLData

Interface IUMLData

diagram

hierarchy

typedElem
ents

Interface

_IFocusedUMLDataEvents

Operation OnFocusedUMLData

Interface _IUMLDataEvents Operation OnAfterAddChild

 OnBeforeErase OnChanged

 OnMoveData

Interface IApplication Operation LogMessageWithUMLDataLink

Interface IDiagramWindow Operation FocusedData

Interface IDocument Operation CanFocusUMLDataInModelTree

 FocusedUMLData

 FocusUMLDataInModelTree
Interface

IUMLCommentTextHyperlink

Operation SetHyperlinkModelElementAddress

Interface IUMLData Operation IsSameUMLData

Interface IUMLDataAll Operation AddUMLGuiNodeLink

 FindPredefinedOwnedElement

 InsertOwnedDiagramAt

 InsertOwnedHyperlink2ModelAt

 IsSameUMLData

 LinkedModelElement
 SetHyperlinkModelElementAddress

Interface IUMLDataList Operation ContainsUMLData Item

Interface IUMLElement Operation FindPredefinedOwnedElement

Interface IUMLGuiDiagram Operation AddUMLGuiNodeLink

Interface IUMLGuiRootElement Operation InsertOwnedDiagramAt

Interface IUMLGuiTextHyperlink Operation SetHyperlinkModelElementAddress

Interface IUMLHyperlink2Model Operation LinkedModelElement

Interface IUMLNamedElement Operation InsertOwnedHyperlink2ModelAt

957

957

1322 1323

1323 1323

1323

881 882

888 889

895 896

897

897

1088 1089

967 968

974 976

989

1002

1003

1012

1015

1029

969 973 974

1112 1113

1271 1272

1293 1294

1310

1311

1139 1139

1178 1179

968 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLData::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IUMLData::EventFilter

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLData::IsEditable

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLData::IsKindOf

parameter name direction type type modifier multiplicity default
strKind in string
return return bool

Operation IUMLData::IsSameUMLData

parameter name direction type type modifier multiplicity default
ipUMLDataToCo
mpare

in IUMLData

return return bool

Operation IUMLData::KindName

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLData::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IUMLData::UUID

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

967

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 969UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.2 UModelAPI - IUMLDataList

Interface IUMLDataList

diagram

typedElem
ents

Interface IDiagramWindow Operation SelectedGuiElements
Interface

IUMLAcceptEventAction

Operation ActionTriggers

 EventActionResults

Interface IUMLAction Operation InputPins

 LocalPostConditions

 LocalPreConditions

 OutputPins

Interface IUMLActivity Operation ActivityEdges ActivityGroups

 ActivityNodes

Interface IUMLActivityEdge Operation ActivityPartitions

 InterruptibleActivityRegions

 StructuredActivityNodes

Interface IUMLActivityGroup Operation ContainedEdges

 ContainedNodes SubGroups

Interface IUMLActivityNode Operation IncomingEdges

 OutgoingEdges

Interface IUMLActivityPartition Operation Edges Nodes

 SubPartitions

Interface IUMLArtifact Operation Manifestations

 NestedArtifacts

 OwnedAttributes

 OwnedOperations

Interface IUMLAssociation Operation EndTypes MemberEnds

 NavigableOwnedEnds

 OwnedEnds

Interface IUMLBehavior Operation OwnedParameters

 Postconditions

 Preconditions

Interface IUMLBehavioralFeature

Operation Methods OwnedParameters

 RaisedExceptions
Interface

IUMLBehavioredClassifier

Operation InterfaceRealizations

 OwnedBehaviors

Interface IUMLCallAction Operation Results

Interface IUMLClass Operation NestedClassifiers

 OwnedOperations

 OwnedReceptions

 SuperClasses

Interface IUMLClassifier Operation Attributes CollaborationUses

 Features Generalizations

 Generals InheritedMembers

888 890

1044

1045

1045

1046 1046

1047

1047

1047

1049 1050 1050

1050

1051 1052

1052

1053

1054 1054

1054 1055

1055 1056

1056

1057 1058 1059

1059

1061 1062

1062

1062

1062

1063 1063 1063

1063

1064

1065 1066

1066

1066

1067 1068 1068

1068

1069

1069

1070

1071 1071

1077 1078

1079

1079

1079

1080 1081 1081

1081 1081

1081 1082

970 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 OwnedUseCases Specifics

 UseCases
Interface

IUMLClassifierTemplateParameter

Operation ConstrainingClassifiers

Interface IUMLCollaboration Operation CollaborationRoles

Interface IUMLCollaborationUse Operation RoleBindings
Interface

IUMLCombinedFragment

Operation Operands

Interface IUMLComment Operation AnnotatedElements

 OwnedHyperlinks

Interface IUMLComponent Operation Realizations
Interface

IUMLConnectionPointReference

Operation Entries Exits

Interface IUMLConstraint Operation ConstrainedElements

Interface IUMLDataAll Operation ActionTriggers ActivityEdges

 ActivityGroups

 ActivityNodes

 ActivityPartitions

 ActualGates

 AllAppliableStereotypes

 AllWaypoints

 AnnotatedElements

 AppliedStereotypes

 Arguments AttachedNodes

 Attributes

 ClientDependencies Clients

 CollaborationRoles

 CollaborationUses

 ConnectionPoints

 Connections

 ConstrainedElements

 ConstrainingClassifiers

 ContainedEdges

 ContainedNodes Conveyed

 DeployedElements

 Deployments Edges

 ElementImports EndTypes

 Entries EventActionResults

 ExceptionHandlers

 ExceptionTypes Exits

 Extends ExtensionLocations

 ExtensionPoints Features

 FeaturingClassifiers

 FormalGates Fragments

 Generalizations Generals

 GetOwnedElementsOfKind

 GuiLinks Handlers

 ImportedMembers Includes

 IncomingEdges Incomings

 InformationFlowRealizations

 InformationSources

 InformationTargets

 InheritedMembers

 InputElements InputPins

 InputValues InStates

 InterfaceRealizations

 InterruptibleActivityRegions

 InterruptingEdges Layers

1082 1082

1083

1083

1083

1084 1084

1085 1085

1086

1086

1087 1087

1088

1090 1091

1093

1094 1094

1097 1098

974 975 975

975

975

975

975

977

977

977

978

978 978

979

980 980

981

981

981

981

982

982

982

982 982

983

983 984

984 984

984 988

988

988 988

989 989

989 989

989

990 990

990 990

991

992 992

993 993

993 994

994

994

994

994

994 994

994 1007

1008

1008

1008 1014

© 2018-2024 Altova GmbH

UModel API Reference 971UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 Lifelines

 LineConnectionWaypoints

 LineLinks

 LocalPostConditions

 LocalPreConditions

 LowerValues Manifestations

 MemberEnds Members

 Messages Methods

 NavigableOwnedEnds

 NestedArtifacts

 NestedClassifiers

 NestedNodes

 NestedPackages Nodes

 Observations Operands

 OutgoingEdges Outgoings

 OutputElements OutputPins

 OutputValues

 OwnedArguments

 OwnedAttributes

 OwnedBehaviors

 OwnedComments

 OwnedConnectors

 OwnedDiagrams

 OwnedElements OwnedEnds

 OwnedGuiElements

 OwnedGuiNodeLinks

 OwnedHyperlinks

 OwnedLiterals

 OwnedMembers

 OwnedOperations

 OwnedParameters

 OwnedPorts

 OwnedReceptions

 OwnedRules

 OwnedStereotypes

 OwnedTemplateBindings

 OwnedTemplateParameters

 OwnedTypes

 OwnedUseCases

 PackagedElements

 PackageImports

 PackageMerges

 ParameterSubstitutions

 Postconditions

 Preconditions

 ProfileApplications

 Qualifiers RaisedExceptions

 Realizations

 RealizingConnectors

 Referred Regions

 RelatedElements

 RelativeNodes Results

 RoleBindings Slots

 Sources Specifics

 StereotypeApplications

 StructuredActivityNodes

 SubGroups Subjects

 SubmachineStates

 SubPartitions SubVertices

1014

1014

1014

1015

1015

1015 1015

1015 1016

1016 1016

1017

1017

1017

1018

1018 1018

1018 1019

1019 1019

1019 1019

1019

1020

1020

1020

1020

1020

1020

1020 1020

1021

1021

1021

1021

1021

1021

1021

1021

1021

1021

1021

1022

1022

1022

1022

1024

1024

1024

1024

1025

1025

1025

1026 1026

1026

1026

1027 1027

1027

1027 1027

1028 1035

1036 1036

1037

1037

1037 1037

1037

1037 1038

972 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 SuperClasses

 SupplierDependencies

 Suppliers Targets

 TextLabels Transitions

 Triggers TypedElements

 UpperValues UseCases

 Values Waypoints

Interface IUMLDataType Operation OwnedAttributes

 OwnedOperations

Interface IUMLDependency Operation Clients Suppliers
Interface

IUMLDeploymentTarget

Operation DeployedElements

 Deployments
Interface

IUMLDirectedRelationship

Operation Sources Targets

Interface IUMLDuration Operation Observations

Interface IUMLElement Operation AllAppliableStereotypes

 AppliedStereotypes

 GetOwnedElementsOfKind

 OwnedComments

 OwnedElements

 StereotypeApplications
Interface

IUMLEncapsulatedClassifier

Operation OwnedPorts

Interface IUMLEnumeration Operation OwnedLiterals

Interface IUMLExceptionHandler Operation ExceptionTypes

Interface IUMLExecutableNode Operation Handlers

Interface IUMLExpansionRegion Operation InputElements

 OutputElements

Interface IUMLExpression Operation Operands

Interface IUMLExtend Operation ExtensionLocations

Interface IUMLFeature Operation FeaturingClassifiers

Interface IUMLGuiDiagram Operation GuiLinks Layers

 OwnedHyperlinks

Interface IUMLGuiElement Operation OwnedGuiElements

Interface IUMLGuiLineLink Operation AllWaypoints

 LineConnectionWaypoints

 Waypoints

Interface IUMLGuiLink Operation AttachedNodes

 RelativeNodes

Interface IUMLGuiNodeLink Operation OwnedGuiNodeLinks

Interface IUMLGuiNote Operation OwnedHyperlinks

Interface IUMLGuiRootElement Operation OwnedDiagrams
Interface

IUMLGuiTextLabelWaypoint

Operation TextLabels

Interface IUMLGuiWaypoint Operation LineLinks

Interface IUMLInformationFlow Operation Conveyed

 InformationFlowRealizations

 InformationSources

 InformationTargets

 RealizingConnectors
Interface

IUMLInstanceSpecification

Operation Slots

Interface IUMLInteraction Operation FormalGates Fragments

 Lifelines Messages

Interface IUMLInteractionUse Operation ActualGates

Interface IUMLInterface Operation NestedClassifiers

 OwnedAttributes

 OwnedOperations

 OwnedReceptions

1038

1038

1038 1038

1039 1040

1040 1040

1041 1041

1041 1042

1101 1102

1102

1103 1104 1104

1106

1106

1106

1107

1108 1108

1108 1109

1112 1113

1113

1113

1114

1114

1115

1116

1117

1117 1119

1121 1121

1122 1122

1126 1127

1127

1127 1128

1128 1129

1130 1131

1271 1274 1274

1274

1276 1276

1282 1282

1283

1283

1284 1284

1285

1286 1287

1288 1289

1293 1294

1313

1314

1320 1321

1141 1141

1142

1142

1142

1143

1146

1147

1149 1149 1150

1150 1150

1153 1154

1155 1157

1157

1157

1157

© 2018-2024 Altova GmbH

UModel API Reference 973UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Interface

IUMLInterruptibleActivityRegion

Operation InterruptingEdges Nodes

Interface IUMLInvocationAction Operation Arguments

Interface IUMLMessage Operation OwnedArguments
Interface

IUMLMultiplicityElement

Operation LowerValues UpperValues

Interface IUMLNamedElement Operation ClientDependencies

 OwnedHyperlinks

 SupplierDependencies

Interface IUMLNamespace Operation ElementImports

 ImportedMembers Members

 OwnedMembers

 OwnedRules

 PackageImports

 PackageMerges

Interface IUMLNode Operation NestedNodes

Interface IUMLObjectNode Operation ExceptionHandlers InStates

Interface IUMLOpaqueAction Operation InputValues OutputValues

Interface IUMLPackage Operation NestedPackages

 OwnedStereotypes

 OwnedTypes

 PackagedElements

 ProfileApplications

Interface IUMLProperty Operation Qualifiers

Interface IUMLProtocolTransition

Operation Referred

Interface IUMLRegion Operation SubVertices Transitions

Interface IUMLRelationship Operation RelatedElements

Interface IUMLSignal Operation OwnedAttributes

Interface IUMLSlot Operation Values

Interface IUMLState Operation ConnectionPoints

 Connections Regions

Interface IUMLStateMachine Operation ConnectionPoints Regions

 SubmachineStates
Interface

IUMLStructuredActivityNode

Operation Edges Nodes

Interface

IUMLStructuredClassifier

Operation OwnedAttributes

 OwnedConnectors
Interface

IUMLTemplateableElement

Operation OwnedTemplateBindings

Interface IUMLTemplateBinding Operation ParameterSubstitutions
Interface

IUMLTemplateSignature

Operation OwnedTemplateParameters

Interface IUMLTimeExpression Operation Observations

Interface IUMLTransition Operation Triggers

Interface IUMLType Operation TypedElements

Interface IUMLUseCase Operation Extends ExtensionPoints

 Includes Subjects

Interface IUMLVertex Operation Incomings Outgoings

Operation IUMLDataList::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IUMLDataList::ContainsUMLData

parameter name direction type type modifier multiplicity default
ipUMLData in IUMLData

1159

1160 1160

1162 1163

1172 1173

1177

1178 1178

1178 1179

1180

1180

1181 1181

1181 1182

1182

1182

1183

1183

1183 1184

1185 1186 1186

1189 1189 1190

1194 1196

1196

1196

1196

1197

1207 1209

1211 1212

1217 1218 1218

1218 1219

1220 1221

1222 1223

1223 1224

1224 1225

1227 1228 1228

1228

1233

1233 1234

1234

1235

1235

1236

1236

1237 1238

1240

1241

1243 1244

1246 1248

1249 1249

1251 1252 1252

1252 1253

1259 1259 1259

967

974 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return bool

Operation IUMLDataList::Count

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataList::HasChanged

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataList::Item

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLData

Operation IUMLDataList::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.3 UModelAPI - IUMLDataAll

Interface IUMLDataAll

diagram The diagram is not included because of page size constraints; however, it is available in the
HTML version of the manual (https://www.altova.com/manual/en/umodelenterprise/2024.2/).

hierarchy

Operation IUMLDataAll::Abstraction

parameter name direction type type modifier multiplicity default
return return IUMLComponent

Operation IUMLDataAll::ActionContext

parameter name direction type type modifier multiplicity default
return return IUMLClassifier

Operation IUMLDataAll::ActionInputPin

967

1090

1080

http://www.altova.com/umodel
http://www.altova.com/umodel
https://www.altova.com/manual/en/umodelenterprise/2024.2/

© 2018-2024 Altova GmbH

UModel API Reference 975UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLActionInput

Pin

Operation IUMLDataAll::ActionTriggers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ActionValue

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::ActiveLayer

parameter name direction type type modifier multiplicity default
return return IUMLGuiDiagram

Layer

Operation IUMLDataAll::Activity

parameter name direction type type modifier multiplicity default
return return IUMLActivity

Operation IUMLDataAll::ActivityEdges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ActivityGroups

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ActivityNodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ActivityPartitions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Actual

parameter name direction type type modifier multiplicity default
return return IUMLParameterab

leElement

Operation IUMLDataAll::ActualGates

parameter name direction type type modifier multiplicity default
return return IUMLDataList

1048

969

1255

1275

1049

969

969

969

969

1201

969

976 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDataAll::Addition

parameter name direction type type modifier multiplicity default
return return IUMLUseCase

Operation IUMLDataAll::AddOwnedGuiNodeLink

parameter name direction type type modifier multiplicity default
ipForUMLData in IUMLGuiNodeLin

k

return return void

Operation IUMLDataAll::AddUMLElement

parameter name direction type type modifier multiplicity default
strKind in string
nLeft in int
nTop in int
return return IUMLGuiNodeLin

k

Operation IUMLDataAll::AddUMLGuiContainmentLink

parameter name direction type type modifier multiplicity default
ipFromLink in IUMLGuiLink

ipToLink in IUMLGuiLink

return return IUMLGuiContain

mentLink

Operation IUMLDataAll::AddUMLGuiNodeLink

parameter name direction type type modifier multiplicity default
ipForUMLData in IUMLData

nLeft in int
nTop in int
return return IUMLGuiNodeLin

k

Operation IUMLDataAll::AddUMLGuiNote

parameter name direction type type modifier multiplicity default
nLeft in int
nTop in int
return return IUMLGuiNote

Operation IUMLDataAll::AddUMLGuiNoteLink

parameter name direction type type modifier multiplicity default
ipFromNote in IUMLGuiNote

ipToLink in IUMLGuiNodeLin

k

return return IUMLGuiNoteLink

Operation IUMLDataAll::AddUMLGuiNoteLinkToLine

parameter name direction type type modifier multiplicity default

1251

1286

1286

1284

1284

1270

967

1286

1288

1288

1286

1289

© 2018-2024 Altova GmbH

UModel API Reference 977UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

ipFromNote in IUMLGuiNote

ipToLink in IUMLGuiLineLink

nDistanceFromLin
eBegin

in int

return return IUMLGuiNoteLink

Operation IUMLDataAll::AddUMLLineElement

parameter name direction type type modifier multiplicity default
strKind in string
ipFromNode in IUMLGuiNodeLin

k

ipToNode in IUMLGuiNodeLin

k

return return IUMLGuiLineLink

Operation IUMLDataAll::Aggregation

parameter name direction type type modifier multiplicity default
return return ENUMUMLAggre

gationKind

Operation IUMLDataAll::Alias

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::AllAppliableStereotypes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::AllowSubstitutable

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::AllWaypoints

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::AnnotatedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IUMLDataAll::AppliedElement

1288

1282

1289

1286

1286

1282

1323

969

969

969

978 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLElement

Operation IUMLDataAll::AppliedProfile

parameter name direction type type modifier multiplicity default
return return IUMLProfile

Operation IUMLDataAll::AppliedStereotypes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ApplyingPackage

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IUMLDataAll::ApplyPredefinedStereotype

parameter name direction type type modifier multiplicity default
nStereotype in ENUMUMLPredef

inedElement

return return IUMLStereotypeA

pplication

Operation IUMLDataAll::ApplyStereotype

parameter name direction type type modifier multiplicity default
ipStereotype in IUMLStereotype

return return IUMLStereotypeA

pplication

Operation IUMLDataAll::Arguments

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Association

parameter name direction type type modifier multiplicity default
return return IUMLAssociation

Operation IUMLDataAll::AssociationEnd

parameter name direction type type modifier multiplicity default
return return IUMLProperty

Operation IUMLDataAll::AttachedNodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::AttachedTo

1112

1205

969

1194

1330

1230

1229

1230

969

1063

1207

969

© 2018-2024 Altova GmbH

UModel API Reference 979UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLGuiLink

Operation IUMLDataAll::Attributes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::BaseClass

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::BeginOffset

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::Behavior

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

Operation IUMLDataAll::BehaviorExecution

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

Operation IUMLDataAll::BehaviorSpecification

parameter name direction type type modifier multiplicity default
return return IUMLBehavioralF

eature

Operation IUMLDataAll::Body

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::BooleanValue

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::Bottom

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::BoundElement

parameter name direction type type modifier multiplicity default
return return IUMLTemplateabl

eElement

1284

969

1065

1065

1067

1236

980 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDataAll::CallOperation

parameter name direction type type modifier multiplicity default
return return IUMLOperation

Operation IUMLDataAll::CallTarget

parameter name direction type type modifier multiplicity default
return return IUMLInputPin

Operation IUMLDataAll::ChangeExpression

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::Class

parameter name direction type type modifier multiplicity default
return return IUMLClass

Operation IUMLDataAll::Classifier

parameter name direction type type modifier multiplicity default
return return IUMLClassifier

Operation IUMLDataAll::ClientDependencies

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Clients

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::CodeFileNameCount

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::CodeLang

parameter name direction type type modifier multiplicity default
return return ENUMCodeLang

Operation IUMLDataAll::CodeLangVersion

parameter name direction type type modifier multiplicity default
return return ENUMCodeLangV

ersion

Operation IUMLDataAll::CodeOperation

1192

1144

1255

1077

1080

969

969

960

961

© 2018-2024 Altova GmbH

UModel API Reference 981UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLOperation

Operation IUMLDataAll::CodeProjectFileOrDirectory

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::CollaborationRoles

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::CollaborationType

parameter name direction type type modifier multiplicity default
return return IUMLCollaboratio

n

Operation IUMLDataAll::CollaborationUses

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Comment

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::Concurrency

parameter name direction type type modifier multiplicity default
return return ENUMUMLCallCo

ncurrencyKind

Operation IUMLDataAll::ConnectionPoints

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Connections

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ConnectorKind

parameter name direction type type modifier multiplicity default
return return ENUMUMLConne

ctorKind

Operation IUMLDataAll::ConnectorType

parameter name direction type type modifier multiplicity default

1192

969

1084

969

1324

969

969

1324

982 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return IUMLAssociation

Operation IUMLDataAll::ConstrainedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ConstrainingClassifiers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ConstrainingPointX

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::ConstrainingPointY

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::ContainedEdges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ContainedNodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Container

parameter name direction type type modifier multiplicity default
return return IUMLRegion

Operation IUMLDataAll::Context

parameter name direction type type modifier multiplicity default
return return IUMLNamespace

Operation IUMLDataAll::Contract

parameter name direction type type modifier multiplicity default
return return IUMLInterface

Operation IUMLDataAll::ContrainingAreaIndex

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::Conveyed

1063

969

969

969

969

1217

1181

1155

© 2018-2024 Altova GmbH

UModel API Reference 983UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Covered

parameter name direction type type modifier multiplicity default
return return IUMLLifeline

Operation IUMLDataAll::Datatype

parameter name direction type type modifier multiplicity default
return return IUMLDataType

Operation IUMLDataAll::DecisionInput

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

Operation IUMLDataAll::Default

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::DefaultLinkName

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::DefaultParamValue

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::DefaultValue

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::DefiningFeature

parameter name direction type type modifier multiplicity default
return return IUMLStructuralFe

ature

Operation IUMLDataAll::DeployedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Deployments

parameter name direction type type modifier multiplicity default
return return IUMLDataList

969

1165

1101

1065

1255

1231

969

969

984 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDataAll::Direction

parameter name direction type type modifier multiplicity default
return return ENUMUMLParam

eterDirectionKind

Operation IUMLDataAll::DistanceFromLineBegin

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::DoActivity

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

Operation IUMLDataAll::Edges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Effect

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

Operation IUMLDataAll::Element

parameter name direction type type modifier multiplicity default
return return IUMLElement

Operation IUMLDataAll::ElementImports

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::EndOffset

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::EndTypes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Entries

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Entry

parameter name direction type type modifier multiplicity default

1330

1065

969

1065

1112

969

969

969

© 2018-2024 Altova GmbH

UModel API Reference 985UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLBehavior

Operation IUMLDataAll::Enumeration

parameter name direction type type modifier multiplicity default
return return IUMLEnumeratio

n

Operation IUMLDataAll::EraseAnnotatedElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseCodeFileNameAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseCollaborationRoleAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseConstrainedElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseConstrainingClassifierAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseConveyedAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseCoveredByAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseEdgeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseEntryAt

1065

1117

986 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseExceptionTypeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseExitAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseExtensionLocationAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseFromDiagram

parameter name direction type type modifier multiplicity default
ipVal in IUMLGuiElement

return return void

Operation IUMLDataAll::EraseFromModel

parameter name direction type type modifier multiplicity default
return return void

Operation IUMLDataAll::EraseInformationFlowRealizationAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseInformationSourceAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseInformationTargetAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseInputElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

1276

© 2018-2024 Altova GmbH

UModel API Reference 987UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::EraseInStateAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseInterruptingEdgeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseNodeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseObservationAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseOutputElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseRaisedExceptionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseRealizingConnectorAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseSubjectAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::EraseWaypointAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDataAll::Event

parameter name direction type type modifier multiplicity default
return return IUMLEvent

1120

988 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDataAll::EventActionResults

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::EventFilter

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::ExceptionHandlers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ExceptionInput

parameter name direction type type modifier multiplicity default
return return IUMLObjectNode

Operation IUMLDataAll::ExceptionTypes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ExecutionSpecificationFinish

parameter name direction type type modifier multiplicity default
return return IUMLExecutionSp

ecification

Operation IUMLDataAll::ExecutionSpecificationStart

parameter name direction type type modifier multiplicity default
return return IUMLExecutionSp

ecification

Operation IUMLDataAll::Exit

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

Operation IUMLDataAll::Exits

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Expr

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::Expression

parameter name direction type type modifier multiplicity default

969

969

1185

969

1124

1124

1065

969

1255

© 2018-2024 Altova GmbH

UModel API Reference 989UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLExpression

Operation IUMLDataAll::ExtendedCase

parameter name direction type type modifier multiplicity default
return return IUMLUseCase

Operation IUMLDataAll::Extends

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Extension

parameter name direction type type modifier multiplicity default
return return IUMLUseCase

Operation IUMLDataAll::ExtensionLocations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ExtensionPoints

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Features

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::FeaturingClassifiers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::FileName

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::FindOwnedMemberWithQualifiedName

parameter name direction type type modifier multiplicity default
strName in string
return return IUMLNamedElem

ent

Operation IUMLDataAll::FindPredefinedOwnedElement

parameter name direction type type modifier multiplicity default
nElement in ENUMUMLPredef

inedElement

bRecursive in bool
return return IUMLData

1127

1251

969

1251

969

969

969

969

1178

1330

967

990 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDataAll::Finish

parameter name direction type type modifier multiplicity default
return return IUMLOccurrenceS

pecification

Operation IUMLDataAll::Formal

parameter name direction type type modifier multiplicity default
return return IUMLTemplatePar

ameter

Operation IUMLDataAll::FormalGates

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Fragments

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::General

parameter name direction type type modifier multiplicity default
return return IUMLClassifier

Operation IUMLDataAll::Generalizations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Generals

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::GeneralValueLifelineNameCompartmentEndPos

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::GetCodeFileName

parameter name direction type type modifier multiplicity default
nIdx in int
return return string

Operation IUMLDataAll::GetCodeFilePath

parameter name direction type type modifier multiplicity default
nIdx in int
return return string

Operation IUMLDataAll::GetHSeparatorPosition

1187

1238

969

969

1080

969

969

© 2018-2024 Altova GmbH

UModel API Reference 991UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nIdx in int
return return int

Operation IUMLDataAll::GetMultiplicity

parameter name direction type type modifier multiplicity default
bWithBrackets in bool
return return string

Operation IUMLDataAll::GetOperation

parameter name direction type type modifier multiplicity default
return return IUMLOperation

Operation IUMLDataAll::GetOwnedElementsOfKind

parameter name direction type type modifier multiplicity default
strKind in string
bRecursive in bool
return return IUMLDataList

Operation IUMLDataAll::GetSeparatorPosition

parameter name direction type type modifier multiplicity default
nIdx in int
return return int

Operation IUMLDataAll::GetSourceLifeline

parameter name direction type type modifier multiplicity default
return return IUMLLifeline

Operation IUMLDataAll::GetStateIndex

parameter name direction type type modifier multiplicity default
nTimeTickIndex in int
return return int

Operation IUMLDataAll::GetStereotypeApplicationForPredefinedStereotype

parameter name direction type type modifier multiplicity default
nElement in ENUMUMLPredef

inedElement

return return IUMLStereotypeA

pplication

Operation IUMLDataAll::GetStereotypeApplicationForStereotype

parameter name direction type type modifier multiplicity default
ipStereotype in IUMLStereotype

return return IUMLStereotypeA

pplication

Operation IUMLDataAll::GetTargetLifeline

1192

969

1165

1330

1230

1229

1230

992 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLLifeline

Operation IUMLDataAll::GetTextLabelText

parameter name direction type type modifier multiplicity default
ipTextLabel in IUMLGuiTextLabe

l

return return string

Operation IUMLDataAll::GetTimeTickLength

parameter name direction type type modifier multiplicity default
nIdx in int
return return int

Operation IUMLDataAll::GetVisualStatePosition

parameter name direction type type modifier multiplicity default
nStateIndex in int
return return int

Operation IUMLDataAll::GetVSeparatorPosition

parameter name direction type type modifier multiplicity default
nIdx in int
return return int

Operation IUMLDataAll::Guard

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::GuiLinks

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::GuiOwner

parameter name direction type type modifier multiplicity default
return return IUMLGuiElement

Operation IUMLDataAll::HandlerBody

parameter name direction type type modifier multiplicity default
return return IUMLExecutableN

ode

Operation IUMLDataAll::Handlers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::HSeparatorCount

1165

1311

969

1276

1122

969

© 2018-2024 Altova GmbH

UModel API Reference 993UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::IconFileName

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::ImplementingClassifier

parameter name direction type type modifier multiplicity default
return return IUMLBehavioredC

lassifier

Operation IUMLDataAll::ImportedElement

parameter name direction type type modifier multiplicity default
return return IUMLPackageable

Element

Operation IUMLDataAll::ImportedMembers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ImportedPackage

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IUMLDataAll::ImportingNamespace

parameter name direction type type modifier multiplicity default
return return IUMLNamespace

Operation IUMLDataAll::InActivity

parameter name direction type type modifier multiplicity default
return return IUMLActivity

Operation IUMLDataAll::Includes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::IncludingCase

parameter name direction type type modifier multiplicity default
return return IUMLUseCase

Operation IUMLDataAll::IncomingEdges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

1069

1197

969

1194

1181

1049

969

1251

969

994 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDataAll::Incomings

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::InformationFlowRealizations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::InformationSources

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::InformationTargets

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::InheritedMembers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::InputElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::InputPins

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::InputValues

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::InsertActionTriggerAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLTrigger

Operation IUMLDataAll::InsertActivityEdgeAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
ipFrom in IUMLActivityNod

e

ipTo in IUMLActivityNod

e

return return IUMLActivityEdge

969

969

969

969

969

969

969

969

1248

1055

1055

1051

© 2018-2024 Altova GmbH

UModel API Reference 995UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::InsertActivityGroupAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLActivityGrou

p

Operation IUMLDataAll::InsertActivityNodeAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLActivityNod

e

Operation IUMLDataAll::InsertActualGateAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLGate

Operation IUMLDataAll::InsertAnnotatedElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLElement

return return void

Operation IUMLDataAll::InsertArgumentAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLInputPin

Operation IUMLDataAll::InsertArgumentOfKindAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLInputPin

Operation IUMLDataAll::InsertCodeFileNameAt

parameter name direction type type modifier multiplicity default
nIdx in int
strNewVal in string
return return void

Operation IUMLDataAll::InsertCollaborationRoleAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLConnectable

Element

return return void

1054

1055

1135

1112

1144

1144

1092

996 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDataAll::InsertCollaborationUseAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLCollaboratio

nUse

Operation IUMLDataAll::InsertConnectionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLConnection

PointReference

Operation IUMLDataAll::InsertConnectionPointAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLPseudostate

Operation IUMLDataAll::InsertConstrainedElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLElement

return return void

Operation IUMLDataAll::InsertConstrainingClassifierAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLClassifier

return return void

Operation IUMLDataAll::InsertConveyedAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLClassifier

return return void

Operation IUMLDataAll::InsertCoveredByAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLInteractionFr

agment

return return void

Operation IUMLDataAll::InsertDeploymentAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipDeployedArtifac
t

in IUMLDeployedArt

ifact

1085

1093

1213

1112

1080

1080

1152

1104

© 2018-2024 Altova GmbH

UModel API Reference 997UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLDeployment

Operation IUMLDataAll::InsertEdgeAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipEdge in IUMLActivityEdge

return return void

Operation IUMLDataAll::InsertElementImportAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipImportedEleme
nt

in IUMLPackageable

Element

return return IUMLElementImp

ort

Operation IUMLDataAll::InsertEntryAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLPseudostate

return return void

Operation IUMLDataAll::InsertEventActionResultAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLOutputPin

Operation IUMLDataAll::InsertExceptionTypeAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLClassifier

return return void

Operation IUMLDataAll::InsertExitAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLPseudostate

return return void

Operation IUMLDataAll::InsertExtendAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipExtendedCase in IUMLUseCase

return return IUMLExtend

1105

1051

1197

1115

1213

1193

1080

1213

1251

1128

998 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDataAll::InsertExtensionLocationAt

parameter name direction type type modifier multiplicity default
nIdx in int
pExtensionLocati
on

in IUMLExtensionPo

int

return return void

Operation IUMLDataAll::InsertExtensionPointAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLExtensionPo

int

Operation IUMLDataAll::InsertFormalGateAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLGate

Operation IUMLDataAll::InsertFragmentAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLInteractionFr

agment

Operation IUMLDataAll::InsertGeneralizationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipGeneral in IUMLClassifier

return return IUMLGeneralizati

on

Operation IUMLDataAll::InsertHandlerAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLExceptionHa

ndler

Operation IUMLDataAll::InsertIncludeAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipIncludingCase in IUMLUseCase

return return IUMLInclude

Operation IUMLDataAll::InsertInformationFlowRealizationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLRelationship

return return void

1130

1130

1135

1152

1080

1135

1121

1251

1140

1218

© 2018-2024 Altova GmbH

UModel API Reference 999UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::InsertInformationSourceAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLNamedElem

ent

return return void

Operation IUMLDataAll::InsertInformationTargetAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLNamedElem

ent

return return void

Operation IUMLDataAll::InsertInputElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipNode in IUMLExpansionN

ode

return return void

Operation IUMLDataAll::InsertInputValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLInputPin

Operation IUMLDataAll::InsertInStateAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLState

return return void

Operation IUMLDataAll::InsertInterfaceRealizationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipContract in IUMLInterface

return return IUMLInterfaceRea

lization

Operation IUMLDataAll::InsertInterruptingEdgeAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipEdge in IUMLActivityEdge

return return void

Operation IUMLDataAll::InsertLayerAt

parameter name direction type type modifier multiplicity default

1178

1178

1125

1144

1223

1155

1158

1051

1000 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

nIdx in int
return return IUMLGuiDiagram

Layer

Operation IUMLDataAll::InsertLifelineAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLLifeline

Operation IUMLDataAll::InsertLocalPostConditionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLConstraint

Operation IUMLDataAll::InsertLocalPreConditionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLConstraint

Operation IUMLDataAll::InsertLowerUpperValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
strLower in string
strUpper in string
return return void

Operation IUMLDataAll::InsertManifestationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipUtilizedElement in IUMLPackageable

Element

return return IUMLManifestatio

n

Operation IUMLDataAll::InsertMessageAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLMessage

Operation IUMLDataAll::InsertNestedArtifactAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLArtifact

Operation IUMLDataAll::InsertNestedClassifierAt

parameter name direction type type modifier multiplicity default
nIdx in int

1275

1165

1097

1097

1197

1170

1172

1061

© 2018-2024 Altova GmbH

UModel API Reference 1001UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

strKind in string
return return IUMLClassifier

Operation IUMLDataAll::InsertNestedNodeAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLNode

Operation IUMLDataAll::InsertNodeAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLActivityNod

e

return return void

Operation IUMLDataAll::InsertObservationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLObservation

return return void

Operation IUMLDataAll::InsertOperandAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLInteractionO

perand

Operation IUMLDataAll::InsertOutputElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipNode in IUMLExpansionN

ode

return return void

Operation IUMLDataAll::InsertOutputValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLOutputPin

Operation IUMLDataAll::InsertOwnedArgumentAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::InsertOwnedAttributeAt

1080

1183

1055

1187

1152

1125

1193

1255

1002 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLProperty

Operation IUMLDataAll::InsertOwnedBehaviorAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLBehavior

Operation IUMLDataAll::InsertOwnedCommentAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLComment

Operation IUMLDataAll::InsertOwnedCommentTextHyperlinkAt

parameter name direction type type modifier multiplicity default
nFromTextPos in int
nToTextPos in int
strAddress in string
return return IUMLCommentTe

xtHyperlink

Operation IUMLDataAll::InsertOwnedConnectorAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipFrom in IUMLConnectable

Element

ipTo in IUMLConnectable

Element

return return IUMLConnector

Operation IUMLDataAll::InsertOwnedDiagramAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipUMLParent in IUMLData

strKind in string
return return IUMLGuiDiagram

Operation IUMLDataAll::InsertOwnedGuiTextHyperlinkAt

parameter name direction type type modifier multiplicity default
nFromTextPos in int
nToTextPos in int
strAddress in string
return return IUMLGuiTextHyp

erlink

Operation IUMLDataAll::InsertOwnedHyperlink2FileAt

1207

1065

1087

1088

1092

1092

1095

967

1271

1310

© 2018-2024 Altova GmbH

UModel API Reference 1003UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nIdx in int
strFilePathOrUrl in string
return return IUMLHyperlink2Fi

le

Operation IUMLDataAll::InsertOwnedHyperlink2GuiElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipLinkedGuiEleme
nt

in IUMLGuiVisibleEl

ement

ipLinkedGuiEleme
ntCell

in IUMLNamedElem

ent

return return IUMLHyperlink2G

uiElement

Operation IUMLDataAll::InsertOwnedHyperlink2ModelAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipLinkedData in IUMLData

return return IUMLHyperlink2

Model

Operation IUMLDataAll::InsertOwnedLiteralAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLEnumeratio

nLiteral

Operation IUMLDataAll::InsertOwnedOperationAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLOperation

Operation IUMLDataAll::InsertOwnedParameterAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLParameter

Operation IUMLDataAll::InsertOwnedPortAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLPort

Operation IUMLDataAll::InsertOwnedReceptionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLReception

1137

1319

1178

1138

967

1139

1119

1192

1200

1203

1214

1004 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDataAll::InsertOwnedRuleAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLConstraint

Operation IUMLDataAll::InsertOwnedTemplateBindingAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipSignature in IUMLTemplateSig

nature

return return IUMLTemplateBin

ding

Operation IUMLDataAll::InsertOwnedTemplateParameterAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLClassifierTe

mplateParameter

Operation IUMLDataAll::InsertOwnedUseCaseAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLUseCase

Operation IUMLDataAll::InsertPackagedElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLPackageable

Element

Operation IUMLDataAll::InsertPackagedElementRelationshipAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
ipFrom in IUMLElement

ipTo in IUMLElement

return return IUMLPackageable

Element

Operation IUMLDataAll::InsertPackageImportAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipImportedPacka
ge

in IUMLPackage

return return IUMLPackageImp

ort

Operation IUMLDataAll::InsertPackageMergeAt

1097

1240

1237

1083

1251

1197

1112

1112

1197

1194

1198

© 2018-2024 Altova GmbH

UModel API Reference 1005UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nIdx in int
ipMergedPackage

in IUMLPackage

return return IUMLPackageMer

ge

Operation IUMLDataAll::InsertParameterSubstitutionAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipFormalParamet
er

in IUMLTemplatePar

ameter

ipActualParamete
r

in IUMLParameterab

leElement

return return IUMLTemplatePar
ameterSubstitutio

n

Operation IUMLDataAll::InsertPostconditionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLConstraint

Operation IUMLDataAll::InsertPreconditionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLConstraint

Operation IUMLDataAll::InsertProfileApplicationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipAppliedProfile in IUMLProfile

return return IUMLProfileAppli

cation

Operation IUMLDataAll::InsertQualifierAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLProperty

Operation IUMLDataAll::InsertRaisedExceptionAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLType

return return void

Operation IUMLDataAll::InsertRealizationAt

parameter name direction type type modifier multiplicity default
nIdx in int

1194

1199

1238

1201

1239

1097

1097

1205

1206

1207

1249

1006 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

ipRealizingClassifi
er

in IUMLClassifier

return return IUMLComponent

Realization

Operation IUMLDataAll::InsertRealizingConnectorAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLConnector

return return void

Operation IUMLDataAll::InsertRegionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLRegion

Operation IUMLDataAll::InsertResultAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLOutputPin

Operation IUMLDataAll::InsertSlotAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipDefiningFeature

in IUMLStructuralFe

ature

return return IUMLSlot

Operation IUMLDataAll::InsertSlotInstanceValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipInstance in IUMLInstanceSpe

cification

return return IUMLInstanceValu

e

Operation IUMLDataAll::InsertSubjectAt

parameter name direction type type modifier multiplicity default
nIdx in int
pSubject in IUMLClassifier

return return void

Operation IUMLDataAll::InsertSubPartitionAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLActivityParti

tion

1080

1091

1095

1217

1193

1231

1222

1146

1148

1080

1057

© 2018-2024 Altova GmbH

UModel API Reference 1007UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::InsertSubVertexAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLVertex

Operation IUMLDataAll::InsertTransitionAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipSource in IUMLVertex

ipTarget in IUMLVertex

return return IUMLTransition

Operation IUMLDataAll::InsertTriggerAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLTrigger

Operation IUMLDataAll::InsertValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::InsertWaypointAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLGuiWaypoin

t

Operation IUMLDataAll::Instance

parameter name direction type type modifier multiplicity default
return return IUMLInstanceSpe

cification

Operation IUMLDataAll::InStates

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::IntegerValue

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::InteractionOperator

parameter name direction type type modifier multiplicity default
return return ENUMUMLInterac

tionOperatorKind

1259

1259

1259

1246

1248

1255

1320

1146

969

1008 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDataAll::Interface

parameter name direction type type modifier multiplicity default
return return IUMLInterface

Operation IUMLDataAll::InterfaceRealizations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::InterruptibleActivityRegions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::InterruptingEdges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Invariant

parameter name direction type type modifier multiplicity default
return return IUMLConstraint

Operation IUMLDataAll::IsAbstract

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsActive

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsActivityReadOnly

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsBehavior

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsCodeLangNamespace

parameter name direction type type modifier multiplicity default
nCodeLang in ENUMCodeLang

return return bool

Operation IUMLDataAll::IsCodeLangNamespaceRoot

1328

1155

969

969

969

1097

960

© 2018-2024 Altova GmbH

UModel API Reference 1009UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nCodeLang in ENUMCodeLang

return return bool

Operation IUMLDataAll::IsCodeProjectFile

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsCombineDuplicate

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsComposite

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsComputable

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsConjugated

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsControl

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsControlType

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsDerived

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsDerivedUnion

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsDimension

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsEditable

960

1010 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsElementVisible

parameter name direction type type modifier multiplicity default
ipElement in IUMLElement

return return bool

Operation IUMLDataAll::IsExternal

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsFinalSpecialization

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsFirstEvent

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsHorizontal

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsIndirectlyInstantiated

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsKindOf

parameter name direction type type modifier multiplicity default
strKind in string
return return bool

Operation IUMLDataAll::IsLeaf

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsLocallyReentrant

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsLocked

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsMultiCast

1112

© 2018-2024 Altova GmbH

UModel API Reference 1011UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsMultiReceive

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsNavigable

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsNull

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsOrdered

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsOrthogonal

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsOwnedEnd

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsPositioned

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsPredefinedStereotypeApplied

parameter name direction type type modifier multiplicity default
nStereotype in ENUMUMLPredef

inedElement

return return bool

Operation IUMLDataAll::IsQuery

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsReadOnly

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsReentrant

1330

1012 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsRelative

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsSameUMLData

parameter name direction type type modifier multiplicity default
ipUMLDataToCo
mpare

in IUMLData

return return bool

Operation IUMLDataAll::IsService

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsShared

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsShowAsGeneralValueLifeline

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsSimple

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsStatic

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsStereotypeApplied

parameter name direction type type modifier multiplicity default
ipStereotype in IUMLStereotype

return return bool

Operation IUMLDataAll::IsSubmachineState

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsSubstitutable

parameter name direction type type modifier multiplicity default
return return bool

967

1229

© 2018-2024 Altova GmbH

UModel API Reference 1013UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::IsSynchronous

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsTextLabelVisible

parameter name direction type type modifier multiplicity default
ipTextLabel in IUMLGuiTextLabe

l

return return bool

Operation IUMLDataAll::IsUnique

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsUnmarshall

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsUseForCodeEngineering

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsVarArgList

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::IsVisible

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::JoinSpec

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::KindName

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::Label

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::Language

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::Layer

1311

1014 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLGuiDiagram

Layer

Operation IUMLDataAll::Layers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Left

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::Lifelines

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::LineBegin

parameter name direction type type modifier multiplicity default
return return IUMLGuiElement

Operation IUMLDataAll::LineConnectionWaypoints

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::LineEnd

parameter name direction type type modifier multiplicity default
return return IUMLGuiElement

Operation IUMLDataAll::LineLinks

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::LinkAddress

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::LinkedGuiElement

parameter name direction type type modifier multiplicity default
return return IUMLGuiVisibleEl

ement

Operation IUMLDataAll::LinkedGuiElementCell

parameter name direction type type modifier multiplicity default
return return IUMLNamedElem

ent

1275

969

969

1276

969

1276

969

1319

1178

© 2018-2024 Altova GmbH

UModel API Reference 1015UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::LinkedModelElement

parameter name direction type type modifier multiplicity default
return return IUMLData

Operation IUMLDataAll::LinkedOwner

parameter name direction type type modifier multiplicity default
return return IUMLElement

Operation IUMLDataAll::LocalPostConditions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::LocalPreConditions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Location

parameter name direction type type modifier multiplicity default
return return IUMLDeployment

Target

Operation IUMLDataAll::LowerValues

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Manifestations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Mapping

parameter name direction type type modifier multiplicity default
return return IUMLOpaqueExpr

ession

Operation IUMLDataAll::Max

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::MaxInt

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::MemberEnds

parameter name direction type type modifier multiplicity default

967

1112

969

969

1106

969

969

1191

1255

1255

1016 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return IUMLDataList

Operation IUMLDataAll::Members

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::MergedPackage

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IUMLDataAll::MergeLayersAt

parameter name direction type type modifier multiplicity default
nFromIdx in int
nToIdx in int
return return void

Operation IUMLDataAll::Message

parameter name direction type type modifier multiplicity default
return return IUMLMessage

Operation IUMLDataAll::MessageKind

parameter name direction type type modifier multiplicity default
return return ENUMUMLMessa

geKind

Operation IUMLDataAll::Messages

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::MessageSort

parameter name direction type type modifier multiplicity default
return return ENUMUMLMessa

geSort

Operation IUMLDataAll::MetaClass

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::Methods

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::MiddleWaypoint

parameter name direction type type modifier multiplicity default
return return IUMLGuiMiddleW

aypoint

969

969

1194

1172

1328

969

1329

969

1285

© 2018-2024 Altova GmbH

UModel API Reference 1017UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::Min

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::MinInt

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::Mode

parameter name direction type type modifier multiplicity default
return return ENUMUMLExpan

sionKind

Operation IUMLDataAll::MoveTo

parameter name direction type type modifier multiplicity default
nLeft in int
nTop in int
return return void

Operation IUMLDataAll::MustIsolate

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::Name

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::NameCompartmentEndPos

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::Namespace

parameter name direction type type modifier multiplicity default
return return IUMLNamespace

Operation IUMLDataAll::NavigableOwnedEnds

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::NestedArtifacts

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::NestedClassifiers

1255

1255

1326

1181

969

969

1018 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::NestedNodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::NestedPackages

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::NestingInterface

parameter name direction type type modifier multiplicity default
return return IUMLInterface

Operation IUMLDataAll::NestingPackage

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IUMLDataAll::Nodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::NoteText

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::NoteTextEndPos

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::NoteTextStartPos

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::Observations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OccurringEvent

parameter name direction type type modifier multiplicity default
return return IUMLEvent

Operation IUMLDataAll::OpenLink

parameter name direction type type modifier multiplicity default

969

969

969

1155

1194

969

969

1120

© 2018-2024 Altova GmbH

UModel API Reference 1019UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return void

Operation IUMLDataAll::OperandGuard

parameter name direction type type modifier multiplicity default
return return IUMLInteractionC

onstraint

Operation IUMLDataAll::Operands

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Operation

parameter name direction type type modifier multiplicity default
return return IUMLOperation

Operation IUMLDataAll::Opposite

parameter name direction type type modifier multiplicity default
return return IUMLProperty

Operation IUMLDataAll::Ordering

parameter name direction type type modifier multiplicity default
return return ENUMUMLObject

NodeOrderingKin

d

Operation IUMLDataAll::OutgoingEdges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Outgoings

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OutputElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OutputPins

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OutputValues

parameter name direction type type modifier multiplicity default
return return IUMLDataList

1151

969

1192

1207

1329

969

969

969

969

969

1020 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDataAll::OwnedActual

parameter name direction type type modifier multiplicity default
return return IUMLParameterab

leElement

Operation IUMLDataAll::OwnedArguments

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedAttributes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedBehaviors

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedComments

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedConnectors

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedDiagrams

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedDocComment

parameter name direction type type modifier multiplicity default
return return IUMLComment

Operation IUMLDataAll::OwnedDocCommentBody

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::OwnedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedEnds

parameter name direction type type modifier multiplicity default
return return IUMLDataList

1201

969

969

969

969

969

969

1087

969

969

© 2018-2024 Altova GmbH

UModel API Reference 1021UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::OwnedGuiElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedGuiNodeLinks

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedHyperlinks

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedLiterals

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedMembers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedOperations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedParameteredElement

parameter name direction type type modifier multiplicity default
return return IUMLParameterab

leElement

Operation IUMLDataAll::OwnedParameters

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedPorts

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedReceptions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedRules

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedStereotypes

969

969

969

969

969

969

1201

969

969

969

969

1022 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedTemplateBindings

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedTemplateParameters

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedTemplateSignature

parameter name direction type type modifier multiplicity default
return return IUMLTemplateSig

nature

Operation IUMLDataAll::OwnedTypes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::OwnedUseCases

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Owner

parameter name direction type type modifier multiplicity default
return return IUMLElement

Operation IUMLDataAll::OwningAssociation

parameter name direction type type modifier multiplicity default
return return IUMLAssociation

Operation IUMLDataAll::OwningConstraint

parameter name direction type type modifier multiplicity default
return return IUMLConstraint

Operation IUMLDataAll::OwningElement

parameter name direction type type modifier multiplicity default
return return IUMLElement

Operation IUMLDataAll::OwningGuiNodeLink

parameter name direction type type modifier multiplicity default
return return IUMLGuiNodeLin

k

969

969

969

1240

969

969

1112

1063

1097

1112

1286

© 2018-2024 Altova GmbH

UModel API Reference 1023UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::OwningInstance

parameter name direction type type modifier multiplicity default
return return IUMLInstanceSpe

cification

Operation IUMLDataAll::OwningInstanceSpec

parameter name direction type type modifier multiplicity default
return return IUMLInstanceSpe

cification

Operation IUMLDataAll::OwningLower

parameter name direction type type modifier multiplicity default
return return IUMLMultiplicityE

lement

Operation IUMLDataAll::OwningPackage

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IUMLDataAll::OwningParameter

parameter name direction type type modifier multiplicity default
return return IUMLParameter

Operation IUMLDataAll::OwningProperty

parameter name direction type type modifier multiplicity default
return return IUMLProperty

Operation IUMLDataAll::OwningSignal

parameter name direction type type modifier multiplicity default
return return IUMLSignal

Operation IUMLDataAll::OwningSlot

parameter name direction type type modifier multiplicity default
return return IUMLSlot

Operation IUMLDataAll::OwningState

parameter name direction type type modifier multiplicity default
return return IUMLState

Operation IUMLDataAll::OwningTemplateParameter

parameter name direction type type modifier multiplicity default
return return IUMLTemplatePar

ameter

Operation IUMLDataAll::OwningTransition

1146

1146

1177

1194

1200

1207

1220

1222

1223

1238

1024 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLProtocolTra

nsition

Operation IUMLDataAll::OwningUpper

parameter name direction type type modifier multiplicity default
return return IUMLMultiplicityE

lement

Operation IUMLDataAll::Package

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IUMLDataAll::PackagedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::PackageImports

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::PackageMerges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Parameter

parameter name direction type type modifier multiplicity default
return return IUMLParameter

Operation IUMLDataAll::ParameteredElement

parameter name direction type type modifier multiplicity default
return return IUMLParameterab

leElement

Operation IUMLDataAll::ParameterSignature

parameter name direction type type modifier multiplicity default
return return IUMLTemplateSig

nature

Operation IUMLDataAll::ParameterSubstitutions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

1211

1177

1194

969

969

969

1200

1201

1240

969

© 2018-2024 Altova GmbH

UModel API Reference 1025UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::PinValue

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::PostCondition

parameter name direction type type modifier multiplicity default
return return IUMLConstraint

Operation IUMLDataAll::Postconditions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::PostTypeModifier

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::PosX

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::PosY

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::PreCondition

parameter name direction type type modifier multiplicity default
return return IUMLConstraint

Operation IUMLDataAll::Preconditions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ProfileApplications

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ProtectedNode

parameter name direction type type modifier multiplicity default
return return IUMLExecutableN

ode

Operation IUMLDataAll::Protocol

parameter name direction type type modifier multiplicity default

1097

969

1097

969

969

1122

1026 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return IUMLProtocolStat

eMachine

Operation IUMLDataAll::PseudostateKind

parameter name direction type type modifier multiplicity default
return return ENUMUMLPseud

ostateKind

Operation IUMLDataAll::QualifiedName

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::Qualifiers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::RaisedExceptions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Realizations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::RealizingClassifier

parameter name direction type type modifier multiplicity default
return return IUMLClassifier

Operation IUMLDataAll::RealizingConnectors

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ReceiveEvent

parameter name direction type type modifier multiplicity default
return return IUMLMessageEnd

Operation IUMLDataAll::ReceivingPackage

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IUMLDataAll::ReferencedDiagram

parameter name direction type type modifier multiplicity default
return return IUMLGuiDiagram

1210

1331

969

969

969

1080

969

1174

1194

1271

© 2018-2024 Altova GmbH

UModel API Reference 1027UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::Referred

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::RefersTo

parameter name direction type type modifier multiplicity default
return return IUMLInteraction

Operation IUMLDataAll::RegionAsInput

parameter name direction type type modifier multiplicity default
return return IUMLExpansionR

egion

Operation IUMLDataAll::RegionAsOutput

parameter name direction type type modifier multiplicity default
return return IUMLExpansionR

egion

Operation IUMLDataAll::Regions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::RelatedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::RelativeNodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Represents

parameter name direction type type modifier multiplicity default
return return IUMLConnectable

Element

Operation IUMLDataAll::Result

parameter name direction type type modifier multiplicity default
return return IUMLOutputPin

Operation IUMLDataAll::Results

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Right

parameter name direction type type modifier multiplicity default

969

1149

1126

1126

969

969

969

1092

1193

969

1028 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return int

Operation IUMLDataAll::Role

parameter name direction type type modifier multiplicity default
return return IUMLConnectable

Element

Operation IUMLDataAll::RoleBindings

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::ScrollPosX

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::ScrollPosY

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::Selection

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

Operation IUMLDataAll::Selector

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SendEvent

parameter name direction type type modifier multiplicity default
return return IUMLMessageEnd

Operation IUMLDataAll::SendSignal

parameter name direction type type modifier multiplicity default
return return IUMLSignal

Operation IUMLDataAll::SeparatorCount

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::SetCodeFileName

parameter name direction type type modifier multiplicity default
nIdx in int
strNewVal in string
return return void

1092

969

1065

1255

1174

1220

© 2018-2024 Altova GmbH

UModel API Reference 1029UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::SetElementVisible

parameter name direction type type modifier multiplicity default
ipElement in IUMLElement

bVisible in bool
return return void

Operation IUMLDataAll::SetHSeparatorPosition

parameter name direction type type modifier multiplicity default
nIdx in int
nPosition in int
return return void

Operation IUMLDataAll::SetHyperlinkFileAddress

parameter name direction type type modifier multiplicity default
strNewVal in string
return return void

Operation IUMLDataAll::SetHyperlinkGuiElementAddress

parameter name direction type type modifier multiplicity default
ipLinkedGuiEleme
nt

in IUMLGuiVisibleEl

ement

ipLinkedGuiEleme
ntCell

in IUMLNamedElem

ent

return return void

Operation IUMLDataAll::SetHyperlinkModelElementAddress

parameter name direction type type modifier multiplicity default
ipLinkedData in IUMLData

return return void

Operation IUMLDataAll::SetMultiplicity

parameter name direction type type modifier multiplicity default
strNewVal in string
return return void

Operation IUMLDataAll::SetName

parameter name direction type type modifier multiplicity default
strStartWith in string
return return string

Operation IUMLDataAll::SetNewActionValue

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SetNewCallTarget

parameter name direction type type modifier multiplicity default
strKind in string

1112

1319

1178

967

1255

1030 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return IUMLInputPin

Operation IUMLDataAll::SetNewChangeExpression

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SetNewDefaultValue

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SetNewDefaultValueInstanceValue

parameter name direction type type modifier multiplicity default
ipInstance in IUMLInstanceSpe

cification

return return IUMLInstanceValu

e

Operation IUMLDataAll::SetNewDefaultValueLiteralString

parameter name direction type type modifier multiplicity default
strNewVal in string
return return IUMLLiteralString

Operation IUMLDataAll::SetNewDoActivity

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLBehavior

Operation IUMLDataAll::SetNewEffect

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLBehavior

Operation IUMLDataAll::SetNewEntry

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLBehavior

Operation IUMLDataAll::SetNewExit

parameter name direction type type modifier multiplicity default
strKind in string

1144

1255

1255

1146

1148

1169

1065

1065

1065

© 2018-2024 Altova GmbH

UModel API Reference 1031UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLBehavior

Operation IUMLDataAll::SetNewExpr

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SetNewInvariant

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLConstraint

Operation IUMLDataAll::SetNewMapping

parameter name direction type type modifier multiplicity default
return return IUMLOpaqueExpr

ession

Operation IUMLDataAll::SetNewMax

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SetNewMaxInt

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SetNewMin

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SetNewMinInt

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SetNewOperandGuard

parameter name direction type type modifier multiplicity default
return return IUMLInteractionC

onstraint

Operation IUMLDataAll::SetNewOwnedParameteredElement

1065

1255

1097

1191

1255

1255

1255

1255

1151

1032 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLParameterab

leElement

Operation IUMLDataAll::SetNewPostCondition

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLConstraint

Operation IUMLDataAll::SetNewPreCondition

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLConstraint

Operation IUMLDataAll::SetNewProtocol

parameter name direction type type modifier multiplicity default
return return IUMLProtocolStat

eMachine

Operation IUMLDataAll::SetNewSelector

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SetNewSignalTarget

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLInputPin

Operation IUMLDataAll::SetNewSpecification

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SetNewSpecificationInstanceValue

parameter name direction type type modifier multiplicity default
ipInstance in IUMLInstanceSpe

cification

return return IUMLInstanceValu

e

Operation IUMLDataAll::SetNewSpecificationLiteralString

parameter name direction type type modifier multiplicity default
strNewVal in string

1201

1097

1097

1210

1255

1144

1255

1146

1148

© 2018-2024 Altova GmbH

UModel API Reference 1033UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLLiteralString

Operation IUMLDataAll::SetNewStateInvariant

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLConstraint

Operation IUMLDataAll::SetNewTemplateSignature

parameter name direction type type modifier multiplicity default
return return IUMLTemplateSig

nature

Operation IUMLDataAll::SetNewTransitionGuard

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLConstraint

Operation IUMLDataAll::SetNewWhen

parameter name direction type type modifier multiplicity default
return return IUMLTimeExpress

ion

Operation IUMLDataAll::SetOperation

parameter name direction type type modifier multiplicity default
ipVal in IUMLOperation

return return void

Operation IUMLDataAll::SetPos

parameter name direction type type modifier multiplicity default
x in int
y in int
return return void

Operation IUMLDataAll::SetPredefinedTaggedValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
nProperty in ENUMUMLPredef

inedElement

strNewValue in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SetRect

parameter name direction type type modifier multiplicity default
nLeft in int
nTop in int

1169

1097

1240

1097

1243

1192

1330

1255

1034 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

nRight in int
nBottom in int
return return void

Operation IUMLDataAll::SetScrollPos

parameter name direction type type modifier multiplicity default
nX in int
nY in int
return return void

Operation IUMLDataAll::SetSeparatorPosition

parameter name direction type type modifier multiplicity default
nIdx in int
nPosition in int
return return void

Operation IUMLDataAll::SetSlotInstanceValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipForDefiningFeat
ure

in IUMLStructuralFe

ature

ipInstance in IUMLInstanceSpe

cification

return return IUMLInstanceValu

e

Operation IUMLDataAll::SetSlotValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipForDefiningFeat
ure

in IUMLStructuralFe

ature

strNewValue in string
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SetStateIndex

parameter name direction type type modifier multiplicity default
nTimeTickIndex in int
nNewVal in int
return return void

Operation IUMLDataAll::SetStateIndexErased

parameter name direction type type modifier multiplicity default
nTimeTickIndex in int
return return void

Operation IUMLDataAll::SetTaggedValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipDefiningFeature

in IUMLStructuralFe

ature

strNewValue in string

1231

1146

1148

1231

1255

1231

© 2018-2024 Altova GmbH

UModel API Reference 1035UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLValueSpecifi

cation

Operation IUMLDataAll::SetTextLabelVisible

parameter name direction type type modifier multiplicity default
ipTextLabel in IUMLGuiTextLabe

l

bVisible in bool
return return void

Operation IUMLDataAll::SetTimeTickLength

parameter name direction type type modifier multiplicity default
nIdx in int
nNewVal in int
return return void

Operation IUMLDataAll::SetVisualStatePosition

parameter name direction type type modifier multiplicity default
nStateIndex in int
nNewVal in int
return return void

Operation IUMLDataAll::SetVSeparatorPosition

parameter name direction type type modifier multiplicity default
nIdx in int
nPosition in int
return return void

Operation IUMLDataAll::Signal

parameter name direction type type modifier multiplicity default
return return IUMLSignal

Operation IUMLDataAll::SignalTarget

parameter name direction type type modifier multiplicity default
return return IUMLInputPin

Operation IUMLDataAll::Signature

parameter name direction type type modifier multiplicity default
return return IUMLTemplateSig

nature

Operation IUMLDataAll::SingleExecution

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::Slots

parameter name direction type type modifier multiplicity default
return return IUMLDataList

1255

1311

1220

1144

1240

969

1036 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDataAll::Source

parameter name direction type type modifier multiplicity default
return return IUMLActivityNod

e

Operation IUMLDataAll::Sources

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Specific

parameter name direction type type modifier multiplicity default
return return IUMLClassifier

Operation IUMLDataAll::Specification

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLDataAll::Specifics

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Start

parameter name direction type type modifier multiplicity default
return return IUMLOccurrenceS

pecification

Operation IUMLDataAll::State

parameter name direction type type modifier multiplicity default
return return IUMLState

Operation IUMLDataAll::StateCompartmentEndPos

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::StateInvariant

parameter name direction type type modifier multiplicity default
return return IUMLConstraint

Operation IUMLDataAll::StateMachine

parameter name direction type type modifier multiplicity default
return return IUMLStateMachin

e

1055

969

1080

1255

969

1187

1223

1097

1227

© 2018-2024 Altova GmbH

UModel API Reference 1037UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::Stereotype

parameter name direction type type modifier multiplicity default
return return IUMLStereotype

Operation IUMLDataAll::StereotypeApplications

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::StereotypedElementStyles

parameter name direction type type modifier multiplicity default
return return IUMLGuiStyles

Operation IUMLDataAll::StringValue

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::StructuredActivityNodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Styles

parameter name direction type type modifier multiplicity default
return return IUMLGuiStyles

Operation IUMLDataAll::SubGroups

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Subjects

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Submachine

parameter name direction type type modifier multiplicity default
return return IUMLStateMachin

e

Operation IUMLDataAll::SubmachineStates

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::SubPartitions

parameter name direction type type modifier multiplicity default

1229

969

1301

969

1301

969

969

1227

969

1038 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return IUMLDataList

Operation IUMLDataAll::SubVertices

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::SuperClasses

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::SuperGroup

parameter name direction type type modifier multiplicity default
return return IUMLActivityGrou

p

Operation IUMLDataAll::SuperPartition

parameter name direction type type modifier multiplicity default
return return IUMLActivityParti

tion

Operation IUMLDataAll::SupplierDependencies

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Suppliers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Symbol

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::Target

parameter name direction type type modifier multiplicity default
return return IUMLActivityNod

e

Operation IUMLDataAll::Targets

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Template

parameter name direction type type modifier multiplicity default
return return IUMLTemplateabl

eElement

969

969

969

1054

1057

969

969

1055

969

1236

© 2018-2024 Altova GmbH

UModel API Reference 1039UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDataAll::TemplateBinding

parameter name direction type type modifier multiplicity default
return return IUMLTemplateBin

ding

Operation IUMLDataAll::TemplateParameter

parameter name direction type type modifier multiplicity default
return return IUMLTemplatePar

ameter

Operation IUMLDataAll::TextEndPos

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::TextLabelElement

parameter name direction type type modifier multiplicity default
return return IUMLElement

Operation IUMLDataAll::TextLabelKind

parameter name direction type type modifier multiplicity default
return return ENUMUMLGuiTe

xtLabelKind

Operation IUMLDataAll::TextLabels

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::TextStartPos

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::TimeObservationEvent

parameter name direction type type modifier multiplicity default
return return IUMLNamedElem

ent

Operation IUMLDataAll::TimeTickLengthCount

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::Top

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::Transformation

parameter name direction type type modifier multiplicity default

1237

1238

1112

1327

969

1178

1040 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return IUMLBehavior

Operation IUMLDataAll::TransitionGuard

parameter name direction type type modifier multiplicity default
return return IUMLConstraint

Operation IUMLDataAll::TransitionKind

parameter name direction type type modifier multiplicity default
return return ENUMUMLTransit

ionKind

Operation IUMLDataAll::Transitions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::TransitionSource

parameter name direction type type modifier multiplicity default
return return IUMLVertex

Operation IUMLDataAll::TransitionTarget

parameter name direction type type modifier multiplicity default
return return IUMLVertex

Operation IUMLDataAll::Triggers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Type

parameter name direction type type modifier multiplicity default
return return IUMLType

Operation IUMLDataAll::TypedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::UnapplyPredefinedStereotype

parameter name direction type type modifier multiplicity default
nStereotype in ENUMUMLPredef

inedElement

return return void

Operation IUMLDataAll::UnapplyStereotype

parameter name direction type type modifier multiplicity default
ipStereotype in IUMLStereotype

1065

1097

1331

969

1259

1259

969

1249

969

1330

1229

© 2018-2024 Altova GmbH

UModel API Reference 1041UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return void

Operation IUMLDataAll::UnlimitedValue

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::UpperBound

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::UpperValues

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::UseCase

parameter name direction type type modifier multiplicity default
return return IUMLUseCase

Operation IUMLDataAll::UseCases

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::UseForForwardEngineering

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::UserDefinedLinkName

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::UtilizedElement

parameter name direction type type modifier multiplicity default
return return IUMLPackageable

Element

Operation IUMLDataAll::UUID

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::Value

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::Values

parameter name direction type type modifier multiplicity default
return return IUMLDataList

969

1251

969

1197

969

1042 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDataAll::Viewpoint

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::Visibility

parameter name direction type type modifier multiplicity default
return return ENUMUMLVisibili

tyKind

Operation IUMLDataAll::VisualStatePositionCount

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::VSeparatorCount

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLDataAll::WasUsedForCodeSynchronization

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLDataAll::Waypoints

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLDataAll::Weight

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLDataAll::When

parameter name direction type type modifier multiplicity default
return return IUMLTimeExpress

ion

Operation IUMLDataAll::ZoomFactor

parameter name direction type type modifier multiplicity default
return return int

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1332

969

1243

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1043UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.4 UModelAPI - UMLData

Interface UMLData

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5 IUMLElement

This is a list of elements as defined by OMG in the UML Specification, see http://www.uml.org.

17.4.3.5.1 UModelAPI - IUMLAbstraction

Interface IUMLAbstraction

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.uml.org

1044 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLAbstraction::Mapping

parameter name direction type type modifier multiplicity default
return return IUMLOpaqueExpr

ession

Operation IUMLAbstraction::SetNewMapping

parameter name direction type type modifier multiplicity default
return return IUMLOpaqueExpr

ession

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.2 UModelAPI - IUMLAcceptEventAction

Interface IUMLAcceptEventAction

diagram

1191

1191

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1045UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLAcceptEventAction::ActionTriggers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLTrigger .

Operation IUMLAcceptEventAction::EventActionResults

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLOutputPin .

Operation IUMLAcceptEventAction::InsertActionTriggerAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLTrigger

Operation IUMLAcceptEventAction::InsertEventActionResultAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLOutputPin

Operation IUMLAcceptEventAction::IsUnmarshall

parameter name direction type type modifier multiplicity default
return return bool

969

1248

969

1193

1248

1193

1046 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.3 UModelAPI - IUMLAction

Interface IUMLAction

diagram

hierarchy

Operation IUMLAction::ActionContext

parameter name direction type type modifier multiplicity default
return return IUMLClassifier

Operation IUMLAction::ActionInputPin

parameter name direction type type modifier multiplicity default
return return IUMLActionInput

Pin

Operation IUMLAction::InputPins

parameter name direction type type modifier multiplicity default
return return IUMLDataList

1080

1048

969

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1047UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

document
ation

A list of elements of type IUMLInputPin .

Operation IUMLAction::InsertLocalPostConditionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLConstraint

Operation IUMLAction::InsertLocalPreConditionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLConstraint

Operation IUMLAction::IsLocallyReentrant

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLAction::LocalPostConditions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLConstraint .

Operation IUMLAction::LocalPreConditions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLConstraint .

Operation IUMLAction::OutputPins

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLOutputPin .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1144

1097

1097

969

1097

969

1097

969

1193

http://www.altova.com/umodel
http://www.altova.com/umodel

1048 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.4 UModelAPI - IUMLActionExecutionSpecification

Interface IUMLActionExecutionSpecification

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.5 UModelAPI - IUMLActionInputPin

Interface IUMLActionInputPin

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1049UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLAction Operation ActionInputPin

Interface IUMLDataAll Operation ActionInputPin

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.6 UModelAPI - IUMLActivity

Interface IUMLActivity

diagram

1046 1046

974 974

http://www.altova.com/umodel
http://www.altova.com/umodel

1050 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLActivityEdge Operation Activity

Interface IUMLActivityGroup Operation InActivity

Interface IUMLDataAll Operation Activity InActivity

Operation IUMLActivity::ActivityEdges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityEdge .

Operation IUMLActivity::ActivityGroups

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityGroup .

Operation IUMLActivity::ActivityNodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityNode .

Operation IUMLActivity::InsertActivityEdgeAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
ipFrom in IUMLActivityNod

e

ipTo in IUMLActivityNod

e

return return IUMLActivityEdge

Operation IUMLActivity::InsertActivityGroupAt

1051 1052

1054 1055

974 975 993

969

1051

969

1054

969

1055

1055

1055

1051

© 2018-2024 Altova GmbH

UModel API Reference 1051UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLActivityGrou

p

Operation IUMLActivity::InsertActivityNodeAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLActivityNod

e

Operation IUMLActivity::IsActivityReadOnly

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLActivity::SingleExecution

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.7 UModelAPI - IUMLActivityEdge

Interface IUMLActivityEdge

diagram

1054

1055

http://www.altova.com/umodel
http://www.altova.com/umodel

1052 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLActivity Operation InsertActivityEdgeAt

Interface IUMLActivityPartition Operation InsertEdgeAt

Interface IUMLDataAll Operation InsertActivityEdgeAt

 InsertEdgeAt

 InsertInterruptingEdgeAt
Interface

IUMLInterruptibleActivityRegion

Operation InsertInterruptingEdgeAt

Interface

IUMLStructuredActivityNode

Operation InsertEdgeAt

Operation IUMLActivityEdge::Activity

parameter name direction type type modifier multiplicity default
return return IUMLActivity

Operation IUMLActivityEdge::ActivityPartitions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityPartition .

Operation IUMLActivityEdge::Guard

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLActivityEdge::InterruptibleActivityRegions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLInterruptibleActivityRegion .

Operation IUMLActivityEdge::Source

parameter name direction type type modifier multiplicity default
return return IUMLActivityNod

e

1049 1050

1057 1058

974 994

997

999

1159

1159

1233

1234

1049

969

1057

969

1159

1055

© 2018-2024 Altova GmbH

UModel API Reference 1053UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLActivityEdge::StructuredActivityNodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLStructuredActivityNode .

Operation IUMLActivityEdge::Target

parameter name direction type type modifier multiplicity default
return return IUMLActivityNod

e

Operation IUMLActivityEdge::Weight

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.8 UModelAPI - IUMLActivityFinalNode

Interface IUMLActivityFinalNode

diagram

hierarchy

969

1233

1055

http://www.altova.com/umodel
http://www.altova.com/umodel

1054 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.9 UModelAPI - IUMLActivityGroup

Interface IUMLActivityGroup

diagram

hierarchy

typedEle
ments

Interface IUMLActivity Operation InsertActivityGroupAt

Interface IUMLActivityGroup Operation SuperGroup

Interface IUMLDataAll Operation InsertActivityGroupAt

 SuperGroup

Operation IUMLActivityGroup::ContainedEdges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityEdge .

Operation IUMLActivityGroup::ContainedNodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityNode .

1049 1050

1054 1055

974 995

1038

969

1051

969

1055

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1055UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLActivityGroup::InActivity

parameter name direction type type modifier multiplicity default
return return IUMLActivity

Operation IUMLActivityGroup::SubGroups

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityGroup .

Operation IUMLActivityGroup::SuperGroup

parameter name direction type type modifier multiplicity default
return return IUMLActivityGrou

p

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.10 UModelAPI - IUMLActivityNode

Interface IUMLActivityNode

diagram

hierarchy

typedElem
ents

Interface IUMLActivity Operation InsertActivityEdgeAt

 InsertActivityNodeAt

Interface IUMLActivityEdge Operation Source Target

1049

969

1054

1054

1049 1050

1051

1051 1052 1053

http://www.altova.com/umodel
http://www.altova.com/umodel

1056 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Interface IUMLActivityPartition Operation InsertNodeAt

Interface IUMLDataAll Operation InsertActivityEdgeAt

 InsertActivityNodeAt

 InsertNodeAt Source

 Target
Interface

IUMLInterruptibleActivityRegion

Operation InsertNodeAt

Interface

IUMLStructuredActivityNode

Operation InsertNodeAt

Operation IUMLActivityNode::IncomingEdges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityEdge .

Operation IUMLActivityNode::OutgoingEdges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityEdge .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.11 UModelAPI - IUMLActivityParameterNode

Interface IUMLActivityParameterNode

diagram

1057 1058

974 994

995

1001 1036

1038

1159

1159

1233

1234

969

1051

969

1051

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1057UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLActivityParameterNode::Parameter

parameter name direction type type modifier multiplicity default
return return IUMLParameter

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.12 UModelAPI - IUMLActivityPartition

Interface IUMLActivityPartition

diagram

1200

http://www.altova.com/umodel
http://www.altova.com/umodel

1058 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLActivityPartition Operation InsertSubPartitionAt

 SuperPartition

Interface IUMLDataAll Operation InsertSubPartitionAt

 SuperPartition

Operation IUMLActivityPartition::Edges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityEdge .

Operation IUMLActivityPartition::EraseEdgeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLActivityPartition::EraseNodeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLActivityPartition::InsertEdgeAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipEdge in IUMLActivityEdge

return return void

Operation IUMLActivityPartition::InsertNodeAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLActivityNod

e

return return void

Operation IUMLActivityPartition::InsertSubPartitionAt

parameter name direction type type modifier multiplicity default

1057 1058

1059

974 1006

1038

969

1051

1051

1055

© 2018-2024 Altova GmbH

UModel API Reference 1059UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

nIdx in int
strKind in string
return return IUMLActivityParti

tion

Operation IUMLActivityPartition::IsDimension

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLActivityPartition::IsExternal

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLActivityPartition::IsHorizontal

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLActivityPartition::Nodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityNode .

Operation IUMLActivityPartition::SubPartitions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityPartition .

Operation IUMLActivityPartition::SuperPartition

parameter name direction type type modifier multiplicity default
return return IUMLActivityParti

tion

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.13 UModelAPI - IUMLActor

Interface IUMLActor

diagram

1057

969

1055

969

1057

1057

http://www.altova.com/umodel
http://www.altova.com/umodel

1060 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLActor::IconFileName

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.14 UModelAPI - IUMLAnyReceiveEvent

Interface IUMLAnyReceiveEvent

diagram

hierarchy

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1061UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.15 UModelAPI - IUMLArtifact

Interface IUMLArtifact

diagram

hierarchy

typedElem
ents

Interface IUMLArtifact Operation InsertNestedArtifactAt

Interface IUMLDataAll Operation InsertNestedArtifactAt

Operation IUMLArtifact::FileName

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLArtifact::InsertManifestationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipUtilizedElement in IUMLPackageable

Element

return return IUMLManifestatio

n

Operation IUMLArtifact::InsertNestedArtifactAt

parameter name direction type type modifier multiplicity default
nIdx in int

1061 1061

974 1000

1197

1170

http://www.altova.com/umodel
http://www.altova.com/umodel

1062 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return IUMLArtifact

Operation IUMLArtifact::InsertOwnedAttributeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLProperty

Operation IUMLArtifact::InsertOwnedOperationAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLOperation

Operation IUMLArtifact::Manifestations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLManifestation .

Operation IUMLArtifact::NestedArtifacts

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLArtifact .

Operation IUMLArtifact::OwnedAttributes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLProperty .

Operation IUMLArtifact::OwnedOperations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLOperation .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1061

1207

1192

969

1170

969

1061

969

1207

969

1192

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1063UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.16 UModelAPI - IUMLAssociation

Interface IUMLAssociation

diagram

hierarchy

typedElem
ents

Interface IUMLConnector Operation ConnectorType

Interface IUMLDataAll Operation Association ConnectorType

 OwningAssociation

Interface IUMLProperty Operation Association

 OwningAssociation

Operation IUMLAssociation::EndTypes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLType .

Operation IUMLAssociation::MemberEnds

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLProperty .

Operation IUMLAssociation::NavigableOwnedEnds

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLProperty .

1095 1096

974 978 981

1022

1207 1208

1209

969

1249

969

1207

969

1207

1064 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLAssociation::OwnedEnds

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLProperty .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.17 UModelAPI - IUMLAssociationClass

Interface IUMLAssociationClass

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

969

1207

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1065UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.18 UModelAPI - IUMLBehavior

Interface IUMLBehavior

diagram

hierarchy

typedElem
ents

Interface

IUMLBehavioredClassifier

Operation InsertOwnedBehaviorAt

Interface
IUMLBehaviorExecutionSpecification

Operation BehaviorExecution

Interface

IUMLCallBehaviorAction

Operation Behavior

Interface IUMLDataAll Operation Behavior BehaviorExecution

 DecisionInput DoActivity

 Effect Entry Exit

 InsertOwnedBehaviorAt

 Selection SetNewDoActivity

 SetNewEffect SetNewEntry

 SetNewExit Transformation

Interface IUMLDecisionNode Operation DecisionInput

Interface IUMLObjectFlow Operation Transformation

Interface IUMLObjectNode Operation Selection

Interface IUMLState Operation DoActivity Entry Exit

 SetNewDoActivity

 SetNewEntry SetNewExit

1069

1069

1070

1070

1072

1072

974 979 979

983 984

984 984 988

1002

1028 1030

1030 1030

1030 1039

1103 1103

1184 1185

1185 1186

1223 1224 1224 1224

1225

1226 1226

1066 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Interface IUMLTransition Operation Effect SetNewEffect

Operation IUMLBehavior::BehaviorSpecification

parameter name direction type type modifier multiplicity default
return return IUMLBehavioralF

eature

Operation IUMLBehavior::InsertOwnedParameterAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLParameter

Operation IUMLBehavior::InsertPostconditionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLConstraint

Operation IUMLBehavior::InsertPreconditionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLConstraint

Operation IUMLBehavior::IsReentrant

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLBehavior::OwnedParameters

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLParameter .

Operation IUMLBehavior::Postconditions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLConstraint .

Operation IUMLBehavior::Preconditions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLConstraint .

1246 1247 1247

1067

1200

1097

1097

969

1200

969

1097

969

1097

© 2018-2024 Altova GmbH

UModel API Reference 1067UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.19 UModelAPI - IUMLBehavioralFeature

Interface IUMLBehavioralFeature

diagram

hierarchy

typedElem
ents

Interface IUMLBehavior Operation BehaviorSpecification

Interface IUMLDataAll Operation BehaviorSpecification

Operation IUMLBehavioralFeature::Concurrency

parameter name direction type type modifier multiplicity default
return return ENUMUMLCallCo

ncurrencyKind

Operation IUMLBehavioralFeature::EraseRaisedExceptionAt

parameter name direction type type modifier multiplicity default

1065 1066

974 979

1324

http://www.altova.com/umodel
http://www.altova.com/umodel

1068 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

nIdx in int
return return void

Operation IUMLBehavioralFeature::InsertOwnedParameterAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLParameter

Operation IUMLBehavioralFeature::InsertRaisedExceptionAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLType

return return void

Operation IUMLBehavioralFeature::IsAbstract

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLBehavioralFeature::Methods

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLBehavior .

Operation IUMLBehavioralFeature::OwnedParameters

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLParameter .

Operation IUMLBehavioralFeature::RaisedExceptions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLType .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1200

1249

969

1065

969

1200

969

1249

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1069UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.20 UModelAPI - IUMLBehavioredClassifier

Interface IUMLBehavioredClassifier

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation ImplementingClassifier
Interface

IUMLInterfaceRealization

Operation ImplementingClassifier

Operation IUMLBehavioredClassifier::InsertInterfaceRealizationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipContract in IUMLInterface

return return IUMLInterfaceRea

lization

Operation IUMLBehavioredClassifier::InsertOwnedBehaviorAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLBehavior

Operation IUMLBehavioredClassifier::InterfaceRealizations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

974 993

1158

1158

1155

1158

1065

969

1070 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

document
ation

A list of elements of type IUMLInterfaceRealizations .

Operation IUMLBehavioredClassifier::OwnedBehaviors

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLBehavior .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.21 UModelAPI - IUMLBehaviorExecutionSpecification

Interface IUMLBehaviorExecutionSpecification

diagram

hierarchy

Operation IUMLBehaviorExecutionSpecification::BehaviorExecution

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1158

969

1065

1065

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1071UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.22 UModelAPI - IUMLCallAction

Interface IUMLCallAction

diagram

hierarchy

Operation IUMLCallAction::InsertResultAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLOutputPin

Operation IUMLCallAction::IsSynchronous

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLCallAction::Results

parameter name direction type type modifier multiplicity default

1193

1072 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return IUMLDataList

document
ation

A list of elements of type IUMLOutputPin .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.23 UModelAPI - IUMLCallBehaviorAction

Interface IUMLCallBehaviorAction

diagram

hierarchy

Operation IUMLCallBehaviorAction::Behavior

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

969

1193

1065

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1073UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.24 UModelAPI - IUMLCallEvent

Interface IUMLCallEvent

diagram

hierarchy

Operation IUMLCallEvent::Operation

parameter name direction type type modifier multiplicity default
return return IUMLOperation

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1192

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1074 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.25 UModelAPI - IUMLCallOperationAction

Interface IUMLCallOperationAction

diagram

hierarchy

Operation IUMLCallOperationAction::CallOperation

parameter name direction type type modifier multiplicity default
return return IUMLOperation

Operation IUMLCallOperationAction::CallTarget

parameter name direction type type modifier multiplicity default
return return IUMLInputPin

Operation IUMLCallOperationAction::SetNewCallTarget

parameter name direction type type modifier multiplicity default

1192

1144

© 2018-2024 Altova GmbH

UModel API Reference 1075UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

strKind in string
return return IUMLInputPin

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.26 UModelAPI - IUMLCentralBufferNode

Interface IUMLCentralBufferNode

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1144

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1076 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.27 UModelAPI - IUMLChangeEvent

Interface IUMLChangeEvent

diagram

hierarchy

Operation IUMLChangeEvent::ChangeExpression

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLChangeEvent::SetNewChangeExpression

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1255

1255

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1077UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.28 UModelAPI - IUMLClass

Interface IUMLClass

diagram

hierarchy

typedElem
ents

Interface IUMLClassifier Operation Class

Interface IUMLDataAll Operation Class

Interface IUMLOperation Operation Class

Interface IUMLProperty Operation Class

Interface IUMLReception Operation Class

Operation IUMLClass::CodeFileNameCount

parameter name direction type type modifier multiplicity default
return return int

1080 1081

974 980

1192 1192

1207 1208

1214 1215

1078 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLClass::EraseCodeFileNameAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLClass::GetCodeFileName

parameter name direction type type modifier multiplicity default
nIdx in int
return return string

Operation IUMLClass::GetCodeFilePath

parameter name direction type type modifier multiplicity default
nIdx in int
return return string

document
ation

get the full code file path

Operation IUMLClass::InsertCodeFileNameAt

parameter name direction type type modifier multiplicity default
nIdx in int
strNewVal in string
return return void

Operation IUMLClass::InsertNestedClassifierAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLClassifier

Operation IUMLClass::InsertOwnedOperationAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLOperation

Operation IUMLClass::InsertOwnedReceptionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLReception

Operation IUMLClass::IsActive

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLClass::NestedClassifiers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

1080

1192

1214

969

© 2018-2024 Altova GmbH

UModel API Reference 1079UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

document
ation

A list of elements of type IUMLClassifier .

Operation IUMLClass::OwnedOperations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLOperation .

Operation IUMLClass::OwnedReceptions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLClass::SetCodeFileName

parameter name direction type type modifier multiplicity default
nIdx in int
strNewVal in string
return return void

Operation IUMLClass::SuperClasses

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLClass .

Operation IUMLClass::WasUsedForCodeSynchronization

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1080

969

1192

969

969

1077

http://www.altova.com/umodel
http://www.altova.com/umodel

1080 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.29 UModelAPI - IUMLClassifier

Interface IUMLClassifier

diagram

hierarchy

typedElem
ents

Interface IUMLAction Operation ActionContext

Interface IUMLClass Operation InsertNestedClassifierAt

Interface IUMLClassifier Operation InsertGeneralizationAt
Interface

IUMLClassifierTemplateParameter

Operation InsertConstrainingClassifierAt

Interface IUMLComponent Operation InsertRealizationAt
Interface

IUMLComponentRealization

Operation RealizingClassifier

Interface IUMLDataAll Operation ActionContext Classifier

 General

 InsertConstrainingClassifierAt

 InsertConveyedAt

1046 1046

1077 1078

1080 1082

1083

1084

1090 1091

1091

1092

974 974 980

990

996

996

© 2018-2024 Altova GmbH

UModel API Reference 1081UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 InsertExceptionTypeAt

 InsertGeneralizationAt

 InsertNestedClassifierAt

 InsertRealizationAt

 InsertSubjectAt

 RealizingClassifier Specific

Interface IUMLExceptionHandler Operation InsertExceptionTypeAt

Interface IUMLGeneralization Operation General Specific

Interface IUMLInformationFlow Operation InsertConveyedAt
Interface

IUMLInstanceSpecification

Operation Classifier

Interface IUMLInterface Operation InsertNestedClassifierAt

Interface IUMLProperty Operation Classifier

Interface IUMLUseCase Operation InsertSubjectAt

Operation IUMLClassifier::Attributes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLProperty .

Operation IUMLClassifier::Class

parameter name direction type type modifier multiplicity default
return return IUMLClass

Operation IUMLClassifier::CollaborationUses

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLCollaborationUse .

Operation IUMLClassifier::Features

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLFeature .

Operation IUMLClassifier::Generalizations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLGeneralization .

Operation IUMLClassifier::Generals

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLClassifier .

997

998

1000

1005

1006

1026 1036

1121 1122

1135 1136 1136

1141 1142

1146

1146

1155 1156

1207 1208

1251 1253

969

1207

1077

969

1085

969

1130

969

1135

969

1080

1082 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLClassifier::InheritedMembers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLNamedElement .

Operation IUMLClassifier::InsertCollaborationUseAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLCollaboratio

nUse

Operation IUMLClassifier::InsertGeneralizationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipGeneral in IUMLClassifier

return return IUMLGeneralizati

on

Operation IUMLClassifier::InsertOwnedUseCaseAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLUseCase

Operation IUMLClassifier::IsAbstract

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLClassifier::IsFinalSpecialization

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLClassifier::NestingInterface

parameter name direction type type modifier multiplicity default
return return IUMLInterface

Operation IUMLClassifier::OwnedUseCases

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLUseCase .

Operation IUMLClassifier::Specifics

parameter name direction type type modifier multiplicity default
return return IUMLDataList

969

1178

1085

1080

1135

1251

1155

969

1251

969

© 2018-2024 Altova GmbH

UModel API Reference 1083UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

document
ation

A list of elements of type IUMLClassifier .

Operation IUMLClassifier::UseCases

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLUseCase .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.30 UModelAPI - IUMLClassifierTemplateParameter

Interface IUMLClassifierTemplateParameter

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertOwnedTemplateParameterAt

Interface

IUMLTemplateSignature

Operation InsertOwnedTemplateParameterAt

Operation IUMLClassifierTemplateParameter::AllowSubstitutable

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLClassifierTemplateParameter::ConstrainingClassifiers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

1080

969

1251

974

1004

1240 1241

969

http://www.altova.com/umodel
http://www.altova.com/umodel

1084 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

document
ation

A list of elements of type IUMLClassifier .

Operation IUMLClassifierTemplateParameter::EraseConstrainingClassifierAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLClassifierTemplateParameter::InsertConstrainingClassifierAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLClassifier

return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.31 UModelAPI - IUMLCollaboration

Interface IUMLCollaboration

diagram

hierarchy

typedElem
ents

Interface IUMLCollaborationUse Operation CollaborationType

Interface IUMLDataAll Operation CollaborationType

Operation IUMLCollaboration::CollaborationRoles

parameter name direction type type modifier multiplicity default
return return IUMLDataList

1080

1080

1085 1085

974 981

969

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1085UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

document
ation

A list of elements of type IUMLCollaboration .

Operation IUMLCollaboration::EraseCollaborationRoleAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLCollaboration::InsertCollaborationRoleAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLConnectable

Element

return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.32 UModelAPI - IUMLCollaborationUse

Interface IUMLCollaborationUse

diagram

hierarchy

typedElem
ents

Interface IUMLClassifier Operation InsertCollaborationUseAt

Interface IUMLDataAll Operation InsertCollaborationUseAt

Operation IUMLCollaborationUse::CollaborationType

parameter name direction type type modifier multiplicity default
return return IUMLCollaboratio

n

Operation IUMLCollaborationUse::RoleBindings

1084

1092

1080 1082

974 996

1084

http://www.altova.com/umodel
http://www.altova.com/umodel

1086 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLDependency .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.33 UModelAPI - IUMLCombinedFragment

Interface IUMLCombinedFragment

diagra
m

hierarc
hy

Operation IUMLCombinedFragment::InsertOperandAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLInteractionO

perand

Operation IUMLCombinedFragment::InteractionOperator

parameter name direction type type modifier multiplicity default
return return ENUMUMLInterac

tionOperatorKind

Operation IUMLCombinedFragment::Operands

parameter name direction type type modifier multiplicity default

969

1103

1152

1328

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1087UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLDataList

document
ation

A list of elements of type IUMLInteractionOperand .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.34 UModelAPI - IUMLComment

Interface IUMLComment

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertOwnedCommentAt

 OwnedDocComment

Interface IUMLElement Operation InsertOwnedCommentAt

 OwnedDocComment

Operation IUMLComment::AnnotatedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLElement .

Operation IUMLComment::Body

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLComment::EraseAnnotatedElementAt

parameter name direction type type modifier multiplicity default
nIdx in int

969

1152

974 1002

1020

1112 1114

1114

969

1112

http://www.altova.com/umodel
http://www.altova.com/umodel

1088 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return void

Operation IUMLComment::InsertAnnotatedElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLElement

return return void

Operation IUMLComment::InsertOwnedCommentTextHyperlinkAt

parameter name direction type type modifier multiplicity default
nFromTextPos in int
nToTextPos in int
strAddress in string
return return IUMLCommentTe

xtHyperlink

Operation IUMLComment::OwnedHyperlinks

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLComment::OwningElement

parameter name direction type type modifier multiplicity default
return return IUMLElement

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.35 UModelAPI - IUMLCommentTextHyperlink

Interface IUMLCommentTextHyperlink

diagram

hierarchy

1112

1088

969

1112

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1089UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

typedElem
ents

Interface IUMLComment Operation InsertOwnedCommentTextHyperlink

At

Interface IUMLDataAll Operation InsertOwnedCommentTextHyperlink

At

Operation IUMLCommentTextHyperlink::LinkAddress

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLCommentTextHyperlink::OpenLink

parameter name direction type type modifier multiplicity default
return return void

Operation IUMLCommentTextHyperlink::SetHyperlinkFileAddress

parameter name direction type type modifier multiplicity default
strFilePathOrUrl in string
return return void

Operation IUMLCommentTextHyperlink::SetHyperlinkGuiElementAddress

parameter name direction type type modifier multiplicity default
ipLinkedGuiEleme
nt

in IUMLGuiVisibleEl

ement

ipLinkedGuiEleme
ntCell

in IUMLNamedElem

ent

return return void

Operation IUMLCommentTextHyperlink::SetHyperlinkModelElementAddress

parameter name direction type type modifier multiplicity default
ipLinkedData in IUMLData

return return void

Operation IUMLCommentTextHyperlink::TextEndPos

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLCommentTextHyperlink::TextStartPos

parameter name direction type type modifier multiplicity default
return return int

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1087

1088

974

1002

1319

1178

967

http://www.altova.com/umodel
http://www.altova.com/umodel

1090 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.36 UModelAPI - IUMLComponent

Interface IUMLComponent

diagram

hierarchy

typedElem
ents

Interface

IUMLComponentRealization

Operation Abstraction

Interface IUMLDataAll Operation Abstraction

Operation IUMLComponent::CodeLang

parameter name direction type type modifier multiplicity default
return return ENUMCodeLang

Operation IUMLComponent::CodeLangVersion

parameter name direction type type modifier multiplicity default
return return ENUMCodeLangV

ersion

Operation IUMLComponent::CodeProjectFileOrDirectory

parameter name direction type type modifier multiplicity default
return return string

1091

1092

974 974

960

961

© 2018-2024 Altova GmbH

UModel API Reference 1091UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLComponent::InsertRealizationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipRealizingClassifi
er

in IUMLClassifier

return return IUMLComponent

Realization

Operation IUMLComponent::IsCodeProjectFile

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLComponent::IsIndirectlyInstantiated

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLComponent::IsUseForCodeEngineering

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLComponent::Realizations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLComponentRealization .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.37 UModelAPI - IUMLComponentRealization

Interface IUMLComponentRealization

diagram

1080

1091

969

1091

http://www.altova.com/umodel
http://www.altova.com/umodel

1092 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLComponent Operation InsertRealizationAt

Interface IUMLDataAll Operation InsertRealizationAt

Operation IUMLComponentRealization::Abstraction

parameter name direction type type modifier multiplicity default
return return IUMLComponent

Operation IUMLComponentRealization::RealizingClassifier

parameter name direction type type modifier multiplicity default
return return IUMLClassifier

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.38 UModelAPI - IUMLConnectableElement

Interface IUMLConnectableElement

diagram

1090 1091

974 1005

1090

1080

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1093UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLCollaboration Operation InsertCollaborationRoleAt

Interface IUMLConnectorEnd Operation Role

Interface IUMLDataAll Operation InsertCollaborationRoleAt

 InsertOwnedConnectorAt

 Represents Role

Interface IUMLLifeline Operation Represents
Interface

IUMLStructuredClassifier

Operation InsertOwnedConnectorAt

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.39 UModelAPI - IUMLConnectionPointReference

Interface IUMLConnectionPointReference

diagram

1084 1085

1096 1096

974 995

1002

1027 1028

1165 1165

1234

1235

http://www.altova.com/umodel
http://www.altova.com/umodel

1094 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertConnectionAt

Interface IUMLState Operation InsertConnectionAt

Operation IUMLConnectionPointReference::Entries

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLPseudostate .

Operation IUMLConnectionPointReference::EraseEntryAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLConnectionPointReference::EraseExitAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLConnectionPointReference::Exits

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLPseudostate .

Operation IUMLConnectionPointReference::InsertEntryAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLPseudostate

return return void

Operation IUMLConnectionPointReference::InsertExitAt

parameter name direction type type modifier multiplicity default
nIdx in int

974 996

1223 1225

969

1213

969

1213

1213

© 2018-2024 Altova GmbH

UModel API Reference 1095UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

ipVal in IUMLPseudostate

return return void

Operation IUMLConnectionPointReference::State

parameter name direction type type modifier multiplicity default
return return IUMLState

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.40 UModelAPI - IUMLConnector

Interface IUMLConnector

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertOwnedConnectorAt

 InsertRealizingConnectorAt

Interface IUMLInformationFlow Operation InsertRealizingConnectorAt
Interface

IUMLStructuredClassifier

Operation InsertOwnedConnectorAt

Operation IUMLConnector::ConnectorKind

parameter name direction type type modifier multiplicity default
return return ENUMUMLConne

ctorKind

1213

1223

974 1002

1006

1141 1143

1234

1235

1324

http://www.altova.com/umodel
http://www.altova.com/umodel

1096 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

document
ation

Deprecated: Since UML2.3 (UModel2010r2) 'ConnectorKind' is derived and cannot be set anymore.

Operation IUMLConnector::ConnectorType

parameter name direction type type modifier multiplicity default
return return IUMLAssociation

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.41 UModelAPI - IUMLConnectorEnd

Interface IUMLConnectorEnd

diagram

hierarchy

Operation IUMLConnectorEnd::Role

parameter name direction type type modifier multiplicity default
return return IUMLConnectable

Element

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1063

1092

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1097UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.42 UModelAPI - IUMLConstraint

Interface IUMLConstraint

diagra
m

hierar
chy

typed
Eleme

nts

Interface IUMLAction Operation InsertLocalPostConditionAt

 InsertLocalPreConditionAt

Interface IUMLBehavior Operation InsertPostconditionAt

 InsertPreconditionAt

Interface IUMLDataAll Operation InsertLocalPostConditionAt

 InsertLocalPreConditionAt

 InsertOwnedRuleAt

 InsertPostconditionAt

 InsertPreconditionAt Invariant

 OwningConstraint

 PostCondition PreCondition

 SetNewInvariant

 SetNewPostCondition

 SetNewPreCondition

 SetNewStateInvariant

 SetNewTransitionGuard

1046 1047

1047

1065 1066

1066

974 1000

1000

1004

1005

1005 1008

1022

1025 1025

1031

1032

1032

1033

1033

1098 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 StateInvariant

 TransitionGuard

Interface IUMLNamespace Operation InsertOwnedRuleAt

Interface IUMLProtocolTransition Operation PostCondition PreCondition

 SetNewPostCondition

 SetNewPreCondition

Interface IUMLState Operation SetNewStateInvariant

 StateInvariant

Interface IUMLStateInvariant Operation Invariant SetNewInvariant

Interface IUMLTransition Operation SetNewTransitionGuard

 TransitionGuard

Interface IUMLValueSpecification Operation OwningConstraint

Operation IUMLConstraint::ConstrainedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLElement .

Operation IUMLConstraint::Context

parameter name direction type type modifier multiplicity default
return return IUMLNamespace

Operation IUMLConstraint::EraseConstrainedElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLConstraint::InsertConstrainedElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLElement

return return void

Operation IUMLConstraint::OwningState

parameter name direction type type modifier multiplicity default
return return IUMLState

Operation IUMLConstraint::OwningTransition

parameter name direction type type modifier multiplicity default
return return IUMLProtocolTra

nsition

Operation IUMLConstraint::SetNewSpecification

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

1036

1040

1181 1182

1211 1212 1212

1212

1212

1223 1226

1226

1226 1227 1227

1246 1247

1247

1255 1256

969

1112

1181

1112

1223

1211

1255

© 2018-2024 Altova GmbH

UModel API Reference 1099UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLConstraint::SetNewSpecificationInstanceValue

parameter name direction type type modifier multiplicity default
ipInstance in IUMLInstanceSpe

cification

return return IUMLInstanceValu

e

Operation IUMLConstraint::SetNewSpecificationLiteralString

parameter name direction type type modifier multiplicity default
strNewVal in string
return return IUMLLiteralString

Operation IUMLConstraint::Specification

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.43 UModelAPI - IUMLControlFlow

Interface IUMLControlFlow

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1146

1148

1169

1255

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1100 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.44 UModelAPI - IUMLControlNode

Interface IUMLControlNode

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.45 UModelAPI - IUMLDataStoreNode

Interface IUMLDataStoreNode

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1101UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.46 UModelAPI - IUMLDataType

Interface IUMLDataType

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

1102 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation Datatype

Interface IUMLOperation Operation Datatype

Interface IUMLProperty Operation Datatype

Operation IUMLDataType::InsertOwnedAttributeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLProperty

Operation IUMLDataType::InsertOwnedOperationAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLOperation

Operation IUMLDataType::OwnedAttributes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLProperty .

Operation IUMLDataType::OwnedOperations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLOperation .

Operation IUMLDataType::WasUsedForCodeSynchronization

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 983

1192 1193

1207 1208

1207

1192

969

1207

969

1192

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1103UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.47 UModelAPI - IUMLDecisionNode

Interface IUMLDecisionNode

diagram

hierarchy

Operation IUMLDecisionNode::DecisionInput

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.48 UModelAPI - IUMLDependency

Interface IUMLDependency

diagram

1065

http://www.altova.com/umodel
http://www.altova.com/umodel

1104 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLDependency::Clients

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLNamedElement .

Operation IUMLDependency::Suppliers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLNamedElement .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.49 UModelAPI - IUMLDeployedArtifact

Interface IUMLDeployedArtifact

diagram

969

1178

969

1178

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1105UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertDeploymentAt
Interface

IUMLDeploymentTarget

Operation InsertDeploymentAt

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.50 UModelAPI - IUMLDeployment

Interface IUMLDeployment

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertDeploymentAt
Interface

IUMLDeploymentTarget

Operation InsertDeploymentAt

974 996

1106

1107

974 996

1106

1107

http://www.altova.com/umodel
http://www.altova.com/umodel

1106 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLDeployment::Location

parameter name direction type type modifier multiplicity default
return return IUMLDeployment

Target

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.51 UModelAPI - IUMLDeploymentTarget

Interface IUMLDeploymentTarget

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation Location

Interface IUMLDeployment Operation Location

Operation IUMLDeploymentTarget::DeployedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLPackageableElement .

Operation IUMLDeploymentTarget::Deployments

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLDeployment .

1106

974 1015

1105 1106

969

1197

969

1105

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1107UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLDeploymentTarget::InsertDeploymentAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipDeployedArtifac
t

in IUMLDeployedArt

ifact

return return IUMLDeployment

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.52 UModelAPI - IUMLDevice

Interface IUMLDevice

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.53 UModelAPI - IUMLDirectedRelationship

Interface IUMLDirectedRelationship

diagram

1104

1105

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1108 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLDirectedRelationship::Sources

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLElement .

Operation IUMLDirectedRelationship::Targets

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLElement .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.54 UModelAPI - IUMLDuration

Interface IUMLDuration

diagram

969

1112

969

1112

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1109UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLDuration::EraseObservationAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLDuration::Expr

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLDuration::InsertObservationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLObservation

return return void

Operation IUMLDuration::Observations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLObservation .

Operation IUMLDuration::SetNewExpr

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1255

1187

969

1187

1255

http://www.altova.com/umodel
http://www.altova.com/umodel

1110 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.55 UModelAPI - IUMLDurationConstraint

Interface IUMLDurationConstraint

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.56 UModelAPI - IUMLDurationInterval

Interface IUMLDurationInterval

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1111UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.57 UModelAPI - IUMLDurationObservation

Interface IUMLDurationObservation

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1112 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.58 UModelAPI - IUMLElement

Interface IUMLElement

diagram

hierarchy

typedElem
ents

Interface

IGenerateSequenceDiagramDlg

Operation DiagramOwner

Interface IUMLComment Operation InsertAnnotatedElementAt

 OwningElement

Interface IUMLConstraint Operation InsertConstrainedElementAt

Interface IUMLDataAll Operation AppliedElement Element

 InsertAnnotatedElementAt

 InsertConstrainedElementAt
 InsertPackagedElementRelationship

At IsElementVisible

 LinkedOwner Owner

 OwningElement

 SetElementVisible

 TextLabelElement

Interface IUMLElement Operation Owner

Interface IUMLGuiDiagram Operation LinkedOwner

Interface IUMLGuiLink Operation Element

Interface IUMLGuiNodeLink Operation IsElementVisible

 SetElementVisible

Interface IUMLGuiTextLabel Operation TextLabelElement

Interface IUMLPackage Operation InsertPackagedElementRelationship

At
Interface

IUMLStereotypeApplication

Operation AppliedElement

911

911

1087 1088

1088

1097 1098

974 977 984

995

996

1004 1010

1015 1022

1022

1029

1039

1112 1115

1271 1274

1284 1284

1286 1287

1287

1311 1312

1194

1195

1230

1231

© 2018-2024 Altova GmbH

UModel API Reference 1113UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLElement::AllAppliableStereotypes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLStereotype .

Operation IUMLElement::AppliedStereotypes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLStereotype .

Operation IUMLElement::ApplyPredefinedStereotype

parameter name direction type type modifier multiplicity default
nStereotype in ENUMUMLPredef

inedElement

return return IUMLStereotypeA

pplication

Operation IUMLElement::ApplyStereotype

parameter name direction type type modifier multiplicity default
ipStereotype in IUMLStereotype

return return IUMLStereotypeA

pplication

Operation IUMLElement::EraseFromModel

parameter name direction type type modifier multiplicity default
return return void

document
ation

Use this function to erase the element from the model and all diagrams.

Use IUMLGuiDiagram ::EraseFromDiagram to erase from diagram only.

Operation IUMLElement::FindPredefinedOwnedElement

parameter name direction type type modifier multiplicity default
nElement in ENUMUMLPredef

inedElement

bRecursive in bool
return return IUMLData

Operation IUMLElement::GetOwnedElementsOfKind

parameter name direction type type modifier multiplicity default
strKind in string
bRecursive in bool
return return IUMLDataList

document
ation

get all owned elements of the specified kind (strKind)

Operation IUMLElement::GetStereotypeApplicationForPredefinedStereotype

969

1229

969

1229

1330

1230

1229

1230

1271 1273

1330

967

969

1114 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nElement in ENUMUMLPredef

inedElement

return return IUMLStereotypeA

pplication

Operation IUMLElement::GetStereotypeApplicationForStereotype

parameter name direction type type modifier multiplicity default
ipStereotype in IUMLStereotype

return return IUMLStereotypeA

pplication

Operation IUMLElement::InsertOwnedCommentAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLComment

Operation IUMLElement::IsPredefinedStereotypeApplied

parameter name direction type type modifier multiplicity default
nStereotype in ENUMUMLPredef

inedElement

return return bool

Operation IUMLElement::IsStereotypeApplied

parameter name direction type type modifier multiplicity default
ipStereotype in IUMLStereotype

return return bool

Operation IUMLElement::OwnedComments

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLComment .

Operation IUMLElement::OwnedDocComment

parameter name direction type type modifier multiplicity default
return return IUMLComment

Operation IUMLElement::OwnedDocCommentBody

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLElement::OwnedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

1330

1230

1229

1230

1087

1330

1229

969

1087

1087

969

© 2018-2024 Altova GmbH

UModel API Reference 1115UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

document
ation

A list of elements of type IUMLElement .

Operation IUMLElement::Owner

parameter name direction type type modifier multiplicity default
return return IUMLElement

Operation IUMLElement::StereotypeApplications

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLStereotypeApplication .

Operation IUMLElement::UnapplyPredefinedStereotype

parameter name direction type type modifier multiplicity default
nStereotype in ENUMUMLPredef

inedElement

return return void

Operation IUMLElement::UnapplyStereotype

parameter name direction type type modifier multiplicity default
ipStereotype in IUMLStereotype

return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.59 UModelAPI - IUMLElementImport

Interface IUMLElementImport

diagram

1112

1112

969

1230

1330

1229

http://www.altova.com/umodel
http://www.altova.com/umodel

1116 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertElementImportAt

Interface IUMLNamespace Operation InsertElementImportAt

Operation IUMLElementImport::Alias

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLElementImport::ImportedElement

parameter name direction type type modifier multiplicity default
return return IUMLPackageable

Element

Operation IUMLElementImport::ImportingNamespace

parameter name direction type type modifier multiplicity default
return return IUMLNamespace

Operation IUMLElementImport::Visibility

parameter name direction type type modifier multiplicity default
return return ENUMUMLVisibili

tyKind

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.60 UModelAPI - IUMLEncapsulatedClassifier

Interface IUMLEncapsulatedClassifier

diagram

974 997

1181 1182

1197

1181

1332

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1117UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLEncapsulatedClassifier::OwnedPorts

parameter name direction type type modifier multiplicity default
return return IUMLDataList

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.61 UModelAPI - IUMLEnumeration

Interface IUMLEnumeration

diagram

969

http://www.altova.com/umodel
http://www.altova.com/umodel

1118 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation Enumeration
Interface

IUMLEnumerationLiteral

Operation Enumeration

Operation IUMLEnumeration::CodeFileNameCount

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLEnumeration::EraseCodeFileNameAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLEnumeration::GetCodeFileName

parameter name direction type type modifier multiplicity default
nIdx in int
return return string

Operation IUMLEnumeration::GetCodeFilePath

parameter name direction type type modifier multiplicity default
nIdx in int
return return string

document
ation

get the full code file path

Operation IUMLEnumeration::InsertCodeFileNameAt

parameter name direction type type modifier multiplicity default
nIdx in int
strNewVal in string
return return void

Operation IUMLEnumeration::InsertOwnedLiteralAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLEnumeratio

nLiteral

974 985

1119

1120

1119

© 2018-2024 Altova GmbH

UModel API Reference 1119UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLEnumeration::OwnedLiterals

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLEnumerationLiteral .

Operation IUMLEnumeration::SetCodeFileName

parameter name direction type type modifier multiplicity default
nIdx in int
strNewVal in string
return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.62 UModelAPI - IUMLEnumerationLiteral

Interface IUMLEnumerationLiteral

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertOwnedLiteralAt

Interface IUMLEnumeration Operation InsertOwnedLiteralAt

Operation IUMLEnumerationLiteral::Default

parameter name direction type type modifier multiplicity default
return return string

969

1119

974 1003

1117 1118

http://www.altova.com/umodel
http://www.altova.com/umodel

1120 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLEnumerationLiteral::Enumeration

parameter name direction type type modifier multiplicity default
return return IUMLEnumeratio

n

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.63 UModelAPI - IUMLEvent

Interface IUMLEvent

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation Event OccurringEvent
Interface

IUMLOccurrenceSpecification

Operation OccurringEvent

Interface IUMLTrigger Operation Event

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1117

974 987 1018

1187

1188

1248 1248

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1121UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.64 UModelAPI - IUMLExceptionHandler

Interface IUMLExceptionHandler

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertHandlerAt

Interface IUMLExecutableNode Operation InsertHandlerAt

Operation IUMLExceptionHandler::EraseExceptionTypeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLExceptionHandler::ExceptionInput

parameter name direction type type modifier multiplicity default
return return IUMLObjectNode

Operation IUMLExceptionHandler::ExceptionTypes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLClassifier .

Operation IUMLExceptionHandler::HandlerBody

parameter name direction type type modifier multiplicity default
return return IUMLExecutableN

ode

974 998

1122 1123

1185

969

1080

1122

1122 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLExceptionHandler::InsertExceptionTypeAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLClassifier

return return void

Operation IUMLExceptionHandler::ProtectedNode

parameter name direction type type modifier multiplicity default
return return IUMLExecutableN

ode

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.65 UModelAPI - IUMLExecutableNode

Interface IUMLExecutableNode

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation HandlerBody ProtectedNode

Interface IUMLExceptionHandler Operation HandlerBody ProtectedNode

Operation IUMLExecutableNode::Handlers

parameter name direction type type modifier multiplicity default

1080

1122

974 992 1025

1121 1121 1122

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1123UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLDataList

document
ation

A list of elements of type IUMLExceptionHandler .

Operation IUMLExecutableNode::InsertHandlerAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLExceptionHa

ndler

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.66 UModelAPI - IUMLExecutionEnvironment

Interface IUMLExecutionEnvironment

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

969

1121

1121

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1124 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.67 UModelAPI - IUMLExecutionSpecification

Interface IUMLExecutionSpecification

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation ExecutionSpecificationFinish

 ExecutionSpecificationStart
Interface

IUMLOccurrenceSpecification

Operation ExecutionSpecificationFinish

 ExecutionSpecificationStart

Operation IUMLExecutionSpecification::Finish

parameter name direction type type modifier multiplicity default
return return IUMLOccurrenceS

pecification

Operation IUMLExecutionSpecification::Start

parameter name direction type type modifier multiplicity default
return return IUMLOccurrenceS

pecification

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 988

988

1187

1188

1188

1187

1187

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1125UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.68 UModelAPI - IUMLExpansionNode

Interface IUMLExpansionNode

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertInputElementAt

 InsertOutputElementAt

Interface IUMLExpansionRegion Operation InsertInputElementAt

 InsertOutputElementAt

Operation IUMLExpansionNode::RegionAsInput

parameter name direction type type modifier multiplicity default
return return IUMLExpansionR

egion

Operation IUMLExpansionNode::RegionAsOutput

parameter name direction type type modifier multiplicity default
return return IUMLExpansionR

egion

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 999

1001

1126 1127

1127

1126

1126

http://www.altova.com/umodel
http://www.altova.com/umodel

1126 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.69 UModelAPI - IUMLExpansionRegion

Interface IUMLExpansionRegion

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation RegionAsInput

 RegionAsOutput

Interface IUMLExpansionNode Operation RegionAsInput

 RegionAsOutput

Operation IUMLExpansionRegion::EraseInputElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLExpansionRegion::EraseOutputElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

974 1027

1027

1125 1125

1125

© 2018-2024 Altova GmbH

UModel API Reference 1127UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLExpansionRegion::InputElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLExpansionNode .

Operation IUMLExpansionRegion::InsertInputElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipNode in IUMLExpansionN

ode

return return void

Operation IUMLExpansionRegion::InsertOutputElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipNode in IUMLExpansionN

ode

return return void

Operation IUMLExpansionRegion::Mode

parameter name direction type type modifier multiplicity default
return return ENUMUMLExpan

sionKind

Operation IUMLExpansionRegion::OutputElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLExpansionNode .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.70 UModelAPI - IUMLExpression

Interface IUMLExpression

diagram

969

1125

1125

1125

1326

969

1125

http://www.altova.com/umodel
http://www.altova.com/umodel

1128 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation Expression

Interface IUMLValueSpecification

Operation Expression

Operation IUMLExpression::Operands

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLValueSpecification .

Operation IUMLExpression::Symbol

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.71 UModelAPI - IUMLExtend

Interface IUMLExtend

diagram

974 988

1255 1256

969

1255

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1129UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertExtendAt

Interface IUMLUseCase Operation InsertExtendAt

Operation IUMLExtend::EraseExtensionLocationAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLExtend::ExtendedCase

parameter name direction type type modifier multiplicity default
return return IUMLUseCase

Operation IUMLExtend::Extension

parameter name direction type type modifier multiplicity default
return return IUMLUseCase

Operation IUMLExtend::ExtensionLocations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLExtensionPoint .

Operation IUMLExtend::InsertExtensionLocationAt

parameter name direction type type modifier multiplicity default
nIdx in int
pExtensionLocati
on

in IUMLExtensionPo

int

return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 997

1251 1253

1251

1251

969

1130

1130

http://www.altova.com/umodel
http://www.altova.com/umodel

1130 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.72 UModelAPI - IUMLExtensionPoint

Interface IUMLExtensionPoint

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertExtensionLocationAt

 InsertExtensionPointAt

Interface IUMLExtend Operation InsertExtensionLocationAt

Interface IUMLUseCase Operation InsertExtensionPointAt

Operation IUMLExtensionPoint::UseCase

parameter name direction type type modifier multiplicity default
return return IUMLUseCase

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.73 UModelAPI - IUMLFeature

Interface IUMLFeature

diagram

974 998

998

1128 1129

1251 1253

1251

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1131UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLFeature::FeaturingClassifiers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLClassifier .

Operation IUMLFeature::IsStatic

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.74 UModelAPI - IUMLFinalNode

Interface IUMLFinalNode

diagram

969

1080

http://www.altova.com/umodel
http://www.altova.com/umodel

1132 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.75 UModelAPI - IUMLFinalState

Interface IUMLFinalState

diagram

hierarchy

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1133UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.76 UModelAPI - IUMLFlowFinalNode

Interface IUMLFlowFinalNode

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.77 UModelAPI - IUMLForkNode

Interface IUMLForkNode

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1134 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.78 UModelAPI - IUMLFunctionBehavior

Interface IUMLFunctionBehavior

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1135UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.79 UModelAPI - IUMLGate

Interface IUMLGate

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertActualGateAt

 InsertFormalGateAt

Interface IUMLInteraction Operation InsertFormalGateAt

Interface IUMLInteractionUse Operation InsertActualGateAt

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.80 UModelAPI - IUMLGeneralization

Interface IUMLGeneralization

diagram

974 995

998

1149 1150

1153 1154

http://www.altova.com/umodel
http://www.altova.com/umodel

1136 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLClassifier Operation InsertGeneralizationAt

Interface IUMLDataAll Operation InsertGeneralizationAt

Operation IUMLGeneralization::General

parameter name direction type type modifier multiplicity default
return return IUMLClassifier

Operation IUMLGeneralization::IsSubstitutable

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLGeneralization::Specific

parameter name direction type type modifier multiplicity default
return return IUMLClassifier

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.81 UModelAPI - IUMLHyperlink

Interface IUMLHyperlink

diagram

1080 1082

974 998

1080

1080

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1137UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLHyperlink::DefaultLinkName

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLHyperlink::LinkAddress

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLHyperlink::OpenLink

parameter name direction type type modifier multiplicity default
return return void

Operation IUMLHyperlink::UserDefinedLinkName

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.82 UModelAPI - IUMLHyperlink2File

Interface IUMLHyperlink2File

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

1138 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertOwnedHyperlink2FileAt

Interface IUMLNamedElement Operation InsertOwnedHyperlink2FileAt

Operation IUMLHyperlink2File::SetHyperlinkFileAddress

parameter name direction type type modifier multiplicity default
strNewVal in string
return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.83 UModelAPI - IUMLHyperlink2GuiElement

Interface IUMLHyperlink2GuiElement

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertOwnedHyperlink2GuiElementA

t

Interface IUMLNamedElement Operation InsertOwnedHyperlink2GuiElementA

t

974 1002

1178 1179

974

1003

1178

1179

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1139UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLHyperlink2GuiElement::LinkedGuiElement

parameter name direction type type modifier multiplicity default
return return IUMLGuiVisibleEl

ement

Operation IUMLHyperlink2GuiElement::LinkedGuiElementCell

parameter name direction type type modifier multiplicity default
return return IUMLNamedElem

ent

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.84 UModelAPI - IUMLHyperlink2Model

Interface IUMLHyperlink2Model

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertOwnedHyperlink2ModelAt

Interface IUMLNamedElement Operation InsertOwnedHyperlink2ModelAt

Operation IUMLHyperlink2Model::LinkedModelElement

parameter name direction type type modifier multiplicity default
return return IUMLData

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1319

1178

974 1003

1178 1179

967

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1140 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.85 UModelAPI - IUMLInclude

Interface IUMLInclude

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertIncludeAt

Interface IUMLUseCase Operation InsertIncludeAt

Operation IUMLInclude::Addition

parameter name direction type type modifier multiplicity default
return return IUMLUseCase

Operation IUMLInclude::IncludingCase

parameter name direction type type modifier multiplicity default
return return IUMLUseCase

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 998

1251 1253

1251

1251

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1141UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.86 UModelAPI - IUMLInformationFlow

Interface IUMLInformationFlow

diagram

hierarchy

Operation IUMLInformationFlow::Conveyed

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLInformationFlow::EraseConveyedAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLInformationFlow::EraseInformationFlowRealizationAt

969

1142 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLInformationFlow::EraseInformationSourceAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLInformationFlow::EraseInformationTargetAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLInformationFlow::EraseRealizingConnectorAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLInformationFlow::InformationFlowRealizations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLInformationFlow::InformationSources

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLInformationFlow::InformationTargets

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLInformationFlow::InsertConveyedAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLClassifier

return return void

Operation IUMLInformationFlow::InsertInformationFlowRealizationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLRelationship

return return void

Operation IUMLInformationFlow::InsertInformationSourceAt

parameter name direction type type modifier multiplicity default
nIdx in int

969

969

969

1080

1218

© 2018-2024 Altova GmbH

UModel API Reference 1143UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

ipVal in IUMLNamedElem

ent

return return void

Operation IUMLInformationFlow::InsertInformationTargetAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLNamedElem

ent

return return void

Operation IUMLInformationFlow::InsertRealizingConnectorAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLConnector

return return void

Operation IUMLInformationFlow::RealizingConnectors

parameter name direction type type modifier multiplicity default
return return IUMLDataList

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.87 UModelAPI - IUMLInitialNode

Interface IUMLInitialNode

diagram

1178

1178

1095

969

http://www.altova.com/umodel
http://www.altova.com/umodel

1144 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.88 UModelAPI - IUMLInputPin

Interface IUMLInputPin

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1145UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface

IUMLCallOperationAction

Operation CallTarget SetNewCallTarget

Interface IUMLDataAll Operation CallTarget InsertArgumentAt

 InsertArgumentOfKindAt

 InsertInputValueAt

 SetNewCallTarget

 SetNewSignalTarget

 SignalTarget

Interface IUMLInvocationAction Operation InsertArgumentAt

 InsertArgumentOfKindAt

Interface IUMLOpaqueAction Operation InsertInputValueAt

Interface IUMLSendSignalAction Operation SetNewSignalTarget

 SignalTarget

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1074

1074 1074

974 980 995

995

999

1029

1032

1035

1162 1163

1163

1189 1189

1219 1220

1220

http://www.altova.com/umodel
http://www.altova.com/umodel

1146 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.89 UModelAPI - IUMLInstanceSpecification

Interface IUMLInstanceSpecification

diagram

hierarchy

typedElem
ents

Interface IUMLConstraint Operation SetNewSpecificationInstanceValue

Interface IUMLDataAll Operation InsertSlotInstanceValueAt

 Instance OwningInstance

 OwningInstanceSpec
 SetNewDefaultValueInstanceValue

 SetNewSpecificationInstanceValue

 SetSlotInstanceValueAt
Interface

IUMLInstanceSpecification

Operation SetNewSpecificationInstanceValue

 SetSlotInstanceValueAt

Interface IUMLInstanceValue Operation Instance

Interface IUMLParameter Operation SetNewDefaultValueInstanceValue

Interface IUMLProperty Operation SetNewDefaultValueInstanceValue

Interface IUMLSlot Operation InsertSlotInstanceValueAt

 OwningInstance

Interface IUMLValueSpecification

Operation OwningInstanceSpec

Operation IUMLInstanceSpecification::Classifier

parameter name direction type type modifier multiplicity default

1097

1099

974 1006

1007 1023

1023

1030

1032 1034

1146 1147 1147

1148 1149

1200

1201

1207

1210

1222 1222

1222

1255 1256

© 2018-2024 Altova GmbH

UModel API Reference 1147UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLClassifier

Operation IUMLInstanceSpecification::InsertSlotAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipDefiningFeature

in IUMLStructuralFe

ature

return return IUMLSlot

Operation IUMLInstanceSpecification::SetNewSpecification

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLInstanceSpecification::SetNewSpecificationInstanceValue

parameter name direction type type modifier multiplicity default
ipInstance in IUMLInstanceSpe

cification

return return IUMLInstanceValu

e

Operation IUMLInstanceSpecification::SetNewSpecificationLiteralString

parameter name direction type type modifier multiplicity default
strNewVal in string
return return IUMLLiteralString

Operation IUMLInstanceSpecification::SetSlotInstanceValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipForDefiningFeat
ure

in IUMLStructuralFe

ature

ipInstance in IUMLInstanceSpe

cification

return return IUMLInstanceValu

e

Operation IUMLInstanceSpecification::SetSlotValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipForDefiningFeat
ure

in IUMLStructuralFe

ature

strNewValue in string
return return IUMLValueSpecifi

cation

Operation IUMLInstanceSpecification::Slots

parameter name direction type type modifier multiplicity default
return return IUMLDataList

1080

1231

1222

1255

1146

1148

1169

1231

1146

1148

1231

1255

969

1148 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

document
ation

A list of elements of type IUMLSlot .

Operation IUMLInstanceSpecification::Specification

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.90 UModelAPI - IUMLInstanceValue

Interface IUMLInstanceValue

diagram

hierarchy

typedElem
ents

Interface IUMLConstraint Operation SetNewSpecificationInstanceValue

Interface IUMLDataAll Operation InsertSlotInstanceValueAt
 SetNewDefaultValueInstanceValue

 SetNewSpecificationInstanceValue

 SetSlotInstanceValueAt
Interface

IUMLInstanceSpecification

Operation SetNewSpecificationInstanceValue

 SetSlotInstanceValueAt

Interface IUMLParameter Operation SetNewDefaultValueInstanceValue

Interface IUMLProperty Operation SetNewDefaultValueInstanceValue

Interface IUMLSlot Operation InsertSlotInstanceValueAt

1222

1255

1097

1099

974 1006

1030

1032 1034

1146 1147 1147

1200

1201

1207

1210

1222 1222

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1149UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLInstanceValue::Instance

parameter name direction type type modifier multiplicity default
return return IUMLInstanceSpe

cification

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.91 UModelAPI - IUMLInteraction

Interface IUMLInteraction

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation RefersTo

Interface IUMLInteractionUse Operation RefersTo

Operation IUMLInteraction::FormalGates

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLGate .

1146

974 1027

1153 1154

969

1135

http://www.altova.com/umodel
http://www.altova.com/umodel

1150 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLInteraction::Fragments

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLInteractionFragment .

Operation IUMLInteraction::InsertFormalGateAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLGate

Operation IUMLInteraction::InsertFragmentAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLInteractionFr

agment

Operation IUMLInteraction::InsertLifelineAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLLifeline

Operation IUMLInteraction::InsertMessageAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLMessage

Operation IUMLInteraction::Lifelines

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLLifeline .

Operation IUMLInteraction::Messages

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLMessage .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

969

1152

1135

1152

1165

1172

969

1165

969

1172

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1151UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.92 UModelAPI - IUMLInteractionConstraint

Interface IUMLInteractionConstraint

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation OperandGuard

 SetNewOperandGuard
Interface

IUMLInteractionOperand

Operation OperandGuard

 SetNewOperandGuard

Operation IUMLInteractionConstraint::MaxInt

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLInteractionConstraint::MinInt

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLInteractionConstraint::SetNewMaxInt

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

974 1019

1031

1152

1153

1153

1255

1255

1255

1152 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLInteractionConstraint::SetNewMinInt

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.93 UModelAPI - IUMLInteractionFragment

Interface IUMLInteractionFragment

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertCoveredByAt

 InsertFragmentAt

Interface IUMLInteraction Operation InsertFragmentAt

Interface IUMLLifeline Operation InsertCoveredByAt

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.94 UModelAPI - IUMLInteractionOperand

Interface IUMLInteractionOperand

diagram

1255

974 996

998

1149 1150

1165 1165

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1153UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface

IUMLCombinedFragment

Operation InsertOperandAt

Interface IUMLDataAll Operation InsertOperandAt

Operation IUMLInteractionOperand::OperandGuard

parameter name direction type type modifier multiplicity default
return return IUMLInteractionC

onstraint

Operation IUMLInteractionOperand::SetNewOperandGuard

parameter name direction type type modifier multiplicity default
return return IUMLInteractionC

onstraint

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.95 UModelAPI - IUMLInteractionUse

Interface IUMLInteractionUse

diagram

1086

1086

974 1001

1151

1151

http://www.altova.com/umodel
http://www.altova.com/umodel

1154 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLInteractionUse::ActualGates

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLGate .

Operation IUMLInteractionUse::InsertActualGateAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLGate

Operation IUMLInteractionUse::RefersTo

parameter name direction type type modifier multiplicity default
return return IUMLInteraction

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

969

1135

1135

1149

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1155UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.96 UModelAPI - IUMLInterface

Interface IUMLInterface

diagram

hierarchy

typedElem
ents

Interface

IUMLBehavioredClassifier

Operation InsertInterfaceRealizationAt

Interface IUMLClassifier Operation NestingInterface

Interface IUMLDataAll Operation Contract

 InsertInterfaceRealizationAt

 Interface NestingInterface
Interface

IUMLInterfaceRealization

Operation Contract

Interface IUMLOperation Operation Interface

Interface IUMLProperty Operation Interface
Interface

IUMLProtocolStateMachine

Operation Interface

1069

1069

1080 1082

974 982

999

1008 1018

1158

1158

1192 1193

1207 1209

1210

1211

1156 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Interface IUMLReception Operation Interface

Operation IUMLInterface::CodeFileNameCount

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLInterface::EraseCodeFileNameAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLInterface::GetCodeFileName

parameter name direction type type modifier multiplicity default
nIdx in int
return return string

Operation IUMLInterface::GetCodeFilePath

parameter name direction type type modifier multiplicity default
nIdx in int
return return string

document
ation

get the full code file path

Operation IUMLInterface::InsertCodeFileNameAt

parameter name direction type type modifier multiplicity default
nIdx in int
strNewVal in string
return return void

Operation IUMLInterface::InsertNestedClassifierAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLClassifier

Operation IUMLInterface::InsertOwnedAttributeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLProperty

Operation IUMLInterface::InsertOwnedOperationAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLOperation

Operation IUMLInterface::InsertOwnedReceptionAt

1214 1215

1080

1207

1192

© 2018-2024 Altova GmbH

UModel API Reference 1157UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLReception

Operation IUMLInterface::NestedClassifiers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLClassifier .

Operation IUMLInterface::OwnedAttributes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLProperty .

Operation IUMLInterface::OwnedOperations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLOperation .

Operation IUMLInterface::OwnedReceptions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLInterface::Protocol

parameter name direction type type modifier multiplicity default
return return IUMLProtocolStat

eMachine

Operation IUMLInterface::SetCodeFileName

parameter name direction type type modifier multiplicity default
nIdx in int
strNewVal in string
return return void

Operation IUMLInterface::SetNewProtocol

parameter name direction type type modifier multiplicity default
return return IUMLProtocolStat

eMachine

Operation IUMLInterface::WasUsedForCodeSynchronization

parameter name direction type type modifier multiplicity default
return return bool

1214

969

1080

969

1207

969

1192

969

1210

1210

1158 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.97 UModelAPI - IUMLInterfaceRealization

Interface IUMLInterfaceRealization

diagram

hierarchy

typedElem
ents

Interface

IUMLBehavioredClassifier

Operation InsertInterfaceRealizationAt

Interface IUMLDataAll Operation InsertInterfaceRealizationAt

Operation IUMLInterfaceRealization::Contract

parameter name direction type type modifier multiplicity default
return return IUMLInterface

Operation IUMLInterfaceRealization::ImplementingClassifier

parameter name direction type type modifier multiplicity default
return return IUMLBehavioredC

lassifier

1069

1069

974 999

1155

1069

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1159UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.98 UModelAPI - IUMLInterruptibleActivityRegion

Interface IUMLInterruptibleActivityRegion

diagram

hierarchy

Operation IUMLInterruptibleActivityRegion::EraseInterruptingEdgeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLInterruptibleActivityRegion::EraseNodeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLInterruptibleActivityRegion::InsertInterruptingEdgeAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipEdge in IUMLActivityEdge

return return void

Operation IUMLInterruptibleActivityRegion::InsertNodeAt

1051

http://www.altova.com/umodel
http://www.altova.com/umodel

1160 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nIdx in int
ipEdge in IUMLActivityNod

e

return return void

Operation IUMLInterruptibleActivityRegion::InterruptingEdges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityEdge .

Operation IUMLInterruptibleActivityRegion::Nodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLActivityNode .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.99 UModelAPI - IUMLInterval

Interface IUMLInterval

diagram

1055

969

1051

969

1055

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1161UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLInterval::Max

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLInterval::Min

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLInterval::SetNewMax

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLInterval::SetNewMin

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1255

1255

1255

1255

http://www.altova.com/umodel
http://www.altova.com/umodel

1162 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.100 UModelAPI - IUMLIntervalConstraint

Interface IUMLIntervalConstraint

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.101 UModelAPI - IUMLInvocationAction

Interface IUMLInvocationAction

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1163UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLInvocationAction::Arguments

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLInputPin .

Operation IUMLInvocationAction::InsertArgumentAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLInputPin

Operation IUMLInvocationAction::InsertArgumentOfKindAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLInputPin

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

969

1144

1144

1144

http://www.altova.com/umodel
http://www.altova.com/umodel

1164 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.102 UModelAPI - IUMLJoinNode

Interface IUMLJoinNode

diagram

hierarchy

Operation IUMLJoinNode::IsCombineDuplicate

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLJoinNode::JoinSpec

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1165UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.103 UModelAPI - IUMLLifeline

Interface IUMLLifeline

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation Covered GetSourceLifeline

 GetTargetLifeline

 InsertLifelineAt

Interface IUMLInteraction Operation InsertLifelineAt

Interface IUMLMessage Operation GetSourceLifeline

 GetTargetLifeline
Interface

IUMLOccurrenceSpecification

Operation Covered

Interface IUMLStateInvariant Operation Covered

Operation IUMLLifeline::EraseCoveredByAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLLifeline::InsertCoveredByAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLInteractionFr

agment

return return void

Operation IUMLLifeline::Represents

parameter name direction type type modifier multiplicity default

974 983 991

991

1000

1149 1150

1172 1172

1172

1187

1188

1226 1227

1152

1166 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return IUMLConnectable

Element

Operation IUMLLifeline::Selector

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLLifeline::SetNewSelector

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.104 UModelAPI - IUMLLiteralBoolean

Interface IUMLLiteralBoolean

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1092

1255

1255

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1167UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.105 UModelAPI - IUMLLiteralInteger

Interface IUMLLiteralInteger

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.106 UModelAPI - IUMLLiteralNull

Interface IUMLLiteralNull

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

1168 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.107 UModelAPI - IUMLLiteralSpecification

Interface IUMLLiteralSpecification

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1169UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.108 UModelAPI - IUMLLiteralString

Interface IUMLLiteralString

diagram

hierarchy

typedElem
ents

Interface IUMLConstraint Operation SetNewSpecificationLiteralString

Interface IUMLDataAll Operation SetNewDefaultValueLiteralString

 SetNewSpecificationLiteralString
Interface

IUMLInstanceSpecification

Operation SetNewSpecificationLiteralString

Interface IUMLParameter Operation SetNewDefaultValueLiteralString

Interface IUMLProperty Operation SetNewDefaultValueLiteralString

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.109 UModelAPI - IUMLLiteralUnlimitedNatural

Interface IUMLLiteralUnlimitedNatural

diagram

1097 1099

974 1030

1032

1146

1147

1200 1201

1207 1210

http://www.altova.com/umodel
http://www.altova.com/umodel

1170 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.110 UModelAPI - IUMLManifestation

Interface IUMLManifestation

diagram

hierarchy

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1171UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

typedElem
ents

Interface IUMLArtifact Operation InsertManifestationAt

Interface IUMLDataAll Operation InsertManifestationAt

Operation IUMLManifestation::UtilizedElement

parameter name direction type type modifier multiplicity default
return return IUMLPackageable

Element

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.111 UModelAPI - IUMLMergeNode

Interface IUMLMergeNode

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1061 1061

974 1000

1197

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1172 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.112 UModelAPI - IUMLMessage

Interface IUMLMessage

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertMessageAt Message

Interface IUMLInteraction Operation InsertMessageAt

Interface IUMLMessageEnd Operation Message

Operation IUMLMessage::GetOperation

parameter name direction type type modifier multiplicity default
return return IUMLOperation

Operation IUMLMessage::GetSourceLifeline

parameter name direction type type modifier multiplicity default
return return IUMLLifeline

Operation IUMLMessage::GetTargetLifeline

parameter name direction type type modifier multiplicity default
return return IUMLLifeline

Operation IUMLMessage::InsertOwnedArgumentAt

974 1000 1016

1149 1150

1174 1174

1192

1165

1165

© 2018-2024 Altova GmbH

UModel API Reference 1173UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLMessage::MessageKind

parameter name direction type type modifier multiplicity default
return return ENUMUMLMessa

geKind

Operation IUMLMessage::MessageSort

parameter name direction type type modifier multiplicity default
return return ENUMUMLMessa

geSort

Operation IUMLMessage::OwnedArguments

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLValueSpecification .

Operation IUMLMessage::ReceiveEvent

parameter name direction type type modifier multiplicity default
return return IUMLMessageEnd

Operation IUMLMessage::SendEvent

parameter name direction type type modifier multiplicity default
return return IUMLMessageEnd

Operation IUMLMessage::SetOperation

parameter name direction type type modifier multiplicity default
ipVal in IUMLOperation

return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1255

1328

1329

969

1255

1174

1174

1192

http://www.altova.com/umodel
http://www.altova.com/umodel

1174 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.113 UModelAPI - IUMLMessageEnd

Interface IUMLMessageEnd

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation ReceiveEvent SendEvent

Interface IUMLMessage Operation ReceiveEvent SendEvent

Operation IUMLMessageEnd::Message

parameter name direction type type modifier multiplicity default
return return IUMLMessage

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.114 UModelAPI - IUMLMessageEvent

Interface IUMLMessageEvent

diagram

974 1026 1028

1172 1173 1173

1172

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1175UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.115 UModelAPI - IUMLMessageOccurrenceSpecification

Interface IUMLMessageOccurrenceSpecification

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1176 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.116 UModelAPI - IUMLModel

Interface IUMLModel

diagram

hierarchy

Operation IUMLModel::Viewpoint

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1177UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.117 UModelAPI - IUMLMultiplicityElement

Interface IUMLMultiplicityElement

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation OwningLower OwningUpper

Interface IUMLValueSpecification

Operation OwningLower OwningUpper

Operation IUMLMultiplicityElement::GetMultiplicity

parameter name direction type type modifier multiplicity default
bWithBrackets in bool
return return string

Operation IUMLMultiplicityElement::InsertLowerUpperValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
strLower in string
strUpper in string
return return void

Operation IUMLMultiplicityElement::IsOrdered

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLMultiplicityElement::IsUnique

974 1023 1024

1255 1257 1257

1178 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLMultiplicityElement::LowerValues

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLValueSpecification .

Operation IUMLMultiplicityElement::SetMultiplicity

parameter name direction type type modifier multiplicity default
strNewVal in string
return return void

Operation IUMLMultiplicityElement::UpperValues

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLValueSpecification .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.118 UModelAPI - IUMLNamedElement

Interface IUMLNamedElement

diagram

hierarchy

typedElem
ents

Interface

IUMLCommentTextHyperlink

Operation SetHyperlinkGuiElementAddress

Interface IUMLDataAll Operation FindOwnedMemberWithQualifiedNa

me

 InsertInformationSourceAt

 InsertInformationTargetAt
 InsertOwnedHyperlink2GuiElementA

t LinkedGuiElementCell

969

1255

969

1255

1088

1089

974

989

999

999

1003 1014

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1179UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 SetHyperlinkGuiElementAddress

 TimeObservationEvent

Interface IUMLGuiTextHyperlink Operation SetHyperlinkGuiElementAddress
Interface

IUMLHyperlink2GuiElement

Operation LinkedGuiElementCell

Interface IUMLInformationFlow Operation InsertInformationSourceAt

 InsertInformationTargetAt

Interface IUMLNamedElement Operation InsertOwnedHyperlink2GuiElementA

t

Interface IUMLNamespace Operation FindOwnedMemberWithQualifiedNa

me

Interface IUMLTimeObservation Operation TimeObservationEvent

Operation IUMLNamedElement::ClientDependencies

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLDependency .

Operation IUMLNamedElement::InsertOwnedHyperlink2FileAt

parameter name direction type type modifier multiplicity default
nIdx in int
strFilePathOrUrl in string
return return IUMLHyperlink2Fi

le

Operation IUMLNamedElement::InsertOwnedHyperlink2GuiElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipLinkedGuiEleme
nt

in IUMLGuiVisibleEl

ement

ipLinkedGuiEleme
ntCell

in IUMLNamedElem

ent

return return IUMLHyperlink2G

uiElement

Operation IUMLNamedElement::InsertOwnedHyperlink2ModelAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipLinkedData in IUMLData

return return IUMLHyperlink2

Model

Operation IUMLNamedElement::Name

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLNamedElement::Namespace

parameter name direction type type modifier multiplicity default
return return IUMLNamespace

1029

1039

1310 1311

1138

1139

1141 1142

1143

1178

1179

1181

1181

1245 1246

969

1103

1137

1319

1178

1138

967

1139

1181

1180 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLNamedElement::OwnedHyperlinks

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLHyperlink .

Operation IUMLNamedElement::QualifiedName

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLNamedElement::SetName

parameter name direction type type modifier multiplicity default
strStartWith in string
return return string

document
ation

This function will find and set a unique name (starting with 'strStartWith') that the element is distinguishable
in its parent namespace.

Operation IUMLNamedElement::SupplierDependencies

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLDependency .

Operation IUMLNamedElement::Visibility

parameter name direction type type modifier multiplicity default
return return ENUMUMLVisibili

tyKind

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

969

1136

969

1103

1332

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1181UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.119 UModelAPI - IUMLNamespace

Interface IUMLNamespace

diagram

hierarchy

typedElem
ents

Interface IUMLConstraint Operation Context

Interface IUMLDataAll Operation Context

 ImportingNamespace

 Namespace

Interface IUMLElementImport Operation ImportingNamespace

Interface IUMLNamedElement Operation Namespace

Interface IUMLPackageImport Operation ImportingNamespace

Operation IUMLNamespace::ElementImports

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLElementImport .

Operation IUMLNamespace::FindOwnedMemberWithQualifiedName

parameter name direction type type modifier multiplicity default
strName in string
return return IUMLNamedElem

ent

Operation IUMLNamespace::ImportedMembers

parameter name direction type type modifier multiplicity default

1097 1098

974 982

993

1017

1115 1116

1178 1179

1198 1198

969

1115

1178

1182 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return IUMLDataList

document
ation

A list of elements of type IUMLPackageableElement .

Operation IUMLNamespace::InsertElementImportAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipImportedEleme
nt

in IUMLPackageable

Element

return return IUMLElementImp

ort

Operation IUMLNamespace::InsertOwnedRuleAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLConstraint

Operation IUMLNamespace::InsertPackageImportAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipImportedPacka
ge

in IUMLPackage

return return IUMLPackageImp

ort

Operation IUMLNamespace::InsertPackageMergeAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipMergedPackage

in IUMLPackage

return return IUMLPackageMer

ge

Operation IUMLNamespace::Members

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLNamedElement .

Operation IUMLNamespace::OwnedMembers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLNamedElement .

Operation IUMLNamespace::OwnedRules

parameter name direction type type modifier multiplicity default
return return IUMLDataList

969

1197

1197

1115

1097

1194

1198

1194

1199

969

1178

969

1178

969

© 2018-2024 Altova GmbH

UModel API Reference 1183UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

document
ation

A list of elements of type IUMLConstraint .

Operation IUMLNamespace::PackageImports

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLPackageImport .

Operation IUMLNamespace::PackageMerges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLPackageMerge .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.120 UModelAPI - IUMLNode

Interface IUMLNode

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertNestedNodeAt

Interface IUMLNode Operation InsertNestedNodeAt

Operation IUMLNode::InsertNestedNodeAt

parameter name direction type type modifier multiplicity default

1097

969

1198

969

1199

974 1001

1183 1183

http://www.altova.com/umodel
http://www.altova.com/umodel

1184 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

nIdx in int
strKind in string
return return IUMLNode

Operation IUMLNode::NestedNodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLNode .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.121 UModelAPI - IUMLObjectFlow

Interface IUMLObjectFlow

diagram

hierarchy

Operation IUMLObjectFlow::IsMultiCast

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLObjectFlow::IsMultiReceive

parameter name direction type type modifier multiplicity default

1183

969

1183

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1185UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return bool

Operation IUMLObjectFlow::Transformation

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.122 UModelAPI - IUMLObjectNode

Interface IUMLObjectNode

dia
gra

m

hier
arc
hy

typ
edE
lem

Interface IUMLDataAll Operation ExceptionInput

Interface IUMLExceptionHandler Operation ExceptionInput

1065

974 988

1121 1121

http://www.altova.com/umodel
http://www.altova.com/umodel

1186 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

ent
s

Operation IUMLObjectNode::EraseInStateAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLObjectNode::ExceptionHandlers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLExceptionHandler .

Operation IUMLObjectNode::InsertInStateAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLState

return return void

Operation IUMLObjectNode::InStates

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLState .

Operation IUMLObjectNode::IsControlType

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLObjectNode::Ordering

parameter name direction type type modifier multiplicity default
return return ENUMUMLObject

NodeOrderingKin

d

Operation IUMLObjectNode::Selection

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

Operation IUMLObjectNode::UpperBound

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

969

1121

1223

969

1223

1329

1065

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1187UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.123 UModelAPI - IUMLObservation

Interface IUMLObservation

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertObservationAt

Interface IUMLDuration Operation InsertObservationAt

Interface IUMLTimeExpression Operation InsertObservationAt

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.124 UModelAPI - IUMLOccurrenceSpecification

Interface IUMLOccurrenceSpecification

diagram

974 1001

1108 1109

1243 1244

http://www.altova.com/umodel
http://www.altova.com/umodel

1188 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation Finish Start
Interface

IUMLExecutionSpecification

Operation Finish Start

Operation IUMLOccurrenceSpecification::Covered

parameter name direction type type modifier multiplicity default
return return IUMLLifeline

Operation IUMLOccurrenceSpecification::ExecutionSpecificationFinish

parameter name direction type type modifier multiplicity default
return return IUMLExecutionSp

ecification

Operation IUMLOccurrenceSpecification::ExecutionSpecificationStart

parameter name direction type type modifier multiplicity default
return return IUMLExecutionSp

ecification

Operation IUMLOccurrenceSpecification::OccurringEvent

parameter name direction type type modifier multiplicity default
return return IUMLEvent

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 990 1036

1124

1124 1124

1165

1124

1124

1120

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1189UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.125 UModelAPI - IUMLOpaqueAction

Interface IUMLOpaqueAction

diagram

hierarchy

Operation IUMLOpaqueAction::Body

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLOpaqueAction::InputValues

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLOpaqueAction::InsertInputValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLInputPin

969

1144

1190 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLOpaqueAction::InsertOutputValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLOutputPin

Operation IUMLOpaqueAction::Language

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLOpaqueAction::OutputValues

parameter name direction type type modifier multiplicity default
return return IUMLDataList

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.126 UModelAPI - IUMLOpaqueBehavior

Interface IUMLOpaqueBehavior

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1193

969

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1191UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.127 UModelAPI - IUMLOpaqueExpression

Interface IUMLOpaqueExpression

diagram

hierarchy

typedElem
ents

Interface IUMLAbstraction Operation Mapping SetNewMapping

Interface IUMLDataAll Operation Mapping SetNewMapping

Operation IUMLOpaqueExpression::Body

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLOpaqueExpression::Language

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1043 1044 1044

974 1015 1031

http://www.altova.com/umodel
http://www.altova.com/umodel

1192 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.128 UModelAPI - IUMLOperation

Interface IUMLOperation

diagram

hierarchy

typedElem
ents

Interface IDocument Operation GenerateSequenceDiagram

Interface IUMLArtifact Operation InsertOwnedOperationAt

Interface IUMLCallEvent Operation Operation
Interface

IUMLCallOperationAction

Operation CallOperation

Interface IUMLClass Operation InsertOwnedOperationAt

Interface IUMLDataAll Operation CallOperation CodeOperation

 GetOperation

 InsertOwnedOperationAt

 Operation SetOperation

Interface IUMLDataType Operation InsertOwnedOperationAt
Interface

IUMLGuiSequenceDiagram

Operation CodeOperation

Interface IUMLInterface Operation InsertOwnedOperationAt

Interface IUMLMessage Operation GetOperation SetOperation

Interface IUMLParameter Operation Operation

Operation IUMLOperation::Class

895 897

1061 1062

1073 1073

1074

1074

1077 1078

974 980 980

991

1003

1019 1033

1101 1102

1297

1298

1155 1156

1172 1172 1173

1200 1201

© 2018-2024 Altova GmbH

UModel API Reference 1193UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLClass

Operation IUMLOperation::Datatype

parameter name direction type type modifier multiplicity default
return return IUMLDataType

Operation IUMLOperation::Interface

parameter name direction type type modifier multiplicity default
return return IUMLInterface

Operation IUMLOperation::IsOrdered

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLOperation::IsQuery

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLOperation::IsUnique

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLOperation::Type

parameter name direction type type modifier multiplicity default
return return IUMLType

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.129 UModelAPI - IUMLOutputPin

Interface IUMLOutputPin

diagram

1077

1101

1155

1249

http://www.altova.com/umodel
http://www.altova.com/umodel

1194 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface

IUMLAcceptEventAction

Operation InsertEventActionResultAt

Interface IUMLCallAction Operation InsertResultAt

Interface IUMLDataAll Operation InsertEventActionResultAt

 InsertOutputValueAt

 InsertResultAt Result

Interface IUMLOpaqueAction Operation InsertOutputValueAt
Interface

IUMLValueSpecificationAction

Operation Result

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.130 UModelAPI - IUMLPackage

Interface IUMLPackage

diagram

1044

1045

1071 1071

974 997

1001

1006 1027

1189 1190

1258

1258

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1195UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IDocument Operation RootPackage

Interface IImportSourceDlg Operation ImportTarget
Interface

IModelTransformationDlg

Operation SourcePackage

 TargetPackage

Interface IUMLDataAll Operation ApplyingPackage

 ImportedPackage

 InsertPackageImportAt

 InsertPackageMergeAt

 MergedPackage

 NestingPackage

 OwningPackage Package

 ReceivingPackage

Interface IUMLNamespace Operation InsertPackageImportAt

 InsertPackageMergeAt

Interface IUMLPackage Operation NestingPackage
Interface

IUMLPackageableElement

Operation OwningPackage

Interface IUMLPackageImport Operation ImportedPackage

Interface IUMLPackageMerge Operation MergedPackage

 ReceivingPackage

Interface IUMLProfileApplication

Operation ApplyingPackage

Interface IUMLType Operation Package

Operation IUMLPackage::InsertPackagedElementAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLPackageable

Element

Operation IUMLPackage::InsertPackagedElementRelationshipAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
ipFrom in IUMLElement

ipTo in IUMLElement

return return IUMLPackageable

Element

895 900

921 922

944

944

945

974 978

993

1004

1004

1016

1018

1023 1024

1026

1181 1182

1182

1194 1196

1197

1197

1198 1198

1199 1199

1199

1206 1206

1249 1249

1197

1112

1112

1197

1196 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLPackage::InsertProfileApplicationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipAppliedProfile in IUMLProfile

return return IUMLProfileAppli

cation

Operation IUMLPackage::IsCodeLangNamespace

parameter name direction type type modifier multiplicity default
nCodeLang in ENUMCodeLang

return return bool

Operation IUMLPackage::IsCodeLangNamespaceRoot

parameter name direction type type modifier multiplicity default
nCodeLang in ENUMCodeLang

return return bool

Operation IUMLPackage::IsShared

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLPackage::NestedPackages

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLPackage .

Operation IUMLPackage::NestingPackage

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IUMLPackage::OwnedStereotypes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLPackage::OwnedTypes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLType .

Operation IUMLPackage::PackagedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

1205

1206

960

960

969

1194

1194

969

969

1249

969

© 2018-2024 Altova GmbH

UModel API Reference 1197UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

document
ation

A list of elements of type IUMLPackageableElement .

Operation IUMLPackage::ProfileApplications

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLProfileApplication .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.131 UModelAPI - IUMLPackageableElement

Interface IUMLPackageableElement

diagram

hierarchy

typedElem
ents

Interface IUMLArtifact Operation InsertManifestationAt

Interface IUMLDataAll Operation ImportedElement

 InsertElementImportAt

 InsertManifestationAt

 InsertPackagedElementAt
 InsertPackagedElementRelationship

At UtilizedElement

Interface IUMLElementImport Operation ImportedElement

Interface IUMLManifestation Operation UtilizedElement

Interface IUMLNamespace Operation InsertElementImportAt

Interface IUMLPackage Operation InsertPackagedElementAt
 InsertPackagedElementRelationship

At

Operation IUMLPackageableElement::OwningPackage

parameter name direction type type modifier multiplicity default
return return IUMLPackage

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1197

969

1206

1061 1061

974 993

997

1000

1004

1004 1041

1115 1116

1170 1171

1181 1182

1194 1195

1195

1194

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1198 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.132 UModelAPI - IUMLPackageImport

Interface IUMLPackageImport

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertPackageImportAt

Interface IUMLNamespace Operation InsertPackageImportAt

Operation IUMLPackageImport::ImportedPackage

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IUMLPackageImport::ImportingNamespace

parameter name direction type type modifier multiplicity default
return return IUMLNamespace

Operation IUMLPackageImport::Visibility

parameter name direction type type modifier multiplicity default
return return ENUMUMLVisibili

tyKind

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 1004

1181 1182

1194

1181

1332

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1199UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.133 UModelAPI - IUMLPackageMerge

Interface IUMLPackageMerge

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertPackageMergeAt

Interface IUMLNamespace Operation InsertPackageMergeAt

Operation IUMLPackageMerge::MergedPackage

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IUMLPackageMerge::ReceivingPackage

parameter name direction type type modifier multiplicity default
return return IUMLPackage

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 1004

1181 1182

1194

1194

http://www.altova.com/umodel
http://www.altova.com/umodel

1200 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.134 UModelAPI - IUMLParameter

Interface IUMLParameter

diagra
m

hierar
chy

typed
Eleme

nts

Interface

IUMLActivityParameterNode

Operation Parameter

Interface IUMLBehavior Operation InsertOwnedParameterAt

Interface IUMLBehavioralFeature Operation InsertOwnedParameterAt

Interface IUMLDataAll Operation InsertOwnedParameterAt

 OwningParameter Parameter

Interface IUMLValueSpecification Operation OwningParameter

Operation IUMLParameter::Default

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLParameter::DefaultValue

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

1056

1057

1065 1066

1067 1068

974 1003

1023 1024

1255 1257

1255

© 2018-2024 Altova GmbH

UModel API Reference 1201UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLParameter::Direction

parameter name direction type type modifier multiplicity default
return return ENUMUMLParam

eterDirectionKind

Operation IUMLParameter::IsVarArgList

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLParameter::Operation

parameter name direction type type modifier multiplicity default
return return IUMLOperation

Operation IUMLParameter::SetNewDefaultValue

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLParameter::SetNewDefaultValueInstanceValue

parameter name direction type type modifier multiplicity default
ipInstance in IUMLInstanceSpe

cification

return return IUMLInstanceValu

e

Operation IUMLParameter::SetNewDefaultValueLiteralString

parameter name direction type type modifier multiplicity default
strNewVal in string
return return IUMLLiteralString

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.135 UModelAPI - IUMLParameterableElement

Interface IUMLParameterableElement

diagram

1330

1192

1255

1146

1148

1169

http://www.altova.com/umodel
http://www.altova.com/umodel

1202 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation Actual

 InsertParameterSubstitutionAt

 OwnedActual

 OwnedParameteredElement

 ParameteredElement
 SetNewOwnedParameteredElement

Interface IUMLTemplateBinding Operation InsertParameterSubstitutionAt
Interface

IUMLTemplateParameter

Operation OwnedParameteredElement

 ParameteredElement
 SetNewOwnedParameteredElement

Interface
IUMLTemplateParameterSubstitutio

n

Operation Actual OwnedActual

Operation IUMLParameterableElement::OwningTemplateParameter

parameter name direction type type modifier multiplicity default
return return IUMLTemplatePar

ameter

Operation IUMLParameterableElement::TemplateParameter

parameter name direction type type modifier multiplicity default
return return IUMLTemplatePar

ameter

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.136 UModelAPI - IUMLPin

Interface IUMLPin

diagram

974 975

1005

1020

1021

1024

1031

1237 1237

1238

1239

1239

1239

1239

1240 1240

1238

1238

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1203UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLPin::IsControl

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.137 UModelAPI - IUMLPort

Interface IUMLPort

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

1204 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertOwnedPortAt
Interface

IUMLStructuredClassifier

Operation InsertOwnedPortAt

Operation IUMLPort::IsBehavior

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLPort::IsConjugated

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLPort::IsService

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLPort::Protocol

parameter name direction type type modifier multiplicity default
return return IUMLProtocolStat

eMachine

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.138 UModelAPI - IUMLPrimitiveType

Interface IUMLPrimitiveType

diagram

974 1003

1234

1235

1210

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1205UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.139 UModelAPI - IUMLProfile

Interface IUMLProfile

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation AppliedProfile

 InsertProfileApplicationAt

Interface IUMLPackage Operation InsertProfileApplicationAt

Interface IUMLProfileApplication

Operation AppliedProfile

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 978

1005

1194 1196

1206 1206

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1206 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.140 UModelAPI - IUMLProfileApplication

Interface IUMLProfileApplication

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertProfileApplicationAt

Interface IUMLPackage Operation InsertProfileApplicationAt

Operation IUMLProfileApplication::AppliedProfile

parameter name direction type type modifier multiplicity default
return return IUMLProfile

Operation IUMLProfileApplication::ApplyingPackage

parameter name direction type type modifier multiplicity default
return return IUMLPackage

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 1005

1194 1196

1205

1194

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1207UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.141 UModelAPI - IUMLProperty

Interface IUMLProperty

diagram

hierarchy

typedElem
ents

Interface IUMLArtifact Operation InsertOwnedAttributeAt

Interface IUMLDataAll Operation AssociationEnd

 InsertOwnedAttributeAt

1061 1062

974 978

1001

1208 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 InsertQualifierAt Opposite

 OwningProperty

Interface IUMLDataType Operation InsertOwnedAttributeAt

Interface IUMLInterface Operation InsertOwnedAttributeAt

Interface IUMLProperty Operation AssociationEnd

 InsertQualifierAt Opposite

Interface IUMLSignal Operation InsertOwnedAttributeAt
Interface

IUMLStructuredClassifier

Operation InsertOwnedAttributeAt

Interface IUMLValueSpecification

Operation OwningProperty

Operation IUMLProperty::Aggregation

parameter name direction type type modifier multiplicity default
return return ENUMUMLAggre

gationKind

Operation IUMLProperty::Association

parameter name direction type type modifier multiplicity default
return return IUMLAssociation

Operation IUMLProperty::AssociationEnd

parameter name direction type type modifier multiplicity default
return return IUMLProperty

Operation IUMLProperty::Class

parameter name direction type type modifier multiplicity default
return return IUMLClass

Operation IUMLProperty::Classifier

parameter name direction type type modifier multiplicity default
return return IUMLClassifier

Operation IUMLProperty::Datatype

parameter name direction type type modifier multiplicity default
return return IUMLDataType

Operation IUMLProperty::Default

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLProperty::DefaultValue

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

1005 1019

1023

1101 1102

1155 1156

1207 1208

1209 1209

1220 1220

1234

1235

1255 1257

1323

1063

1207

1077

1080

1101

1255

© 2018-2024 Altova GmbH

UModel API Reference 1209UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLProperty::InsertQualifierAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLProperty

Operation IUMLProperty::Interface

parameter name direction type type modifier multiplicity default
return return IUMLInterface

Operation IUMLProperty::IsComposite

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLProperty::IsDerived

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLProperty::IsDerivedUnion

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLProperty::IsNavigable

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLProperty::IsOwnedEnd

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLProperty::Opposite

parameter name direction type type modifier multiplicity default
return return IUMLProperty

Operation IUMLProperty::OwningAssociation

parameter name direction type type modifier multiplicity default
return return IUMLAssociation

Operation IUMLProperty::OwningSignal

parameter name direction type type modifier multiplicity default
return return IUMLSignal

Operation IUMLProperty::Qualifiers

1207

1155

1207

1063

1220

1210 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLProperty .

Operation IUMLProperty::SetNewDefaultValue

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLProperty::SetNewDefaultValueInstanceValue

parameter name direction type type modifier multiplicity default
ipInstance in IUMLInstanceSpe

cification

return return IUMLInstanceValu

e

Operation IUMLProperty::SetNewDefaultValueLiteralString

parameter name direction type type modifier multiplicity default
strNewVal in string
return return IUMLLiteralString

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.142 UModelAPI - IUMLProtocolStateMachine

Interface IUMLProtocolStateMachine

diagram

969

1207

1255

1146

1148

1169

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1211UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation Protocol SetNewProtocol

Interface IUMLInterface Operation Protocol SetNewProtocol

Interface IUMLPort Operation Protocol

Operation IUMLProtocolStateMachine::Interface

parameter name direction type type modifier multiplicity default
return return IUMLInterface

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.143 UModelAPI - IUMLProtocolTransition

Interface IUMLProtocolTransition

diagram

974 1025 1032

1155 1157 1157

1203 1204

1155

http://www.altova.com/umodel
http://www.altova.com/umodel

1212 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLConstraint Operation OwningTransition

Interface IUMLDataAll Operation OwningTransition

Operation IUMLProtocolTransition::PostCondition

parameter name direction type type modifier multiplicity default
return return IUMLConstraint

Operation IUMLProtocolTransition::PreCondition

parameter name direction type type modifier multiplicity default
return return IUMLConstraint

Operation IUMLProtocolTransition::Referred

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLProtocolTransition::SetNewPostCondition

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLConstraint

Operation IUMLProtocolTransition::SetNewPreCondition

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLConstraint

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1097 1098

974 1023

1097

1097

969

1097

1097

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1213UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.144 UModelAPI - IUMLPseudostate

Interface IUMLPseudostate

diagram

hierarchy

typedElem
ents

Interface

IUMLConnectionPointReference

Operation InsertEntryAt InsertExitAt

Interface IUMLDataAll Operation InsertConnectionPointAt

 InsertEntryAt InsertExitAt

Interface IUMLState Operation InsertConnectionPointAt

Interface IUMLStateMachine Operation InsertConnectionPointAt

Operation IUMLPseudostate::PseudostateKind

parameter name direction type type modifier multiplicity default
return return ENUMUMLPseud

ostateKind

Operation IUMLPseudostate::State

parameter name direction type type modifier multiplicity default
return return IUMLState

Operation IUMLPseudostate::StateMachine

parameter name direction type type modifier multiplicity default
return return IUMLStateMachin

e

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1093

1094 1094

974 996

997 997

1223 1225

1227 1228

1331

1223

1227

http://www.altova.com/umodel
http://www.altova.com/umodel

1214 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.145 UModelAPI - IUMLRealization

Interface IUMLRealization

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.146 UModelAPI - IUMLReception

Interface IUMLReception

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1215UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLClass Operation InsertOwnedReceptionAt

Interface IUMLDataAll Operation InsertOwnedReceptionAt

Interface IUMLInterface Operation InsertOwnedReceptionAt

Operation IUMLReception::Class

parameter name direction type type modifier multiplicity default
return return IUMLClass

Operation IUMLReception::Interface

parameter name direction type type modifier multiplicity default
return return IUMLInterface

Operation IUMLReception::Signal

parameter name direction type type modifier multiplicity default
return return IUMLSignal

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.147 UModelAPI - IUMLRedefinableElement

Interface IUMLRedefinableElement

diagram

1077 1078

974 1003

1155 1156

1077

1155

1220

http://www.altova.com/umodel
http://www.altova.com/umodel

1216 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLRedefinableElement::IsLeaf

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.148 UModelAPI - IUMLRedefinableTemplateSignature

Interface IUMLRedefinableTemplateSignature

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1217UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.149 UModelAPI - IUMLRegion

Interface IUMLRegion

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation Container InsertRegionAt

Interface IUMLState Operation InsertRegionAt

Interface IUMLStateMachine Operation InsertRegionAt

Interface IUMLVertex Operation Container

Operation IUMLRegion::InsertSubVertexAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLVertex

Operation IUMLRegion::InsertTransitionAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipSource in IUMLVertex

ipTarget in IUMLVertex

return return IUMLTransition

Operation IUMLRegion::State

parameter name direction type type modifier multiplicity default

974 982 1006

1223 1225

1227 1228

1259 1259

1259

1259

1259

1246

1218 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return IUMLState

Operation IUMLRegion::StateMachine

parameter name direction type type modifier multiplicity default
return return IUMLStateMachin

e

Operation IUMLRegion::SubVertices

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLVertex .

Operation IUMLRegion::Transitions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLTransition .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.150 UModelAPI - IUMLRelationship

Interface IUMLRelationship

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertInformationFlowRealizationAt

Interface IUMLInformationFlow Operation InsertInformationFlowRealizationAt

1223

1227

969

1259

969

1246

974

998

1141

1142

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1219UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLRelationship::RelatedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLElement .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.151 UModelAPI - IUMLSendSignalAction

Interface IUMLSendSignalAction

diagram

hierarchy

Operation IUMLSendSignalAction::SendSignal

parameter name direction type type modifier multiplicity default
return return IUMLSignal

969

1112

1220

http://www.altova.com/umodel
http://www.altova.com/umodel

1220 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLSendSignalAction::SetNewSignalTarget

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLInputPin

Operation IUMLSendSignalAction::SignalTarget

parameter name direction type type modifier multiplicity default
return return IUMLInputPin

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.152 UModelAPI - IUMLSignal

Interface IUMLSignal

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation OwningSignal SendSignal

 Signal

Interface IUMLProperty Operation OwningSignal

Interface IUMLReception Operation Signal

Interface IUMLSendSignalAction Operation SendSignal

Interface IUMLSignalEvent Operation Signal

Operation IUMLSignal::InsertOwnedAttributeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLProperty

1144

1144

974 1023 1028

1035

1207 1209

1214 1215

1219 1219

1221 1221

1207

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1221UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLSignal::OwnedAttributes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLProperty .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.153 UModelAPI - IUMLSignalEvent

Interface IUMLSignalEvent

diagram

hierarchy

Operation IUMLSignalEvent::Signal

parameter name direction type type modifier multiplicity default
return return IUMLSignal

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

969

1207

1220

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1222 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.154 UModelAPI - IUMLSlot

Interface IUMLSlot

diagr
am

hiera
rchy

type
dEle

ment
s

Interface IUMLDataAll Operation InsertSlotAt OwningSlot
Interface

IUMLInstanceSpecification

Operation InsertSlotAt

Interface IUMLValueSpecification Operation OwningSlot

Operation IUMLSlot::DefiningFeature

parameter name direction type type modifier multiplicity default
return return IUMLStructuralFe

ature

Operation IUMLSlot::InsertSlotInstanceValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipInstance in IUMLInstanceSpe

cification

return return IUMLInstanceValu

e

Operation IUMLSlot::InsertValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
strKind in string
return return IUMLValueSpecifi

cation

Operation IUMLSlot::OwningInstance

parameter name direction type type modifier multiplicity default

974 1006 1023

1146

1147

1255 1257

1231

1146

1148

1255

© 2018-2024 Altova GmbH

UModel API Reference 1223UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLInstanceSpe

cification

Operation IUMLSlot::Values

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLValueSpecification .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.155 UModelAPI - IUMLState

Interface IUMLState

diagram

1146

969

1255

http://www.altova.com/umodel
http://www.altova.com/umodel

1224 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface

IUMLConnectionPointReference

Operation State

Interface IUMLConstraint Operation OwningState

Interface IUMLDataAll Operation InsertInStateAt OwningState

 State

Interface IUMLObjectNode Operation InsertInStateAt

Interface IUMLPseudostate Operation State

Interface IUMLRegion Operation State

Operation IUMLState::ConnectionPoints

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLPseudostate .

Operation IUMLState::Connections

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLConnectionPointReference .

Operation IUMLState::DoActivity

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

Operation IUMLState::Entry

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

Operation IUMLState::Exit

parameter name direction type type modifier multiplicity default

1093

1095

1097 1098

974 999 1023

1036

1185 1186

1213 1213

1217 1217

969

1213

969

1093

1065

1065

© 2018-2024 Altova GmbH

UModel API Reference 1225UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLBehavior

Operation IUMLState::InsertConnectionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLConnection

PointReference

Operation IUMLState::InsertConnectionPointAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLPseudostate

Operation IUMLState::InsertRegionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLRegion

Operation IUMLState::IsComposite

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLState::IsOrthogonal

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLState::IsSimple

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLState::IsSubmachineState

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLState::Regions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLRegion .

Operation IUMLState::SetNewDoActivity

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLBehavior

1065

1093

1213

1217

969

1217

1065

1226 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLState::SetNewEntry

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLBehavior

Operation IUMLState::SetNewExit

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLBehavior

Operation IUMLState::SetNewStateInvariant

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLConstraint

Operation IUMLState::StateInvariant

parameter name direction type type modifier multiplicity default
return return IUMLConstraint

Operation IUMLState::Submachine

parameter name direction type type modifier multiplicity default
return return IUMLStateMachin

e

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.156 UModelAPI - IUMLStateInvariant

Interface IUMLStateInvariant

diagram

1065

1065

1097

1097

1227

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1227UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLStateInvariant::Covered

parameter name direction type type modifier multiplicity default
return return IUMLLifeline

Operation IUMLStateInvariant::Invariant

parameter name direction type type modifier multiplicity default
return return IUMLConstraint

Operation IUMLStateInvariant::SetNewInvariant

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLConstraint

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.157 UModelAPI - IUMLStateMachine

Interface IUMLStateMachine

diagram

1165

1097

1097

http://www.altova.com/umodel
http://www.altova.com/umodel

1228 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IDocument Operation GenerateStateMachineCode

Interface IUMLDataAll Operation StateMachine Submachine

Interface IUMLPseudostate Operation StateMachine

Interface IUMLRegion Operation StateMachine

Interface IUMLState Operation Submachine

Operation IUMLStateMachine::ConnectionPoints

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLPseudostate .

Operation IUMLStateMachine::InsertConnectionPointAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLPseudostate

Operation IUMLStateMachine::InsertRegionAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLRegion

Operation IUMLStateMachine::Regions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLRegion .

Operation IUMLStateMachine::SubmachineStates

parameter name direction type type modifier multiplicity default
return return IUMLDataList

895 898

974 1036 1037

1213 1213

1217 1218

1223 1226

969

1213

1213

1217

969

1217

969

© 2018-2024 Altova GmbH

UModel API Reference 1229UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

document
ation

A list of elements of type IUMLState .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.158 UModelAPI - IUMLStereotype

Interface IUMLStereotype

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation ApplyStereotype
 GetStereotypeApplicationForStereot

ype IsStereotypeApplied

 Stereotype

 UnapplyStereotype

Interface IUMLElement Operation ApplyStereotype
 GetStereotypeApplicationForStereot

ype IsStereotypeApplied

 UnapplyStereotype
Interface

IUMLStereotypeApplication

Operation Stereotype

Operation IUMLStereotype::BaseClass

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLStereotype::IconFileName

1223

974 978

991 1012

1037

1040

1112 1113

1114 1114

1115

1230

1231

http://www.altova.com/umodel
http://www.altova.com/umodel

1230 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLStereotype::MetaClass

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLStereotype::StereotypedElementStyles

parameter name direction type type modifier multiplicity default
return return IUMLGuiStyles

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.159 UModelAPI - IUMLStereotypeApplication

Interface IUMLStereotypeApplication

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation ApplyPredefinedStereotype

 ApplyStereotype
 GetStereotypeApplicationForPredefi

nedStereotype
 GetStereotypeApplicationForStereot

ype

Interface IUMLElement Operation ApplyPredefinedStereotype

 ApplyStereotype

1301

974 978

978

991

991

1112 1113

1113

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1231UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

 GetStereotypeApplicationForPredefi

nedStereotype
 GetStereotypeApplicationForStereot

ype

Operation IUMLStereotypeApplication::AppliedElement

parameter name direction type type modifier multiplicity default
return return IUMLElement

Operation IUMLStereotypeApplication::SetPredefinedTaggedValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
nProperty in ENUMUMLPredef

inedElement

strNewValue in string
return return IUMLValueSpecifi

cation

Operation IUMLStereotypeApplication::SetTaggedValueAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipDefiningFeature

in IUMLStructuralFe

ature

strNewValue in string
return return IUMLValueSpecifi

cation

Operation IUMLStereotypeApplication::Stereotype

parameter name direction type type modifier multiplicity default
return return IUMLStereotype

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.160 UModelAPI - IUMLStructuralFeature

Interface IUMLStructuralFeature

diagram

1113

1114

1112

1330

1255

1231

1255

1229

http://www.altova.com/umodel
http://www.altova.com/umodel

1232 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation DefiningFeature InsertSlotAt

 SetSlotInstanceValueAt

 SetSlotValueAt

 SetTaggedValueAt
Interface

IUMLInstanceSpecification

Operation InsertSlotAt

 SetSlotInstanceValueAt

 SetSlotValueAt

Interface IUMLSlot Operation DefiningFeature
Interface

IUMLStereotypeApplication

Operation SetTaggedValueAt

Operation IUMLStructuralFeature::IsReadOnly

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 983 1006

1034

1034

1034

1146

1147

1147

1147

1222 1222

1230

1231

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1233UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.161 UModelAPI - IUMLStructuredActivityNode

Interface IUMLStructuredActivityNode

diagram

hierarchy

Operation IUMLStructuredActivityNode::Edges

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLStructuredActivityNode::EraseEdgeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLStructuredActivityNode::EraseNodeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

969

1234 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLStructuredActivityNode::InsertEdgeAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipEdge in IUMLActivityEdge

return return void

Operation IUMLStructuredActivityNode::InsertNodeAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipEdge in IUMLActivityNod

e

return return void

Operation IUMLStructuredActivityNode::MustIsolate

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLStructuredActivityNode::Nodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.162 UModelAPI - IUMLStructuredClassifier

Interface IUMLStructuredClassifier

diagram

1051

1055

969

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1235UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLStructuredClassifier::InsertOwnedAttributeAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLProperty

Operation IUMLStructuredClassifier::InsertOwnedConnectorAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipFrom in IUMLConnectable

Element

ipTo in IUMLConnectable

Element

return return IUMLConnector

Operation IUMLStructuredClassifier::InsertOwnedPortAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLPort

Operation IUMLStructuredClassifier::OwnedAttributes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLProperty .

Operation IUMLStructuredClassifier::OwnedConnectors

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLConnector .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1207

1092

1092

1095

1203

969

1207

969

1095

http://www.altova.com/umodel
http://www.altova.com/umodel

1236 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.163 UModelAPI - IUMLTemplateableElement

Interface IUMLTemplateableElement

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation BoundElement Template

Interface IUMLTemplateBinding Operation BoundElement
Interface

IUMLTemplateSignature

Operation Template

Operation IUMLTemplateableElement::InsertOwnedTemplateBindingAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipSignature in IUMLTemplateSig

nature

return return IUMLTemplateBin

ding

Operation IUMLTemplateableElement::OwnedTemplateBindings

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLTemplateBinding .

Operation IUMLTemplateableElement::OwnedTemplateSignature

parameter name direction type type modifier multiplicity default
return return IUMLTemplateSig

nature

Operation IUMLTemplateableElement::SetNewTemplateSignature

parameter name direction type type modifier multiplicity default

974 979 1038

1237 1237

1240

1241

1240

1237

969

1237

1240

© 2018-2024 Altova GmbH

UModel API Reference 1237UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLTemplateSig

nature

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.164 UModelAPI - IUMLTemplateBinding

Interface IUMLTemplateBinding

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertOwnedTemplateBindingAt

 TemplateBinding
Interface

IUMLTemplateableElement

Operation InsertOwnedTemplateBindingAt

Interface
IUMLTemplateParameterSubstitutio

n

Operation TemplateBinding

Operation IUMLTemplateBinding::BoundElement

parameter name direction type type modifier multiplicity default
return return IUMLTemplateabl

eElement

Operation IUMLTemplateBinding::InsertParameterSubstitutionAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipFormalParamet
er

in IUMLTemplatePar

ameter

ipActualParamete
r

in IUMLParameterab

leElement

return return IUMLTemplatePar
ameterSubstitutio

1240

974 1004

1039

1236

1236

1239

1240

1236

1238

1201

http://www.altova.com/umodel
http://www.altova.com/umodel

1238 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

n

Operation IUMLTemplateBinding::ParameterSubstitutions

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLTemplateParameterSubstitution .

Operation IUMLTemplateBinding::Signature

parameter name direction type type modifier multiplicity default
return return IUMLTemplateSig

nature

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.165 UModelAPI - IUMLTemplateParameter

Interface IUMLTemplateParameter

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation Formal

 InsertParameterSubstitutionAt

 OwningTemplateParameter

 TemplateParameter
Interface

IUMLParameterableElement

Operation OwningTemplateParameter

 TemplateParameter

Interface IUMLTemplateBinding Operation InsertParameterSubstitutionAt

1239

969

1239

1240

974 990

1005

1023

1039

1201

1202

1202

1237 1237

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1239UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Interface
IUMLTemplateParameterSubstitutio

n

Operation Formal

Operation IUMLTemplateParameter::DefaultParamValue

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLTemplateParameter::OwnedParameteredElement

parameter name direction type type modifier multiplicity default
return return IUMLParameterab

leElement

Operation IUMLTemplateParameter::ParameteredElement

parameter name direction type type modifier multiplicity default
return return IUMLParameterab

leElement

Operation IUMLTemplateParameter::ParameterSignature

parameter name direction type type modifier multiplicity default
return return IUMLTemplateSig

nature

Operation IUMLTemplateParameter::SetNewOwnedParameteredElement

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLParameterab

leElement

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.166 UModelAPI - IUMLTemplateParameterSubstitution

Interface IUMLTemplateParameterSubstitution

diagram

1239

1240

1201

1201

1240

1201

http://www.altova.com/umodel
http://www.altova.com/umodel

1240 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertParameterSubstitutionAt

Interface IUMLTemplateBinding Operation InsertParameterSubstitutionAt

Operation IUMLTemplateParameterSubstitution::Actual

parameter name direction type type modifier multiplicity default
return return IUMLParameterab

leElement

Operation IUMLTemplateParameterSubstitution::Formal

parameter name direction type type modifier multiplicity default
return return IUMLTemplatePar

ameter

Operation IUMLTemplateParameterSubstitution::OwnedActual

parameter name direction type type modifier multiplicity default
return return IUMLParameterab

leElement

Operation IUMLTemplateParameterSubstitution::TemplateBinding

parameter name direction type type modifier multiplicity default
return return IUMLTemplateBin

ding

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.167 UModelAPI - IUMLTemplateSignature

Interface IUMLTemplateSignature

diagram

974 1005

1237 1237

1201

1238

1201

1237

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1241UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertOwnedTemplateBindingAt

 OwnedTemplateSignature

 ParameterSignature

 SetNewTemplateSignature

 Signature
Interface

IUMLTemplateableElement

Operation InsertOwnedTemplateBindingAt

 OwnedTemplateSignature

 SetNewTemplateSignature

Interface IUMLTemplateBinding Operation Signature
Interface

IUMLTemplateParameter

Operation ParameterSignature

Operation IUMLTemplateSignature::InsertOwnedTemplateParameterAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLClassifierTe

mplateParameter

Operation IUMLTemplateSignature::OwnedTemplateParameters

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLTemplateParameter .

Operation IUMLTemplateSignature::Template

parameter name direction type type modifier multiplicity default
return return IUMLTemplateabl

eElement

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 1004

1022

1024

1033

1035

1236

1236

1236

1236

1237 1238

1238

1239

1083

969

1238

1236

http://www.altova.com/umodel
http://www.altova.com/umodel

1242 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.168 UModelAPI - IUMLTimeConstraint

Interface IUMLTimeConstraint

diagram

hierarchy

Operation IUMLTimeConstraint::IsFirstEvent

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.169 UModelAPI - IUMLTimeEvent

Interface IUMLTimeEvent

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1243UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLTimeEvent::IsRelative

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLTimeEvent::SetNewWhen

parameter name direction type type modifier multiplicity default
return return IUMLTimeExpress

ion

Operation IUMLTimeEvent::When

parameter name direction type type modifier multiplicity default
return return IUMLTimeExpress

ion

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.170 UModelAPI - IUMLTimeExpression

Interface IUMLTimeExpression

diagram

1243

1243

http://www.altova.com/umodel
http://www.altova.com/umodel

1244 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation SetNewWhen When

Interface IUMLTimeEvent Operation SetNewWhen When

Operation IUMLTimeExpression::EraseObservationAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLTimeExpression::Expr

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLTimeExpression::InsertObservationAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipVal in IUMLObservation

return return void

Operation IUMLTimeExpression::Observations

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLObservation .

Operation IUMLTimeExpression::SetNewExpr

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

974 1033 1042

1242 1243 1243

1255

1187

969

1187

1255

© 2018-2024 Altova GmbH

UModel API Reference 1245UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.171 UModelAPI - IUMLTimeInterval

Interface IUMLTimeInterval

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.172 UModelAPI - IUMLTimeObservation

Interface IUMLTimeObservation

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1246 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLTimeObservation::IsFirstEvent

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLTimeObservation::TimeObservationEvent

parameter name direction type type modifier multiplicity default
return return IUMLNamedElem

ent

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.173 UModelAPI - IUMLTransition

Interface IUMLTransition

diagram

1178

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1247UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertTransitionAt

Interface IUMLRegion Operation InsertTransitionAt

Operation IUMLTransition::Effect

parameter name direction type type modifier multiplicity default
return return IUMLBehavior

Operation IUMLTransition::InsertTriggerAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLTrigger

Operation IUMLTransition::SetNewEffect

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLBehavior

Operation IUMLTransition::SetNewTransitionGuard

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLConstraint

Operation IUMLTransition::TransitionGuard

parameter name direction type type modifier multiplicity default
return return IUMLConstraint

Operation IUMLTransition::TransitionKind

parameter name direction type type modifier multiplicity default
return return ENUMUMLTransit

ionKind

974 1007

1217 1217

1065

1248

1065

1097

1097

1331

1248 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLTransition::TransitionSource

parameter name direction type type modifier multiplicity default
return return IUMLVertex

Operation IUMLTransition::TransitionTarget

parameter name direction type type modifier multiplicity default
return return IUMLVertex

Operation IUMLTransition::Triggers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLTrigger .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.174 UModelAPI - IUMLTrigger

Interface IUMLTrigger

diagram

hierarchy

typedElem
ents

Interface

IUMLAcceptEventAction

Operation InsertActionTriggerAt

Interface IUMLDataAll Operation InsertActionTriggerAt

 InsertTriggerAt

Interface IUMLTransition Operation InsertTriggerAt

Operation IUMLTrigger::Event

parameter name direction type type modifier multiplicity default
return return IUMLEvent

1259

1259

969

1248

1044

1045

974 994

1007

1246 1247

1120

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1249UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.175 UModelAPI - IUMLType

Interface IUMLType

diagram

hierarchy

typedElem
ents

Interface IUMLBehavioralFeature

Operation InsertRaisedExceptionAt

Interface IUMLDataAll Operation InsertRaisedExceptionAt

 Type

Interface IUMLOperation Operation Type

Interface IUMLTypedElement Operation Type

Operation IUMLType::Package

parameter name direction type type modifier multiplicity default
return return IUMLPackage

Operation IUMLType::TypedElements

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLTypedElement .

1067 1068

974 1005

1040

1192 1193

1250 1250

1194

969

1250

http://www.altova.com/umodel
http://www.altova.com/umodel

1250 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.176 UModelAPI - IUMLTypedElement

Interface IUMLTypedElement

diagram

hierarchy

Operation IUMLTypedElement::PostTypeModifier

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLTypedElement::Type

parameter name direction type type modifier multiplicity default
return return IUMLType

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.177 UModelAPI - IUMLUsage

Interface IUMLUsage

diagram

1249

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1251UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.178 UModelAPI - IUMLUseCase

Interface IUMLUseCase

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

1252 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLClassifier Operation InsertOwnedUseCaseAt

Interface IUMLDataAll Operation Addition ExtendedCase

 Extension IncludingCase

 InsertExtendAt

 InsertIncludeAt

 InsertOwnedUseCaseAt

 UseCase

Interface IUMLExtend Operation ExtendedCase Extension

Interface IUMLExtensionPoint Operation UseCase

Interface IUMLInclude Operation Addition IncludingCase

Interface IUMLUseCase Operation InsertExtendAt

 InsertIncludeAt

Operation IUMLUseCase::EraseSubjectAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLUseCase::Extends

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLExtend .

Operation IUMLUseCase::ExtensionPoints

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLExtensionPoint .

Operation IUMLUseCase::Includes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLInclude .

1080 1082

974 976 989

989 993

997

998

1004

1041

1128 1129 1129

1130 1130

1140 1140 1140

1251 1253

1253

969

1128

969

1130

969

1140

© 2018-2024 Altova GmbH

UModel API Reference 1253UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLUseCase::InsertExtendAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipExtendedCase in IUMLUseCase

return return IUMLExtend

Operation IUMLUseCase::InsertExtensionPointAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLExtensionPo

int

Operation IUMLUseCase::InsertIncludeAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipIncludingCase in IUMLUseCase

return return IUMLInclude

Operation IUMLUseCase::InsertSubjectAt

parameter name direction type type modifier multiplicity default
nIdx in int
pSubject in IUMLClassifier

return return void

Operation IUMLUseCase::Subjects

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLClassifier .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.179 UModelAPI - IUMLValuePin

Interface IUMLValuePin

diagram

1251

1128

1130

1251

1140

1080

969

1080

http://www.altova.com/umodel
http://www.altova.com/umodel

1254 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLValuePin::PinValue

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1255UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.5.180 UModelAPI - IUMLValueSpecification

Interface IUMLValueSpecification

diagram

hierarchy

typedElem
ents

Interface IUMLChangeEvent Operation ChangeExpression

 SetNewChangeExpression

Interface IUMLConstraint Operation SetNewSpecification

 Specification

Interface IUMLDataAll Operation ActionValue

 ChangeExpression

 DefaultValue Expr

 InsertOwnedArgumentAt

 InsertValueAt Max

 MaxInt Min MinInt

 Selector SetNewActionValue

 SetNewChangeExpression

 SetNewDefaultValue

 SetNewExpr SetNewMax

 SetNewMaxInt SetNewMin

 SetNewMinInt

 SetNewSelector

 SetNewSpecification

1076 1076

1076

1097 1098

1099

974 975

980

983 988

1001

1007 1015

1015 1017 1017

1028 1029

1030

1030

1031 1031

1031 1031

1031

1032

1032

1256 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

 SetPredefinedTaggedValueAt

 SetSlotValueAt

 SetTaggedValueAt

 Specification

Interface IUMLDuration Operation Expr SetNewExpr
Interface

IUMLInstanceSpecification

Operation SetNewSpecification

 SetSlotValueAt Specification
Interface

IUMLInteractionConstraint

Operation MaxInt MinInt

 SetNewMaxInt

 SetNewMinInt

Interface IUMLInterval Operation Max Min SetNewMax

 SetNewMin

Interface IUMLLifeline Operation Selector SetNewSelector

Interface IUMLMessage Operation InsertOwnedArgumentAt

Interface IUMLParameter Operation DefaultValue

 SetNewDefaultValue

Interface IUMLProperty Operation DefaultValue

 SetNewDefaultValue

Interface IUMLSlot Operation InsertValueAt
Interface

IUMLStereotypeApplication

Operation SetPredefinedTaggedValueAt

 SetTaggedValueAt

Interface IUMLTimeExpression Operation Expr SetNewExpr
Interface

IUMLValueSpecificationAction

Operation ActionValue

 SetNewActionValue

Operation IUMLValueSpecification::BooleanValue

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLValueSpecification::Expression

parameter name direction type type modifier multiplicity default
return return IUMLExpression

Operation IUMLValueSpecification::IntegerValue

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLValueSpecification::IsComputable

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLValueSpecification::IsNull

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLValueSpecification::OwningConstraint

parameter name direction type type modifier multiplicity default
return return IUMLConstraint

Operation IUMLValueSpecification::OwningInstanceSpec

1033

1034

1034

1036

1108 1109 1109

1146

1147

1147 1148

1151

1151 1151

1151

1152

1160 1161 1161 1161

1161

1165 1166 1166

1172 1172

1200 1200

1201

1207 1208

1210

1222 1222

1230

1231

1231

1243 1244 1244

1258

1258

1258

1127

1097

© 2018-2024 Altova GmbH

UModel API Reference 1257UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return IUMLInstanceSpe

cification

Operation IUMLValueSpecification::OwningLower

parameter name direction type type modifier multiplicity default
return return IUMLMultiplicityE

lement

Operation IUMLValueSpecification::OwningParameter

parameter name direction type type modifier multiplicity default
return return IUMLParameter

Operation IUMLValueSpecification::OwningProperty

parameter name direction type type modifier multiplicity default
return return IUMLProperty

Operation IUMLValueSpecification::OwningSlot

parameter name direction type type modifier multiplicity default
return return IUMLSlot

Operation IUMLValueSpecification::OwningUpper

parameter name direction type type modifier multiplicity default
return return IUMLMultiplicityE

lement

Operation IUMLValueSpecification::StringValue

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLValueSpecification::UnlimitedValue

parameter name direction type type modifier multiplicity default
return return int

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1146

1177

1200

1207

1222

1177

http://www.altova.com/umodel
http://www.altova.com/umodel

1258 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.5.181 UModelAPI - IUMLValueSpecificationAction

Interface IUMLValueSpecificationAction

diagram

hierarchy

Operation IUMLValueSpecificationAction::ActionValue

parameter name direction type type modifier multiplicity default
return return IUMLValueSpecifi

cation

Operation IUMLValueSpecificationAction::Result

parameter name direction type type modifier multiplicity default
return return IUMLOutputPin

Operation IUMLValueSpecificationAction::SetNewActionValue

parameter name direction type type modifier multiplicity default
strKind in string
return return IUMLValueSpecifi

cation

1255

1193

1255

© 2018-2024 Altova GmbH

UModel API Reference 1259UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.5.182 UModelAPI - IUMLVertex

Interface IUMLVertex

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertSubVertexAt

 InsertTransitionAt

 TransitionSource

 TransitionTarget

Interface IUMLRegion Operation InsertSubVertexAt

 InsertTransitionAt

Interface IUMLTransition Operation TransitionSource

 TransitionTarget

Operation IUMLVertex::Container

parameter name direction type type modifier multiplicity default
return return IUMLRegion

Operation IUMLVertex::Incomings

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLTransition .

Operation IUMLVertex::Outgoings

parameter name direction type type modifier multiplicity default

974 1007

1007

1040

1040

1217 1217

1217

1246 1248

1248

1217

969

1246

http://www.altova.com/umodel
http://www.altova.com/umodel

1260 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

return return IUMLDataList

document
ation

A list of elements of type IUMLTransition .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6 IUMLGuiElement

This is a list of Altova-specific elements for diagrams, and members used to show IUMLElements on
diagrams.

17.4.3.6.1 UModelAPI - IUMLGuiActivityDiagram

Interface IUMLGuiActivityDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

969

1246

1043

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1261UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.6.2 UModelAPI - IUMLGuiAttachedNode

Interface IUMLGuiAttachedNode

diagram

hierarchy

document
ation

This GUI element is a node (possibly without a linked IUMLElement) which is directly attached to a

IUMLGuiNodeLink . It disappears and pops up based on data set in the element of the

IUMLGuiNodeLink it is attached to. The user usually only has control of this element via styles or the node
it is attached to.
This node is used as graphical object on diagrams to represent Tagged Values for example.

Operation IUMLGuiAttachedNode::AttachedTo

parameter name direction type type modifier multiplicity default
return return IUMLGuiLink

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.3 UModelAPI - IUMLGuiBehaviorDiagram

Interface IUMLGuiBehaviorDiagram

diagram

1112

1286

1286

1284

http://www.altova.com/umodel
http://www.altova.com/umodel

1262 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.4 UModelAPI - IUMLGuiBPMN2ChoreographyDiagram

Interface IUMLGuiBPMN2ChoreographyDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1263UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.6.5 UModelAPI - IUMLGuiBPMN2CollaborationDiagram

Interface IUMLGuiBPMN2CollaborationDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.6 UModelAPI - IUMLGuiBPMN2Diagram

Interface IUMLGuiBPMN2Diagram

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

1264 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.7 UModelAPI - IUMLGuiBPMNDiagram

Interface IUMLGuiBPMNDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1265UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.6.8 UModelAPI - IUMLGuiClassDiagram

Interface IUMLGuiClassDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.9 UModelAPI - IUMLGuiCommunicationDiagram

Interface IUMLGuiCommunicationDiagram

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

1266 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLGuiCommunicationDiagram::AddUMLGuiCommunicationLink

parameter name direction type type modifier multiplicity default
ipFromLink in IUMLGuiLink

ipToLink in IUMLGuiLink

return return IUMLGuiCommun

icationLink

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.10 UModelAPI - IUMLGuiCommunicationLink

Interface IUMLGuiCommunicationLink

diagram

1284

1284

1266

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1267UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface
IUMLGuiCommunicationDiagram

Operation AddUMLGuiCommunicationLink

document
ation

This line link is used on communication diagrams to provide a connection link for messages between
lifelines.

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.11 UModelAPI - IUMLGuiComponentDiagram

Interface IUMLGuiComponentDiagram

diagram

hierarchy

1265

1266

http://www.altova.com/umodel
http://www.altova.com/umodel

1268 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.12 UModelAPI - IUMLGuiCompositeStructureDiagram

Interface IUMLGuiCompositeStructureDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.13 UModelAPI - IUMLGuiConstrainedNode

Interface IUMLGuiConstrainedNode

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1269UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

document
ation

This node link is used to represent objects on diagrams which can be directly attached to a parent node link
and placed relatively to and in special constraining areas of the parent. Used for example for Pins on Activtiy
Diagrams.

Operation IUMLGuiConstrainedNode::ConstrainingPointX

parameter name direction type type modifier multiplicity default
return return int

document
ation

X coordinate relative to the uppor left position of the contraining area.

Operation IUMLGuiConstrainedNode::ConstrainingPointY

parameter name direction type type modifier multiplicity default
return return int

document
ation

Y coordinate relative to the uppor left position of the contraining area.

Operation IUMLGuiConstrainedNode::ContrainingAreaIndex

parameter name direction type type modifier multiplicity default
return return int

document
ation

Defines the index of the area where this node is currently in and to which its relative position has its origin.

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel

1270 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.6.14 UModelAPI - IUMLGuiContainmentLink

Interface IUMLGuiContainmentLink

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation AddUMLGuiContainmentLink

Interface IUMLGuiDiagram Operation AddUMLGuiContainmentLink

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.15 UModelAPI - IUMLGuiDeploymentDiagram

Interface IUMLGuiDeploymentDiagram

diagram

974 976

1271 1272

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1271UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.16 UModelAPI - IUMLGuiDiagram

Interface IUMLGuiDiagram

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

1272 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IDiagramWindow Operation Diagram

Interface IDocument Operation OpenDiagram

Interface IUMLDataAll Operation InsertOwnedDiagramAt

 ReferencedDiagram

Interface IUMLGuiRootElement Operation InsertOwnedDiagramAt
Interface

IUMLGuiSubDiagramNode

Operation ReferencedDiagram

document
ation

Represents an UML diagram and contains all layers, nodes (represented as IUMLGuiNodeLink) and lines

(represented as IUMLGuiLineLink).Use the property GuiLinks to access these.

Operation IUMLGuiDiagram::ActiveLayer

parameter name direction type type modifier multiplicity default
return return IUMLGuiDiagram

Layer

Operation IUMLGuiDiagram::AddUMLElement

parameter name direction type type modifier multiplicity default
strKind in string
nLeft in int
nTop in int
return return IUMLGuiNodeLin

k

document
ation

Adds a new UML element (e.g. IUMLClass , IUMLPackage ,...) to the model and shows it with a new

IUMLGuiNodeLink on the diagram.

Operation IUMLGuiDiagram::AddUMLGuiContainmentLink

parameter name direction type type modifier multiplicity default
ipFromLink in IUMLGuiLink

ipToLink in IUMLGuiLink

return return IUMLGuiContain

mentLink

Operation IUMLGuiDiagram::AddUMLGuiNodeLink

parameter name direction type type modifier multiplicity default
ipForUMLData in IUMLData

nLeft in int
nTop in int
return return IUMLGuiNodeLin

k

document
ation

Adds a new IUMLGuiNodeLink for an existing UML element (e.g. IUMLClass , IUMLPackage ,...) on
the diagram.

888 889

895 900

974 1002

1026

1293 1294

1302

1303

1286

1282 1274

1275

1286

1077 1194

1286

1284

1284

1270

967

1286

1286 1077 1194

© 2018-2024 Altova GmbH

UModel API Reference 1273UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLGuiDiagram::AddUMLGuiNote

parameter name direction type type modifier multiplicity default
nLeft in int
nTop in int
return return IUMLGuiNote

Operation IUMLGuiDiagram::AddUMLGuiNoteLink

parameter name direction type type modifier multiplicity default
ipFromNote in IUMLGuiNote

ipToLink in IUMLGuiNodeLin

k

return return IUMLGuiNoteLink

Operation IUMLGuiDiagram::AddUMLGuiNoteLinkToLine

parameter name direction type type modifier multiplicity default
ipFromNote in IUMLGuiNote

ipToLink in IUMLGuiLineLink

nDistanceFromLin
eBegin

in int

return return IUMLGuiNoteLink

Operation IUMLGuiDiagram::AddUMLLineElement

parameter name direction type type modifier multiplicity default
strKind in string
ipFromNode in IUMLGuiNodeLin

k

ipToNode in IUMLGuiNodeLin

k

return return IUMLGuiLineLink

document
ation

Adds a new UML line element (e.g. IUMLGeneralization , IUMLAssociation ,...) to the model and shows

it with a new IUMLGuiLineLink on the diagram.

Operation IUMLGuiDiagram::Comment

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLGuiDiagram::EraseFromDiagram

parameter name direction type type modifier multiplicity default
ipVal in IUMLGuiElement

return return void

document
ation

Use this function to erase the element from the diagram only.

Use IUMLElement ::EraseFromModel to erase from the model and all diagrams.

1288

1288

1286

1289

1288

1282

1289

1286

1286

1282

1135 1063

1282

1276

1112 1113

1274 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLGuiDiagram::EraseFromModel

parameter name direction type type modifier multiplicity default
return return void

Operation IUMLGuiDiagram::GuiLinks

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of elements of type IUMLGuiLink which are displayed directly on this diagram. Usually, these are

IUMLGuiNodeLink s and IUMLGuiLineLink s.

Operation IUMLGuiDiagram::InsertLayerAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLGuiDiagram

Layer

Operation IUMLGuiDiagram::InsertOwnedGuiTextHyperlinkAt

parameter name direction type type modifier multiplicity default
nFromTextPos in int
nToTextPos in int
strAddress in string
return return IUMLGuiTextHyp

erlink

Operation IUMLGuiDiagram::Layers

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of all layers in the diagam. The list contains elements of type IUMLGuiDiagramLayer .

Operation IUMLGuiDiagram::LinkedOwner

parameter name direction type type modifier multiplicity default
return return IUMLElement

Operation IUMLGuiDiagram::MergeLayersAt

parameter name direction type type modifier multiplicity default
nFromIdx in int
nToIdx in int
return return void

Operation IUMLGuiDiagram::Name

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLGuiDiagram::OwnedHyperlinks

parameter name direction type type modifier multiplicity default
return return IUMLDataList

969

1284

1286 1282

1275

1310

969

1275

1112

969

© 2018-2024 Altova GmbH

UModel API Reference 1275UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLGuiDiagram::SetName

parameter name direction type type modifier multiplicity default
strStartWith in string
return return string

Operation IUMLGuiDiagram::ZoomFactor

parameter name direction type type modifier multiplicity default
return return int

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.17 UModelAPI - IUMLGuiDiagramLayer

Interface IUMLGuiDiagramLayer

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation ActiveLayer InsertLayerAt

 Layer

Interface IUMLGuiDiagram Operation ActiveLayer InsertLayerAt

Interface IUMLGuiLink Operation Layer

document
ation

Represents a layer on an IUMLGuiDiagram . Makes it possible to group elements on a diagram into
categories, to lock/unlock them and to make them visible or invisible.

Operation IUMLGuiDiagramLayer::IsLocked

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLGuiDiagramLayer::IsVisible

parameter name direction type type modifier multiplicity default
return return bool

974 975 999

1013

1271 1272 1274

1284 1285

1271

http://www.altova.com/umodel
http://www.altova.com/umodel

1276 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLGuiDiagramLayer::Name

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLGuiDiagramLayer::SetName

parameter name direction type type modifier multiplicity default
strStartWith in string
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.18 UModelAPI - IUMLGuiElement

Interface IUMLGuiElement

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation EraseFromDiagram GuiOwner

 LineBegin LineEnd

Interface IUMLGuiDiagram Operation EraseFromDiagram

Interface IUMLGuiElement Operation GuiOwner

Interface IUMLGuiLineLink Operation LineBegin LineEnd

document
ation

The base class for all graphical objects.

Operation IUMLGuiElement::GuiOwner

parameter name direction type type modifier multiplicity default
return return IUMLGuiElement

Operation IUMLGuiElement::OwnedGuiElements

parameter name direction type type modifier multiplicity default

974 986 992

1014 1014

1271 1273

1276 1276

1282 1283 1283

1276

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1277UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return IUMLDataList

document
ation

Returns a derived list of all owned Gui elements. All elements in this list are a subtype if IUMLGuiElement .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.19 UModelAPI - IUMLGuiEndWaypoint

Interface IUMLGuiEndWaypoint

diagram

hierarchy

document
ation

A special waypoint which only occurrs at the end or the begin of a line represented by a IUMLGuiLineLink
.

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

969

1276

1282

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1278 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.6.20 UModelAPI - IUMLGuiExtensionDiagram

Interface IUMLGuiExtensionDiagram

diagram

hierarchy

document
ation

This diagram type is the base for all UModel specific extension diagrams (for example BPMN diagrams, XML
Schema Diagrams) and not a diagram type for itself.

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.21 UModelAPI - IUMLGuiInteractionDiagram

Interface IUMLGuiInteractionDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1279UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.6.22 UModelAPI - IUMLGuiInteractionOverviewDiagram

Interface IUMLGuiInteractionOverviewDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.23 UModelAPI - IUMLGuiLabeledRelativeNodeLink

Interface IUMLGuiLabeledRelativeNodeLink

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

1280 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

document
ation

This special gui link is used for elements which are relative to another node and have a label, for example for
the names of Messages on Communication diagrams.

Operation IUMLGuiLabeledRelativeNodeLink::Label

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.24 UModelAPI - IUMLGuiLineConnectionWaypoint

Interface IUMLGuiLineConnectionWaypoint

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1281UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

document
ation

This special waypoint marks the part of a line where it is connected to another line. For example, when
drawing a noteLink from a note to a line on a diagram in UModel, a waypoint of this type is created where
the noteLink connects to the target line.

Using the DistanceFromLineBegin property, the waypoint sets a floating fixed position for itself on the
line.

Operation IUMLGuiLineConnectionWaypoint::DistanceFromLineBegin

parameter name direction type type modifier multiplicity default
return return int

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1281

http://www.altova.com/umodel
http://www.altova.com/umodel

1282 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.6.25 UModelAPI - IUMLGuiLineLink

Interface IUMLGuiLineLink

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation AddUMLGuiNoteLinkToLine

 AddUMLLineElement

Interface IUMLGuiDiagram Operation AddUMLGuiNoteLinkToLine

 AddUMLLineElement

document
ation

This interface represents a line on a diagram. There are some special lines deriving from this interface
available as well.
A line is composed of multiple but at least 2 waypoints which are connected to each other, which can be

accessed using the AllWaypoints property. Two of these waypoints are usually of type

IUMLGuiEndWaypoint . There may be also a Middlewaypoint accessible with the property

MiddleWaypoint which can be used for example to access textlabels and a LineConnectionWaypoint

when the line is connected to another line, like to a IUMLGuiNoteLink .

The LineBegin property refers the first object and LineEnd property refers the second graphical object
which the line connects.

Operation IUMLGuiLineLink::AllWaypoints

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A derived list of all waypoints which are part of this line. All elements in this list are of type (or subtype of)

IUMLGuiWaypoint .

974 976

977

1271 1273

1273

1282

1277

1283 1283

1289

1283 1283

969

1320

© 2018-2024 Altova GmbH

UModel API Reference 1283UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLGuiLineLink::EraseWaypointAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return void

Operation IUMLGuiLineLink::InsertWaypointAt

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLGuiWaypoin

t

Operation IUMLGuiLineLink::LineBegin

parameter name direction type type modifier multiplicity default
return return IUMLGuiElement

document
ation

A reference to the first object, where the line starts.

Operation IUMLGuiLineLink::LineConnectionWaypoints

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of all waypoints which connect the line with other lines. All elements in this list are of type (or subtype

of) IUMLGuiWaypoint .

Operation IUMLGuiLineLink::LineEnd

parameter name direction type type modifier multiplicity default
return return IUMLGuiElement

document
ation

A reference to the second object, where the line ends.

Operation IUMLGuiLineLink::MiddleWaypoint

parameter name direction type type modifier multiplicity default
return return IUMLGuiMiddleW

aypoint

Operation IUMLGuiLineLink::Waypoints

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

A list of all waypoints which form the vertices of this line. All elements in this list are of type (or subtype of)

IUMLGuiWaypoint .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1320

1276

969

1320

1276

1285

969

1320

http://www.altova.com/umodel
http://www.altova.com/umodel

1284 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.6.26 UModelAPI - IUMLGuiLink

Interface IUMLGuiLink

diagr
am

hierar
chy

typed
Eleme

nts

Interface IDiagramWindow Operation FocusedGuiElement

 ScrollToGuiElement

 SelectGuiElement

Interface IUMLDataAll Operation AddUMLGuiContainmentLink

 AttachedTo

Interface IUMLGuiAttachedNode Operation AttachedTo
Interface

IUMLGuiCommunicationDiagram

Operation AddUMLGuiCommunicationLink

Interface IUMLGuiDiagram Operation AddUMLGuiContainmentLink

docu
menta

tion

A GuiLink represents a graphical object on a diagram which is connected to an element from the UML (like a

Class, an Interface or a Lifeline). This connected object can be accessed using the Element property.

IUMLGuiLinks further can have attached nodes (IUMLGuiAttachedNode) which appear when necessary, like
Tagged Values and are associated with a Layer on the diagram.

Operation IUMLGuiLink::AttachedNodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

Returns a derived list of all attached nodes of this element. All elements in this list are of type (or subtype) of

IUMLGuiAttachedNode .

Operation IUMLGuiLink::Element

parameter name direction type type modifier multiplicity default
return return IUMLElement

888 889

890

890

974 976

978

1261 1261

1265

1266

1271 1272

1284

1261

969

1261

1112

© 2018-2024 Altova GmbH

UModel API Reference 1285UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLGuiLink::Layer

parameter name direction type type modifier multiplicity default
return return IUMLGuiDiagram

Layer

Operation IUMLGuiLink::RelativeNodes

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

Returns a list of relative nodes to this gui link. The list contains only elements of type (or subtype of)

IUMLGuiRelativeNodeLink .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.27 UModelAPI - IUMLGuiMiddleWaypoint

Interface IUMLGuiMiddleWaypoint

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation MiddleWaypoint

Interface IUMLGuiLineLink Operation MiddleWaypoint

document
ation

A middle waypoint is a special waypoint on a line (IUMLGuiLineLink) which appears in the center of the
line and can have text labels attached to it.

1275

969

1292

974 1016

1282 1283

1282

http://www.altova.com/umodel
http://www.altova.com/umodel

1286 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.28 UModelAPI - IUMLGuiNodeLink

Interface IUMLGuiNodeLink

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation AddOwnedGuiNodeLink

 AddUMLElement

 AddUMLGuiNodeLink

 AddUMLGuiNoteLink

 AddUMLLineElement

 OwningGuiNodeLink

Interface IUMLGuiDiagram Operation AddUMLElement

 AddUMLGuiNodeLink

 AddUMLGuiNoteLink

 AddUMLLineElement

Interface IUMLGuiNodeLink Operation AddOwnedGuiNodeLink

 OwningGuiNodeLink

document
ation

A GuiNodeLink represents a graphical object on a diagram which usually represents an element from the UML
(for example a Class, an Interface or a Lifeline). It has a position defined by a rectangle which can be
positioned freely on the diagram.
A GuiNodeLink can itself contain other GuiNodeLinks, for example when displaying a big state in a state
machine diagam which contains other, smaller substates.
Additionally, if the GuiNodeLink displays cells on it, like for example operations and properties on a class, it

can store for each element shown if the element should be visible or not. Use the SetElementVisible and

IsElementVisible functions for this.

974 976

976

976

976

977

1022

1271 1272

1272

1273

1273

1286 1287

1287

1287

1287

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1287UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLGuiNodeLink::AddOwnedGuiNodeLink

parameter name direction type type modifier multiplicity default
ipForUMLData in IUMLGuiNodeLin

k

return return void

Operation IUMLGuiNodeLink::Bottom

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiNodeLink::IsElementVisible

parameter name direction type type modifier multiplicity default
ipElement in IUMLElement

return return bool

Operation IUMLGuiNodeLink::Left

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiNodeLink::MoveTo

parameter name direction type type modifier multiplicity default
nLeft in int
nTop in int
return return void

Operation IUMLGuiNodeLink::OwnedGuiNodeLinks

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

Returns a list of all owned gui node links, all nodes which are directly contained in this node. All elements in

this list are of type (or subtype of) IUMLGuiLink .

Operation IUMLGuiNodeLink::OwningGuiNodeLink

parameter name direction type type modifier multiplicity default
return return IUMLGuiNodeLin

k

Operation IUMLGuiNodeLink::Right

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiNodeLink::SetElementVisible

parameter name direction type type modifier multiplicity default
ipElement in IUMLElement

bVisible in bool
return return void

Operation IUMLGuiNodeLink::SetRect

parameter name direction type type modifier multiplicity default

1286

1112

969

1284

1286

1112

1288 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

nLeft in int
nTop in int
nRight in int
nBottom in int
return return void

Operation IUMLGuiNodeLink::Top

parameter name direction type type modifier multiplicity default
return return int

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.29 UModelAPI - IUMLGuiNote

Interface IUMLGuiNote

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation AddUMLGuiNote

 AddUMLGuiNoteLink

 AddUMLGuiNoteLinkToLine

Interface IUMLGuiDiagram Operation AddUMLGuiNote

 AddUMLGuiNoteLink

 AddUMLGuiNoteLinkToLine

document
ation

A IUMLGuiNote is the graphical object resembling a note on UModel diagrams displaying a text comment.
It provides access to the note text and a list of hyperlinks in this text. These hyperlinks are nothing more than
a list of URLs together with an begin and end number referencing positions in the text. Any text between a
such a begin and end position is displayed as hyperlink and triggers UModel to open the URL when clicked.

974 976

976

976

1271 1273

1273

1273

1288

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1289UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLGuiNote::InsertOwnedGuiTextHyperlinkAt

parameter name direction type type modifier multiplicity default
nFromTextPos in int
nToTextPos in int
strAddress in string
return return IUMLGuiTextHyp

erlink

Operation IUMLGuiNote::NoteText

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLGuiNote::OwnedHyperlinks

parameter name direction type type modifier multiplicity default
return return IUMLDataList

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.30 UModelAPI - IUMLGuiNoteLink

Interface IUMLGuiNoteLink

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation AddUMLGuiNoteLink

 AddUMLGuiNoteLinkToLine

Interface IUMLGuiDiagram Operation AddUMLGuiNoteLink

 AddUMLGuiNoteLinkToLine

document
ation

A notelink is a special IUMLGuiLineLink which connects a IUMLGuiNote with another IUMLGuiLink
element. It is displayed as a dotted line.

1310

969

974 976

976

1271 1273

1273

1282 1288 1284

http://www.altova.com/umodel
http://www.altova.com/umodel

1290 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.31 UModelAPI - IUMLGuiObjectDiagram

Interface IUMLGuiObjectDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.32 UModelAPI - IUMLGuiPackageDiagram

Interface IUMLGuiPackageDiagram

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1291UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.33 UModelAPI - IUMLGuiProfileDiagram

Interface IUMLGuiProfileDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1292 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.6.34 UModelAPI - IUMLGuiProtocolStateMachineDiagram

Interface IUMLGuiProtocolStateMachineDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.35 UModelAPI - IUMLGuiRelativeNodeLink

Interface IUMLGuiRelativeNodeLink

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1293UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

document
ation

This gui link is used for elements which are positioned relative to another node. For example the names of
Messages on Communication diagrams use a specialization of this interface.

Operation IUMLGuiRelativeNodeLink::PosX

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiRelativeNodeLink::PosY

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiRelativeNodeLink::SetPos

parameter name direction type type modifier multiplicity default
x in int
y in int
return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.36 UModelAPI - IUMLGuiRootElement

Interface IUMLGuiRootElement

diagra
m

http://www.altova.com/umodel
http://www.altova.com/umodel

1294 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierar
chy

typed
Eleme

nts

Interface IDocument Operation GuiRoot

docu
menta

tion

This is the root interface for all graphical objects and contains all diagrams which exists in the UModel project.

Operation IUMLGuiRootElement::InsertOwnedDiagramAt

parameter name direction type type modifier multiplicity default
nIdx in int
ipUMLParent in IUMLData

strKind in string
return return IUMLGuiDiagram

Operation IUMLGuiRootElement::OwnedDiagrams

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

Returns a list of all diagrams in this UModel project. All elements in this list are of type (or subtype of)

IUMLGuiDiagram .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.37 UModelAPI - IUMLGuiSeparatedNodeLink

Interface IUMLGuiSeparatedNodeLink

diagram

895 898

967

1271

969

1271

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1295UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

document
ation

This node link represents a graphical object on a UModel diagram which can be separated into two or more
parts by one or more either horizontal or vertical lines.
For each line, the position of the separator is stored in this node.
This node type is used for example by CombinedFragments, ActivityPartitions and States with regions.

Operation IUMLGuiSeparatedNodeLink::GetSeparatorPosition

parameter name direction type type modifier multiplicity default
nIdx in int
return return int

Operation IUMLGuiSeparatedNodeLink::SeparatorCount

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiSeparatedNodeLink::SetSeparatorPosition

parameter name direction type type modifier multiplicity default
nIdx in int
nPosition in int
return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel

1296 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.6.38 UModelAPI - IUMLGuiSeparatedNodeLink2D

Interface IUMLGuiSeparatedNodeLink2D

diagram

hierarchy

document
ation

This node link represents a graphical object on a UModel diagram which can be separated into parts by one

or more horizontal or vertical lines, but in contrast to IUMLGuiSeparatedNodeLink , the node can be
subdivided vertically and horizontally at the same time. For each vertical or horizontal separation line, the
position of the separator is stored in this node.
This node type is used for example by ActivityPartitions.

Operation IUMLGuiSeparatedNodeLink2D::GetHSeparatorPosition

parameter name direction type type modifier multiplicity default
nIdx in int
return return int

Operation IUMLGuiSeparatedNodeLink2D::GetVSeparatorPosition

parameter name direction type type modifier multiplicity default
nIdx in int
return return int

Operation IUMLGuiSeparatedNodeLink2D::HSeparatorCount

1294

© 2018-2024 Altova GmbH

UModel API Reference 1297UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiSeparatedNodeLink2D::SetHSeparatorPosition

parameter name direction type type modifier multiplicity default
nIdx in int
nPosition in int
return return void

Operation IUMLGuiSeparatedNodeLink2D::SetVSeparatorPosition

parameter name direction type type modifier multiplicity default
nIdx in int
nPosition in int
return return void

Operation IUMLGuiSeparatedNodeLink2D::VSeparatorCount

parameter name direction type type modifier multiplicity default
return return int

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.39 UModelAPI - IUMLGuiSequenceDiagram

Interface IUMLGuiSequenceDiagram

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

1298 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

Operation IUMLGuiSequenceDiagram::CodeOperation

parameter name direction type type modifier multiplicity default
return return IUMLOperation

Operation IUMLGuiSequenceDiagram::UseForForwardEngineering

parameter name direction type type modifier multiplicity default
return return bool

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.40 UModelAPI - IUMLGuiStateMachineDiagram

Interface IUMLGuiStateMachineDiagram

diagram

1192

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1299UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.41 UModelAPI - IUMLGuiStructureDiagram

Interface IUMLGuiStructureDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1300 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.6.42 UModelAPI - IUMLGuiStyle

Interface IUMLGuiStyle

diagram

typedElem
ents

Interface IUMLGuiStyles Operation GetStyle Item

Operation IUMLGuiStyle::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IUMLGuiStyle::Kind

parameter name direction type type modifier multiplicity default
return return ENUMUMLGuiSty

leKind

Operation IUMLGuiStyle::Name

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLGuiStyle::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IUMLGuiStyle::UsedValue

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLGuiStyle::Value

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1301 1301 1302

1326

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1301UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.6.43 UModelAPI - IUMLGuiStyles

Interface IUMLGuiStyles

diagram

typedElem
ents

Interface IDocument Operation ElementFamilyStyles

 LineStyles NodeStyles

 ProjectStyles

Interface IUMLDataAll Operation StereotypedElementStyles

 Styles

Interface IUMLGuiVisibleElement

Operation Styles

Interface IUMLStereotype Operation StereotypedElementStyles

Operation IUMLGuiStyles::Application

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IUMLGuiStyles::Count

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiStyles::GetName

parameter name direction type type modifier multiplicity default
nKind in ENUMUMLGuiSty

leKind

return return string

Operation IUMLGuiStyles::GetStyle

parameter name direction type type modifier multiplicity default
nKind in ENUMUMLGuiSty

leKind

return return IUMLGuiStyle

Operation IUMLGuiStyles::GetUsedValue

895 896

899 900

900

974 1037

1037

1319 1320

1229 1230

1326

1326

1300

1302 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nKind in ENUMUMLGuiSty

leKind

return return string

Operation IUMLGuiStyles::GetValue

parameter name direction type type modifier multiplicity default
nKind in ENUMUMLGuiSty

leKind

return return string

Operation IUMLGuiStyles::Item

parameter name direction type type modifier multiplicity default
nIdx in int
return return IUMLGuiStyle

Operation IUMLGuiStyles::Parent

parameter name direction type type modifier multiplicity default
return return IDispatch

Operation IUMLGuiStyles::SetValue

parameter name direction type type modifier multiplicity default
nKind in ENUMUMLGuiSty

leKind

strNewVal in string
return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.44 UModelAPI - IUMLGuiSubDiagramNode

Interface IUMLGuiSubDiagramNode

diagram

1326

1326

1300

1326

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1303UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

document
ation

The sub diagram node represents a node link on a diagram which again includes another diagram. This is
used for example on interaction overview diagrams to display sequence, communication and timing diagrams
inside nodes.

The property ReferencedDiagram controls the diagrams which is shown inside the node.

Operation IUMLGuiSubDiagramNode::ReferencedDiagram

parameter name direction type type modifier multiplicity default
return return IUMLGuiDiagram

Operation IUMLGuiSubDiagramNode::ScrollPosX

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiSubDiagramNode::ScrollPosY

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiSubDiagramNode::SetScrollPos

parameter name direction type type modifier multiplicity default
nX in int
nY in int
return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1303

1271

http://www.altova.com/umodel
http://www.altova.com/umodel

1304 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.6.45 UModelAPI - IUMLGuiSysMLActivityDiagram

Interface IUMLGuiSysMLActivityDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.46 UModelAPI - IUMLGuiSysMLBlockDefinitionDiagram

Interface IUMLGuiSysMLBlockDefinitionDiagram

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1305UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.47 UModelAPI - IUMLGuiSysMLInternalBlockDiagram

Interface IUMLGuiSysMLInternalBlockDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1306 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.6.48 UModelAPI - IUMLGuiSysMLPackageDiagram

Interface IUMLGuiSysMLPackageDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.49 UModelAPI - IUMLGuiSysMLParametricDiagram

Interface IUMLGuiSysMLParametricDiagram

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1307UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.50 UModelAPI - IUMLGuiSysMLRequirementDiagram

Interface IUMLGuiSysMLRequirementDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1308 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.6.51 UModelAPI - IUMLGuiSysMLSequenceDiagram

Interface IUMLGuiSysMLSequenceDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.52 UModelAPI - IUMLGuiSysMLStateMachineDiagram

Interface IUMLGuiSysMLStateMachineDiagram

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1309UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.53 UModelAPI - IUMLGuiSysMLUseCaseDiagram

Interface IUMLGuiSysMLUseCaseDiagram

diagram

hierarchy

http://www.altova.com/umodel
http://www.altova.com/umodel

1310 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.54 UModelAPI - IUMLGuiTextHyperlink

Interface IUMLGuiTextHyperlink

diagram

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertOwnedGuiTextHyperlinkAt

Interface IUMLGuiDiagram Operation InsertOwnedGuiTextHyperlinkAt

Interface IUMLGuiNote Operation InsertOwnedGuiTextHyperlinkAt

document
ation

Text Hyperlinks store an URL together with a begin and an end number referencing positions in some text.
Any text between a such a begin and end position is displayed as hyperlink and triggers UModel to open the

URL when clicked. This is used in IUMLGuiNote to create hyperlinks inside of the text comment for
example.

Operation IUMLGuiTextHyperlink::LinkAddress

parameter name direction type type modifier multiplicity default
return return string

Operation IUMLGuiTextHyperlink::NoteTextEndPos

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiTextHyperlink::NoteTextStartPos

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiTextHyperlink::OpenLink

parameter name direction type type modifier multiplicity default

974 1002

1271 1274

1288 1289

1288

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1311UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

return return void

Operation IUMLGuiTextHyperlink::SetHyperlinkFileAddress

parameter name direction type type modifier multiplicity default
strFilePathOrUrl in string
return return void

Operation IUMLGuiTextHyperlink::SetHyperlinkGuiElementAddress

parameter name direction type type modifier multiplicity default
ipLinkedGuiEleme
nt

in IUMLGuiVisibleEl

ement

ipLinkedGuiEleme
ntCell

in IUMLNamedElem

ent

return return void

Operation IUMLGuiTextHyperlink::SetHyperlinkModelElementAddress

parameter name direction type type modifier multiplicity default
ipLinkedData in IUMLData

return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.55 UModelAPI - IUMLGuiTextLabel

Interface IUMLGuiTextLabel

diagram

1319

1178

967

http://www.altova.com/umodel
http://www.altova.com/umodel

1312 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation GetTextLabelText

 IsTextLabelVisible

 SetTextLabelVisible
Interface

IUMLGuiTextLabelWaypoint

Operation GetTextLabelText

 IsTextLabelVisible

 SetTextLabelVisible

document
ation

A text label is an graphical object displaying additional data at the begin, end or at the center of a line. The

IUMLGuiTextLabel interface provides access to this element. The text label can reference an UML Element

using the TextLabelElement property and has a TextLabelKind which affects what text is shown in the
text label.

Operation IUMLGuiTextLabel::IsPositioned

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLGuiTextLabel::PosX

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiTextLabel::PosY

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiTextLabel::SetPos

parameter name direction type type modifier multiplicity default
nX in int
nY in int
return return void

Operation IUMLGuiTextLabel::TextLabelElement

parameter name direction type type modifier multiplicity default
return return IUMLElement

Operation IUMLGuiTextLabel::TextLabelKind

parameter name direction type type modifier multiplicity default
return return ENUMUMLGuiTe

xtLabelKind

974 992

1013

1035

1313

1313

1313

1314

1311

1312 1312

1112

1327

© 2018-2024 Altova GmbH

UModel API Reference 1313UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.56 UModelAPI - IUMLGuiTextLabelWaypoint

Interface IUMLGuiTextLabelWaypoint

diagram

hierarchy

document
ation

A text label waypoint is a special waypoint as part of a IUMLGuiLineLink which can have one or more text
labels associated with it. Text label waypoints can usually appear at the begin, end or in the middle of a line.
The waypoint stores not only the text labels it shows, but also the visibility of each text label.

Operation IUMLGuiTextLabelWaypoint::GetTextLabelText

parameter name direction type type modifier multiplicity default
ipTextLabel in IUMLGuiTextLabe

l

return return string

Operation IUMLGuiTextLabelWaypoint::IsTextLabelVisible

parameter name direction type type modifier multiplicity default
ipTextLabel in IUMLGuiTextLabe

l

return return bool

1282

1311

1311

http://www.altova.com/umodel
http://www.altova.com/umodel

1314 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLGuiTextLabelWaypoint::SetTextLabelVisible

parameter name direction type type modifier multiplicity default
ipTextLabel in IUMLGuiTextLabe

l

bVisible in bool
return return void

Operation IUMLGuiTextLabelWaypoint::TextLabels

parameter name direction type type modifier multiplicity default
return return IUMLDataList

document
ation

Returns a list of all text labels of this waypoint. Contains only elements of type (or subtype of)

IUMLGuiTextLabel .

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.57 UModelAPI - IUMLGuiTickMark

Interface IUMLGuiTickMark

diagram

hierarchy

typedElem
ents

Interface

IUMLGuiTimingDiagram

Operation AddUMLGuiTickMark

document
ation

A tick mark is a special graphical item appearing on the border of lifelines on timing diagrams. It represents a
certain point in time and is displayed as short vertical line.

It has a Value property which is displayed as text below the vertical line.

1311

969

1311

1315

1315

1315

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1315UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation IUMLGuiTickMark::Value

parameter name direction type type modifier multiplicity default
return return string

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.58 UModelAPI - IUMLGuiTimingDiagram

Interface IUMLGuiTimingDiagram

diagram

hierarchy

Operation IUMLGuiTimingDiagram::AddUMLGuiTickMark

parameter name direction type type modifier multiplicity default
ipOnNode in IUMLGuiTimingDi

agramLifeline

nPosX in int
nPosY in int
return return IUMLGuiTickMark

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1316

1314

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1316 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.6.59 UModelAPI - IUMLGuiTimingDiagramLifeline

Interface IUMLGuiTimingDiagramLifeline

diagram

hierarchy

typedElem
ents

Interface

IUMLGuiTimingDiagram

Operation AddUMLGuiTickMark

document
ation

A IUMLGuiTimingDiagramLifeline is the graphical representation of a lifeline on a timing diagram. This
type of lifeline has several options to display its data and provides access to these through its numerous
properties.

Operation IUMLGuiTimingDiagramLifeline::GeneralValueLifelineNameCompartmentEndPos

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiTimingDiagramLifeline::GetStateIndex

1315

1315

1316

© 2018-2024 Altova GmbH

UModel API Reference 1317UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

parameter name direction type type modifier multiplicity default
nTimeTickIndex in int
return return int

Operation IUMLGuiTimingDiagramLifeline::GetTimeTickLength

parameter name direction type type modifier multiplicity default
nIdx in int
return return int

Operation IUMLGuiTimingDiagramLifeline::GetVisualStatePosition

parameter name direction type type modifier multiplicity default
nStateIndex in int
return return int

Operation IUMLGuiTimingDiagramLifeline::IsShowAsGeneralValueLifeline

parameter name direction type type modifier multiplicity default
return return bool

Operation IUMLGuiTimingDiagramLifeline::NameCompartmentEndPos

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiTimingDiagramLifeline::SetStateIndex

parameter name direction type type modifier multiplicity default
nTimeTickIndex in int
nNewVal in int
return return void

Operation IUMLGuiTimingDiagramLifeline::SetStateIndexErased

parameter name direction type type modifier multiplicity default
nTimeTickIndex in int
return return void

Operation IUMLGuiTimingDiagramLifeline::SetTimeTickLength

parameter name direction type type modifier multiplicity default
nIdx in int
nNewVal in int
return return void

Operation IUMLGuiTimingDiagramLifeline::SetVisualStatePosition

parameter name direction type type modifier multiplicity default
nStateIndex in int
nNewVal in int
return return void

Operation IUMLGuiTimingDiagramLifeline::StateCompartmentEndPos

parameter name direction type type modifier multiplicity default
return return int

1318 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Operation IUMLGuiTimingDiagramLifeline::TimeTickLengthCount

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiTimingDiagramLifeline::VisualStatePositionCount

parameter name direction type type modifier multiplicity default
return return int

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.60 UModelAPI - IUMLGuiTimingDiagramMessage

Interface IUMLGuiTimingDiagramMessage

diagram

hierarchy

document
ation

A IUMLGuiTimingDiagramMessage is a line usually connecting two IUMLGuiTimingDiagramLifeline s.
For each lifeline on one of its ends, it stores its position from the start of the state or general value
compartement.

Operation IUMLGuiTimingDiagramMessage::BeginOffset

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiTimingDiagramMessage::EndOffset

parameter name direction type type modifier multiplicity default
return return int

1318 1316

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1319UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.61 UModelAPI - IUMLGuiUseCaseDiagram

Interface IUMLGuiUseCaseDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.62 UModelAPI - IUMLGuiVisibleElement

Interface IUMLGuiVisibleElement

diagram

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1320 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface

IUMLCommentTextHyperlink

Operation SetHyperlinkGuiElementAddress

Interface IUMLDataAll Operation InsertOwnedHyperlink2GuiElementA

t LinkedGuiElement

 SetHyperlinkGuiElementAddress

Interface IUMLGuiTextHyperlink Operation SetHyperlinkGuiElementAddress
Interface

IUMLHyperlink2GuiElement

Operation LinkedGuiElement

Interface IUMLNamedElement Operation InsertOwnedHyperlink2GuiElementA

t

document
ation

The IUMLGuiVisibleElement is the base interface for most visible elements which can be placed on
UModel diagrams. Visible elements have a style with which it is possible to infliuence its color and/or shape,
depending on the actual type of the visible element.

Operation IUMLGuiVisibleElement::Styles

parameter name direction type type modifier multiplicity default
return return IUMLGuiStyles

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.6.63 UModelAPI - IUMLGuiWaypoint

Interface IUMLGuiWaypoint

diagram

1088

1089

974

1003 1014

1029

1310 1311

1138

1139

1178

1179

1319

1301

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1321UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

hierarchy

typedElem
ents

Interface IUMLDataAll Operation InsertWaypointAt

Interface IUMLGuiLineLink Operation InsertWaypointAt

document
ation

A IUMLGuiWaypoint is a part of a IUMLGuiLineLink which defines the position of one point of a line.
There are several subtypes of this interface which for example make it possible to attach text labels or lines to
a waypoint or line.

Operation IUMLGuiWaypoint::LineLinks

parameter name direction type type modifier multiplicity default
return return IUMLDataList

Operation IUMLGuiWaypoint::PosX

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiWaypoint::PosY

parameter name direction type type modifier multiplicity default
return return int

Operation IUMLGuiWaypoint::SetPos

parameter name direction type type modifier multiplicity default
x in int
y in int
return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 1007

1282 1283

1320 1282

969

http://www.altova.com/umodel
http://www.altova.com/umodel

1322 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.6.64 UModelAPI - IUMLGuiXMLSchemaDiagram

Interface IUMLGuiXMLSchemaDiagram

diagram

hierarchy

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.7 Events

This is a list of all events sent by the UModel API on UMLData level.

See also How to Use UMLData Events and Event Filters .

17.4.3.7.1 UModelAPI - _IUMLDataEvents

Interface _IUMLDataEvents

diagram

829

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1323UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

Operation _IUMLDataEvents::OnAfterAddChild

parameter name direction type type modifier multiplicity default
ipUMLParent in IUMLData

ipUMLChild in IUMLData

return return void

Operation _IUMLDataEvents::OnBeforeErase

parameter name direction type type modifier multiplicity default
ipUMLData in IUMLData

return return void

Operation _IUMLDataEvents::OnChanged

parameter name direction type type modifier multiplicity default
ipUMLData in IUMLData

strHint in string
return return void

document
ation

strHint is for future use only!

Operation _IUMLDataEvents::OnMoveData

parameter name direction type type modifier multiplicity default
ipUMLParent in IUMLData

ipUMLChild in IUMLData

bAttach in bool
return return void

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.8 Enumerations

This is a list of all enumerations used by the UModel API on UMLData level. If your scripting environment does
not support enumerations use the number-values instead.

17.4.3.8.1 UModelAPI - ENUMUMLAggregationKind

Enumeration ENUMUMLAggregationKind

diagram

typedElem
ents

Interface IUMLDataAll Operation Aggregation

Interface IUMLProperty Operation Aggregation

967

967

967

967

967

967

974 977

1207 1208

http://www.altova.com/umodel
http://www.altova.com/umodel

1324 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.8.2 UModelAPI - ENUMUMLCallConcurrencyKind

Enumeration ENUMUMLCallConcurrencyKind

diagram

typedElem
ents

Interface IUMLBehavioralFeature

Operation Concurrency

Interface IUMLDataAll Operation Concurrency

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.8.3 UModelAPI - ENUMUMLConnectorKind

Enumeration ENUMUMLConnectorKind

diagram

typedElem
ents

Interface IUMLConnector Operation ConnectorKind

Interface IUMLDataAll Operation ConnectorKind

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

1067 1067

974 981

1095 1095

974 981

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1325UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.8.4 UModelAPI - ENUMUMLDataEventFilter

Enumeration ENUMUMLDataEventFilter

diagram

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.8.5 UModelAPI - ENUMUMLDBDataSourceMethod

Enumeration ENUMUMLDBDataSourceMethod

diagram

typedElem
ents

Interface IImportDatabaseDlg Operation SelectNewDataSourceByConnectionS

tring

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

918

918

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1326 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.8.6 UModelAPI - ENUMUMLExpansionKind

Enumeration ENUMUMLExpansionKind

diagram

typedElem
ents

Interface IUMLDataAll Operation Mode

Interface IUMLExpansionRegion Operation Mode

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.8.7 UModelAPI - ENUMUMLGuiStyleKind

Enumeration ENUMUMLGuiStyleKind

diagram The diagram is not included because of page size constraints; however, it is available in the
HTML version of the manual (https://www.altova.com/manual/en/umodelenterprise/2024.2/).

typedElem
ents

Interface IUMLGuiStyle Operation Kind

Interface IUMLGuiStyles Operation GetName GetStyle

 GetUsedValue GetValue

 SetValue

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 1017

1126 1127

1300 1300

1301 1301 1301

1301 1302

1302

http://www.altova.com/umodel
http://www.altova.com/umodel
https://www.altova.com/manual/en/umodelenterprise/2024.2/
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1327UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.8.8 UModelAPI - ENUMUMLGuiTextLabelKind

Enumeration ENUMUMLGuiTextLabelKind

diagram

typedElem
ents

Interface IUMLDataAll Operation TextLabelKind
974 1039

1328 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

Interface IUMLGuiTextLabel Operation TextLabelKind

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.8.9 UModelAPI - ENUMUMLInteractionOperatorKind

Enumeration ENUMUMLInteractionOperatorKind

diagram

typedElem
ents

Interface

IUMLCombinedFragment

Operation InteractionOperator

Interface IUMLDataAll Operation InteractionOperator

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.8.10 UModelAPI - ENUMUMLMessageKind

Enumeration ENUMUMLMessageKind

diagram

1311 1312

1086

1086

974 1007

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1329UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

typedElem
ents

Interface IUMLDataAll Operation MessageKind

Interface IUMLMessage Operation MessageKind

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.8.11 UModelAPI - ENUMUMLMessageSort

Enumeration ENUMUMLMessageSort

diagram

typedElem
ents

Interface IUMLDataAll Operation MessageSort

Interface IUMLMessage Operation MessageSort

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.8.12 UModelAPI - ENUMUMLObjectNodeOrderingKind

Enumeration ENUMUMLObjectNodeOrderingKind

diagram

typedElem
ents

Interface IUMLDataAll Operation Ordering

Interface IUMLObjectNode Operation Ordering

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 1016

1172 1173

974 1016

1172 1173

974 1019

1185 1186

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1330 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.8.13 UModelAPI - ENUMUMLParameterDirectionKind

Enumeration ENUMUMLParameterDirectionKind

diagram

typedElem
ents

Interface IUMLDataAll Operation Direction

Interface IUMLParameter Operation Direction

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.8.14 UModelAPI - ENUMUMLPredefinedElement

Enumeration ENUMUMLPredefinedElement

diagram The diagram is not included because of page size constraints; however, it is available in the
HTML version of the manual (https://www.altova.com/manual/en/umodelenterprise/2024.2/).

typedElem
ents

Interface IUMLDataAll Operation ApplyPredefinedStereotype

 FindPredefinedOwnedElement
 GetStereotypeApplicationForPredefi

nedStereotype

 IsPredefinedStereotypeApplied

 SetPredefinedTaggedValueAt

 UnapplyPredefinedStereotype

Interface IUMLElement Operation ApplyPredefinedStereotype

 FindPredefinedOwnedElement
 GetStereotypeApplicationForPredefi

nedStereotype

 IsPredefinedStereotypeApplied

 UnapplyPredefinedStereotype
Interface

IUMLStereotypeApplication

Operation SetPredefinedTaggedValueAt

document
ation

Deprecated:
ePredefined_Java_finalStereotypeOfProperty
ePredefined_Java_finalStereotypeOfOperation
ePredefined_Java_finalStereotypeOfClass

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 984

1200 1201

974 978

989

991

1011

1033

1040

1112 1113

1113

1113

1114

1115

1230

1231

http://www.altova.com/umodel
http://www.altova.com/umodel
https://www.altova.com/manual/en/umodelenterprise/2024.2/
http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

UModel API Reference 1331UModel Programmer's Reference

Altova UModel 2024 Enterprise Edition

17.4.3.8.15 UModelAPI - ENUMUMLPseudostateKind

Enumeration ENUMUMLPseudostateKind

diagram

typedElem
ents

Interface IUMLDataAll Operation PseudostateKind

Interface IUMLPseudostate Operation PseudostateKind

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

17.4.3.8.16 UModelAPI - ENUMUMLTransitionKind

Enumeration ENUMUMLTransitionKind

diagram

typedElem
ents

Interface IUMLDataAll Operation TransitionKind

Interface IUMLTransition Operation TransitionKind

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

974 1026

1213 1213

974 1040

1246 1247

http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel
http://www.altova.com/umodel

1332 UModel Programmer's Reference UModel API Reference

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

17.4.3.8.17 UModelAPI - ENUMUMLVisibilityKind

Enumeration ENUMUMLVisibilityKind

diagram

typedElem
ents

Interface ILocalOptionsEditing Operation OperationsDefaultVisibility

 PropertiesDefaultVisibility

Interface IUMLDataAll Operation Visibility

Interface IUMLElementImport Operation Visibility

Interface IUMLNamedElement Operation Visibility

Interface IUMLPackageImport Operation Visibility

UML documentation generated by UModel UML Editor http://www.altova.com/umodel Tue Oct 24 12:26:31 2023

936 936

937

974 1042

1115 1116

1178 1180

1198 1198

http://www.altova.com/umodel
http://www.altova.com/umodel

© 2018-2024 Altova GmbH

 1333SPL Reference

Altova UModel 2024 Enterprise Edition

18 SPL Reference

This section gives you an overview of SPL (Spy Programming Language), code generator's template language.
It is assumed that you have prior programming experience, and are familiar with operators, functions, variables
and classes, as well as the basics of object-oriented programming - which is used heavily in SPL.

The templates used by UModel are supplied in the applications's UModelSPL folder. You can use these files as

a guide to developing your own templates.

How code generator works
Code is generated on the basis of the template files (.spl files) and the object model provided by UModel. The

template files contain the code of the target programming language combined with SPL instructions for creating
files, reading information from the object model, and performing calculations.

The template file is interpreted by the code generator and outputs the source-code files of the target language/s
(that is, the non-compiled code files) and any other relevant project file or template-dependent file.

1334 SPL Reference Basic SPL structure

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

18.1 Basic SPL structure

An SPL file contains literal text to output, interspersed with code generator instructions.

Code generator instructions are enclosed in square brackets '[' and ']'. Multiple statements can be included in a
bracket pair. Additional statements have to be separated by a new line or a colon ':'.

Valid examples are:

[$x = 42
$x = $x + 1]

or

[$x = 42: $x = $x + 1]

Adding text to files
Text not enclosed by [and], is written directly to the current output file.

To output literal square brackets, escape them with a backslash: \[and \]; to output a backslash use \\.

Comments
Comments inside an instruction block always begin with a ' character, and terminate on the next line, or at a
block close character].

© 2018-2024 Altova GmbH

Variables 1335SPL Reference

Altova UModel 2024 Enterprise Edition

18.2 Variables

Any non-trivial SPL file will require variables. Some variables are predefined by the code generator, and new
variables may be created simply by assigning values to them.

The $ character is used when declaring or using a variable, a variable name is always prefixed by $. Variable
names are case sensitive.

Variables types:

· integer - also used as boolean, where 0 is false and everything else is true
· string
· object - provided by UModel
· iterator - see foreach statement

Variable types are declared by first assignment:

[$x = 0]

x is now an integer.

[$x = "teststring"]

x is now treated as a string.

Strings
String constants are always enclosed in double quotes, like in the example above. \n and \t inside double
quotes are interpreted as newline and tab, \" is a literal double quote, and \\ is a backslash. String constants
can also span multiple lines.

String concatenation uses the & character:

[$BasePath = $outputpath & "/" & $JavaPackageDir]

Objects
Objects represent the information contained in the UModel project. Objects have properties, which can be
accessed using the . operator. It is not possible to create new objects in SPL (they are predefined by the code
generator, derived from the input), but it is possible to assign objects to variables.

Example:

class [=$class.Name]

This example outputs the word "class", followed by a space and the value of the Name property of the $class
object.

1346

1336 SPL Reference Variables

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

The following table shows the relationship between UML elements their SPL equivalents along with a short
description.

Predefined variables

UML element SPL property Multiplicity UML Attribute /

Association

UModel Attribute /

Association

Description

BehavioralFeature isAbstract isAbstract:Boolean

BehavioralFeature raisedException * raisedException:Ty

pe

BehavioralFeature ow nedParameter * ow nedParameter:P

arameter

BehavioredClassifi

er

interfaceRealizatio

n

* interfaceRealizatio

n:InterfaceRealizati

on

Class ow nedOperation * ow nedOperation:O

peration

Class nestedClassifier * nestedClassifier:Cl

assifier

Classifier namespace * namespace:Packag

e

packages w ith

code language

<<namespace>>

set

Classifier rootNamespace * project root

namespace:String

VB only - root

namespace

Classifier generalization * generalization:Gen

eralization

Classifier isAbstract isAbstract:Boolean

ClassifierTemplate

Parameter

constrainingClassifi

er

* constrainingClassifi

er

Comment body body:String

DataType ow nedAttribute * ow nedAttribute:Pro

perty

DataType ow nedOperation * ow nedOperation:O

peration

Element kind kind:String

Element ow ner 0..1 ow ner:Element

Element appliedStereotype * appliedStereotype:

StereotypeApplicati

on

applied

stereotypes

© 2018-2024 Altova GmbH

Variables 1337SPL Reference

Altova UModel 2024 Enterprise Edition

UML element SPL property Multiplicity UML Attribute /

Association

UModel Attribute /

Association

Description

Element ow nedComment * ow nedComment:Co

mment

ElementImport importedElement 1 importedElement:Pa

ckageableElement

Enumeration ow nedLiteral * ow nedLiteral:Enum

erationLiteral

Enumeration nestedClassifier * nestedClassifier::Cl

assifier

Enumeration interfaceRealizatio

n

* interfaceRealizatio

n:Interface

EnumerationLiteral ow nedAttribute * ow nedAttribute:Pro

perty

EnumerationLiteral ow nedOperation * ow nedOperation:O

peration

EnumerationLiteral nestedClassifier * nestedClassifier:Cl

assifier

Feature isStatic isStatic:Boolean

Generalization general 1 general:Classifier

Interface ow nedAttribute * ow nedAttribute:Pro

perty

Interface ow nedOperation * ow nedOperation:O

peration

Interface nestedClassifier * nestedClassifier:Cl

assifier

InterfaceRealizatio

n

contract 1 contract:Interface

MultiplicityElement low erValue 0..1 low erValue:ValueS

pecification

MultiplicityElement upperValue 0..1 upperValue:ValueS

pecification

NamedElement name name:String

NamedElement visibility visibility:VisibilityKin

d

NamedElement isPublic isPublic:Boolean visibility <public>

NamedElement isProtected isProtected:Boolea

n

visibility

<protected>

NamedElement isPrivate isPrivate:Boolean visibility <private>

1338 SPL Reference Variables

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML element SPL property Multiplicity UML Attribute /

Association

UModel Attribute /

Association

Description

NamedElement isPackage isPackage:Boolean visibility <package>

NamedElement namespacePrefix namespacePrefix:S

tring

XSD only -

namespace prefix

w hen exists

NamedElement parseableName parseableName:Stri

ng

CSharp, VB only -

name w ith

escaped keyw ords

(@)

Namespace elementImport * elementImport:Elem

entImport

Operation ow nedReturnPara

meter

0..1 ow nedReturnPara

meter:Parameter

parameter w ith

direction return set

Operation type 0..1 type type of parameter

w ith direction

return set

Operation ow nedOperationPa

rameter

* ow nedOperationPa

rameter:Parameter

all parameters

excluding

parameter w ith

direction return set

Operation implementedInterfa

ce

1 implementedInterfa

ce:Interface

CSharp only - the

implemented

interface

Operation ow nedOperationIm

plementations

* implementedOperati

on:OperationImplem

entation

VB only - the

implemented

interfaces/operatio

ns

OperationImplemen

tation

implementedOperati

onOw ner

1 implementedOperati

onOw ner:Interface

interface

implemented by the

operation

OperationImplemen

tation

implementedOperati

onName

name:String name of the

implemented

operation

OperationImplemen

tation

implementedOperati

onParseableName

parseableName:Stri

ng

name of the

implemented

operation w ith

escaped keyw ords

Package namespace * namespace:Packag

e

packages w ith

code language

<<namespace>>

set

PackageableEleme

nt

ow ningPackage 0..1 ow ningPackage set if ow ner is a

package

© 2018-2024 Altova GmbH

Variables 1339SPL Reference

Altova UModel 2024 Enterprise Edition

UML element SPL property Multiplicity UML Attribute /

Association

UModel Attribute /

Association

Description

PackageableEleme

nt

ow ningNamespace

Package

0..1 ow ningNamespace

Package:Package

ow ning package

w ith code

language

<<namespace>>

set

Parameter direction direction:Parameter

DirectionKind

Parameter isIn isIn:Boolean direction <in>

Parameter isInOut isInOut:Boolean direction <inout>

Parameter isOut isOut:Boolean direction <out>

Parameter isReturn isReturn:Boolean direction <return>

Parameter isVarArgList isVarArgList:Boole

an

true if parameter is

a variable

argument list

Parameter defaultValue 0..1 defaultValue:Value

Specification

Property defaultValue 0..1 defaultValue:Value

Specification

RedefinableElemen

t

isLeaf isLeaf:Boolean

Slot name name:String name of the

defining feature

Slot values * value:ValueSpecifi

cation

Slot value value:String value of the first

value specification

StereotypeApplicat

ion

name name:String name of applied

stereotype

StereotypeApplicat

ion

taggedValue * taggedValue:Slot first slot of the

instance

specification

StructuralFeature isReadOnly isReadOnly

StructuredClassifie

r

ow nedAttribute * ow nedAttribute:Pro

perty

TemplateBinding signature 1 signature:Template

Signature

TemplateBinding parameterSubstituti

on

* parameterSubstituti

on:TemplateParame

terSubstitution

1340 SPL Reference Variables

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

UML element SPL property Multiplicity UML Attribute /

Association

UModel Attribute /

Association

Description

TemplateParameter paramDefault paramDefault:Strin

g

template parameter

default value

TemplateParameter ow nedParametere

dElement

1 ow nedParametere

dElement:Paramete

rableElement

TemplateParameter

Substitution

parameterSubstituti

on

parameterSubstituti

on:String

Java only - code

w ildcard handling

TemplateParameter

Substitution

parameterDimensio

nCount

parameterDimensio

nCount:Integer

code dimension

count of the actual

parameter

TemplateParameter

Substitution

actual 1 Ow nedActual:Para

meterableElement

TemplateParameter

Substitution

formal 1 formal:TemplatePar

ameter

TemplateSignature template 1 template:Templatea

bleElement

TemplateSignature ow nedParameter * ow nedParameter:T

emplateParameter

TemplateableEleme

nt

isTemplate isTemplate:Boolean true if template

signature set

TemplateableEleme

nt

ow nedTemplateSig

nature

0..1 ow nedTemplateSig

nature:TemplateSig

nature

TemplateableEleme

nt

templateBinding * templateBinding:Te

mplateBinding

Type typeName * typeName:Package

ableElement

qualified code type

names

TypedElement type 0..1 type:Type

TypedElement postTypeModifier postTypeModifier:S

tring

postfix code

modifiers

ValueSpecification value value:String string value of the

value specification

Adding a prefix to attributes of a class during code generation
You might need to prefix all new attributes with the "m_" characters in your project.

All new coding elements are written using the SPL templates. For example, if you open UModelSPL\C#[Java]
\Default\Attribute.spl, you can change the way the name is written. Namely, you can replace

© 2018-2024 Altova GmbH

Variables 1341SPL Reference

Altova UModel 2024 Enterprise Edition

write $Property.name

with

write "m_" & $Property.name

It is highly recommended that you immediately update your model from code after code generation, to ensure
that code and model are synchronized.

Note: As previously mentioned, copy the SPL templates one directory higher (i.e. above the default directory
to UModelSPL\C#) before modifying them. This ensures that they are not overwritten when you install
a new version of UModel. Please make sure that the "user-defined override default" check box is
activated in the Code from Model tab of the "Synchronization Settings" dialog box.

SPL Templates
SPL templates can be specified per UModel project using the menu option Project | Project Settings (as
shown in the screenshot below). Relative paths are also supported. Templates which are not found in the
specified directory, are searched for in the local default directory.

Global objects

$Options an object holding global options:

generateComments:bool generate doc comments (true/false)

$Indent a string used to indent generated code and represent the current nesting level

$IndentStep a string, used to indent generated code and represent one nesting level

$NamespacePrefix XSD only – the target namespace prefix if present

1342 SPL Reference Variables

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

String manipulation routines

integer Compare(s)

The return value indicates the lexicographic relation of the string to s (case sensitive):

<0: the string is less than s

0: the string is identical to s

>0: the string is greater than s

integer CompareNoCase(s)

The return value indicates the lexicographic relation of the string to s (case insensitive):

<0: the string is less than s

0: the string is identical to s

>0: the string is greater than s

integer Find(s)

Searches the string for the first match of a substring s. Returns the zero-based index of the first character of s
or -1 if s is not found.

string Left(n)

Returns the first n characters of the string.

integer Length()

Returns the length of the string.

string MakeUpper()

Returns a string converted to upper case.

string MakeUpper(n)

Returns a string, with the first n characters converted to upper case.

string MakeLower()

Returns a string converted to lower case.

string MakeLower(n)

© 2018-2024 Altova GmbH

Variables 1343SPL Reference

Altova UModel 2024 Enterprise Edition

Returns a string, with the first n characters converted to lower case.

string Mid(n)

Returns a string starting with the zero-based index position n

string Mid(n,m)

Returns a string starting with the zero-based index position n and the length m

string RemoveLeft(s)

Returns a string excluding the substring s if Left(s.Length()) is equal to substring s.

string RemoveLeftNoCase(s)

Returns a string excluding the substring s if Left(s.Length()) is equal to substring s (case insensitive).

string RemoveRight(s)

Returns a string excluding the substring s if Right(s.Length()) is equal to substring s.

string RemoveRightNoCase(s)

Returns a string excluding the substring s if Right(s.Length()) is equal to substring s (case insensitive).

string Repeat(s,n)

Returns a string containing substring s repeated n times.

string Right(n)

Returns the last n characters of the string.

1344 SPL Reference Operators

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

18.3 Operators

Operators in SPL work like in most other programming languages.

List of SPL operators in descending precedence order:

. Access object property
() Expression grouping
true boolean constant "true"
false boolean constant "false"

& String concatenation

- Sign for negative number
not Logical negation

* Multiply
/ Divide
% Modulo

+ Add
- Subtract

<= Less than or equal
< Less than
>= Greater than or equal
> Greater than

= Equal
<> Not equal

and Logical conjunction (with short circuit evaluation)
or Logical disjunction (with short circuit evaluation)

= Assignment

© 2018-2024 Altova GmbH

Conditions 1345SPL Reference

Altova UModel 2024 Enterprise Edition

18.4 Conditions

SPL allows you to use standard "if" statements. The syntax is as follows:

if condition

statements
else

statements
endif

or, without else:

if condition

statements
endif

Note: There are no round brackets enclosing the condition.

As in any other programming language, conditions are constructed with logical and comparison operators .

Example:

[if $namespace.ContainsPublicClasses and $namespace.Prefix <> ""]
whatever you want ['inserts whatever you want, in the resulting file]

[endif]

Switch
SPL also contains a multiple choice statement.

Syntax:

switch $variable

case X:

statements
case Y:

case Z:

statements
default:

statements
endswitch

The case labels must be constants or variables.

The switch statement in SPL does not fall through the cases (as in C), so there is no need for a "break"
statement.

1344

1346 SPL Reference Collections and foreach

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

18.5 Collections and foreach

Collections and iterators
 A collection contains multiple objects - like a ordinary array. Iterators solve the problem of storing and
incrementing array indexes when accessing objects.

Syntax:

foreach iterator in collection

statements
next

Example:

[foreach $class in $classes

if not $class.IsInternal

] class [=$class.Name];
[endif

next]

Example 2:

[foreach $i in 1 To 3

 Write "// Step " & $i & "\n"

 ‘ Do some work
next]

Foreach steps through all the items in $classes, and executes the code following the instruction, up to the
next statement, for each of them.

In each iteration, $class is assigned to the next class object. You simply work with the class object instead of
using, classes[i]->Name(), as you would in C++.

All collection iterators have the following additional properties:

Index The current index, starting with 0

IsFirst true if the current object is the first of the collection (index is 0)

IsLast true if the current object is the last of the collection

Example:

[foreach $enum in $facet.Enumeration

if not $enum.IsFirst

], [

© 2018-2024 Altova GmbH

Collections and foreach 1347SPL Reference

Altova UModel 2024 Enterprise Edition

endif

]"[=$enum.Value]"[
next]

Collection manipulation routines:

collection SortByName(bAscending)

returns a collection whose elements are sorted by name (case sensitive) in ascending or descending order.

collection SortByNameNoCase(bAscending)

returns a collection whose elements are sorted by name (case insensitive) in ascending or descending order

Example:

$SortedNestedClassifier = $Class.nestedClassifier.SortByNameNoCase(true)

collection SortByKind(bAscending)

returns a collection whose elements are sorted by kind names (e.g. “Class”, “Interface”,…) in ascending or
descending order.

collection SortByKindAndName(bAscendingKind, bAscendingName)

returns a collection whose elements are sorted by kind (e.g. “Class”, “Interface”,…) in ascending or descending
order and if the kinds are equal by name (case sensitive in ascending or descending order)

collection SortByKindAndNameNoCase(bAscending)

returns a collection whose elements are sorted by kind (e.g. “Class”, “Interface”,…) in ascending or descending
order and if the kinds are equal by name (case insensitive in ascending or descending order)

1348 SPL Reference Subroutines

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

18.6 Subroutines

Code generator supports subroutines in the form of procedures or functions.

Features:

· By-value and by-reference passing of values
· Local/global parameters (local within subroutines)
· Local variables
· Recursive invocation (subroutines may call themselves)

18.6.1 Subroutine declaration

Subroutines

Syntax example:

Sub SimpleSub()

... lines of code
 EndSub

· Sub is the keyword that denotes the procedure.
· SimpleSub is the name assigned to the subroutine.
· Round parenthesis can contain a parameter list.
· The code block of a subroutine starts immediately after the closing parameter parenthesis.
· EndSub denotes the end of the code block.

Note: Recursive or cascaded subroutine declaration is not permitted, i.e. a subroutine may not contain
another subroutine.

Parameters
Parameters can also be passed by procedures using the following syntax:

· All parameters must be variables
· Variables must be prefixed by the $ character
· Local variables are defined in a subroutine
· Global variables are declared explicitly, outside of subroutines
· Multiple parameters are separated by the comma character "," within round parentheses
· Parameters can pass values

Parameters - passing values
Parameters can be passed in two ways, by value and by reference, using the keywords ByVal and ByRef
respectively.

Syntax:

© 2018-2024 Altova GmbH

Subroutines 1349SPL Reference

Altova UModel 2024 Enterprise Edition

' define sub CompleteSub()
[Sub CompleteSub($param, ByVal $paramByValue, ByRef $paramByRef)
] ...

· ByVal specifies that the parameter is passed by value. Note that most objects can only be passed by
reference.

· ByRef specifies that the parameter is passed by reference. This is the default if neither ByVal nor
ByRef is specified.

Function return values
To return a value from a subroutine, use the return statement. Such a function can be called from within an
expression.

Example:

' define a function
[Sub MakeQualifiedName(ByVal $namespacePrefix, ByVal $localName)
if $namespacePrefix = ""
 return $localName
else
 return $namespacePrefix & ":" & $localName
endif
EndSub
]

18.6.2 Subroutine invocation

Use call to invoke a subroutine, followed by the procedure name and parameters, if any.

Call SimpleSub()

or

Call CompleteSub("FirstParameter", $ParamByValue, $ParamByRef)

Function invocation
To invoke a function (any subroutine that contains a return statement), simply use its name inside an
expression. Do not use the call statement to call functions. Example:

$QName = MakeQualifiedName($namespace, "entry")

1350 License Information

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

19 License Information

This section contains information about:

· the distribution of this software product
· software activation and license metering
· the license agreement governing the use of this product

Please read this information carefully. It is binding upon you since you agreed to these terms when you
installed this software product.

To view the terms of any Altova license, go to the Altova Legal Information page at the Altova website.

https://www.altova.com/legal
https://www.altova.com/

© 2018-2024 Altova GmbH

Electronic Software Distribution 1351License Information

Altova UModel 2024 Enterprise Edition

19.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that provides the
following unique benefits:

· You can evaluate the software free-of-charge for 30 days before making a purchasing decision. (Note:
Altova MobileTogether Designer is licensed free of charge.)

· Once you decide to buy the software, you can place your order online at the Altova website and get a
fully licensed product within minutes.

· When you place an online order, you always get the latest version of our software.
· The product package includes an onscreen help system that can be accessed from within the

application interface. The latest version of the user manual is available at www.altova.com in (i) HTML
format for online browsing, and (ii) PDF format for download (and to print if you prefer to have the
documentation on paper).

30-day evaluation period
After downloading this product, you can evaluate it for a period of up to 30 days free of charge. About 20 days
into the evaluation period, the software will start to remind you that it has not yet been licensed. The reminder
message will be displayed once each time you start the application. If you would like to continue using the
program after the 30-day evaluation period, you must purchase a product license, which is delivered in the form
of a license file containing a key code. Unlock the product by uploading the license file in the Software
Activation dialog of your product.

You can purchase product licenses at https://shop.altova.com/.

Helping Others within Your Organization to Evaluate the Software
If you wish to distribute the evaluation version within your company network, or if you plan to use it on a PC that
is not connected to the Internet, you may distribute only the installer file, provided that this file is not modified in
any way. Any person who accesses the software installer that you have provided must request their own 30-
day evaluation license key code and after expiration of their evaluation period, must also purchase a license in
order to be able to continue using the product.

https://shop.altova.com/
https://www.altova.com/documentation
https://shop.altova.com/

1352 License Information Software Activation and License Metering

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

19.2 Software Activation and License Metering

As part of Altova’s Software Activation, the software may use your internal network and Internet connection for
the purpose of transmitting license-related data at the time of installation, registration, use, or update to an
Altova-operated license server and validating the authenticity of the license-related data in order to protect
Altova against unlicensed or illegal use of the software and to improve customer service. Activation is based on
the exchange of license related data such as operating system, IP address, date/time, software version, and
computer name, along with other information between your computer and an Altova license server.

Your Altova product has a built-in license metering module that further helps you avoid any unintentional
violation of the End User License Agreement. Your product is licensed either as a single-user or multi-user
installation, and the license-metering module makes sure that no more than the licensed number of users use
the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between instances of the
application running on different computers.

Single license
When the application starts up, as part of the license metering process, the software sends a short broadcast
datagram to find any other instance of the product running on another computer in the same network segment.
If it doesn't get any response, it will open a port for listening to other instances of the application.

Multi-user license
If more than one instance of the application is used within the same LAN, these instances will briefly
communicate with each other on startup. These instances exchange key-codes in order to help you to better
determine that the number of concurrent licenses purchased is not accidentally violated. This is the same kind
of license metering technology that is common in the Unix world and with a number of database development
tools. It allows Altova customers to purchase reasonably-priced concurrent-use multi-user licenses.

We have also designed the applications so that they send few and small network packets so as to not put a
burden on your network. The TCP/IP ports (2799) used by your Altova product are officially registered with the
IANA (see the IANA Service Name Registry for details) and our license-metering module is tested and proven
technology.

If you are using a firewall, you may notice communications on port 2799 between the computers that are
running Altova products. You are, of course, free to block such traffic between different groups in your
organization, as long as you can ensure by other means, that your license agreement is not violated.

Note about certificates
Your Altova application contacts the Altova licensing server (link.altova.com) via HTTPS. For this
communication, Altova uses a registered SSL certificate. If this certificate is replaced (for example, by your IT
department or an external agency), then your Altova application will warn you about the connection being
insecure. You could use the replacement certificate to start your Altova application, but you would be doing this
at your own risk. If you see a Non-secure connection warning message, check the origin of the certificate and
consult your IT team (who would be able to decide whether the interception and replacement of the Altova
certificate should continue or not).

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

© 2018-2024 Altova GmbH

Software Activation and License Metering 1353License Information

Altova UModel 2024 Enterprise Edition

If your organization needs to use its own certificate (for example, to monitor communication to and from client
machines), then we recommend that you install Altova's free license management software, Altova
LicenseServer, on your network. Under this setup, client machines can continue to use your organization's
certificates, while Altova LicenseServer can be allowed to use the Altova certificate for communication with
Altova.

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver

1354 License Information Altova End-User License Agreement

© 2018-2024 Altova GmbHAltova UModel 2024 Enterprise Edition

19.3 Altova End-User License Agreement

· The Altova End-User License Agreement is available here: https://www.altova.com/legal/eula
· Altova's Privacy Policy is available here: https://www.altova.com/privacy

https://www.altova.com/legal/eula
https://www.altova.com/privacy

© 2018-2024 Altova GmbH

Index 1355

Index

.

.NET 5,

as UModel profile, 163

importing types from binaries, 100

support, 13

.NET Core, 13

importing assemblies, 217

.NET Framework, 163

importing assemblies, 217

3
3-way project,

merge, 291

A
Abstract,

class, 30

Activation box,

Execution Specification, 397

Activity,

Add diagram to transition, 359

Add operation, 359

Add to state, 359

BPMN, 485

create branch / merge, 344

diagram elements, 346

diagram SysML, 524

icons, 701

Activity diagram, 340

inserting elements, 341

Actor,

customize, 21

user-defined, 21

Add, 685

diagram to package, 21

new project, 152

package to project, 21

project to source control, 685

to source control, 685

ADO,

as data connection interface, 550

setting up a connection, 556

ADO.NET,

setting up a connection, 561

Align,

elements when dragging, 21

snap lines when dragging, 748

All,

expand / collapse, 430

Annotation,

text - BPMN, 497

Application object, 816

Artifact,

add to node, 58

BPMN, 497

manifest, 58

Association,

aggregate/composite, 30

as relationship, 135

between classes, 30

BPMN, 494

changing the properties of, 138

creating, 135, 138

object links, 45

reflexive associations, 138

show typed property, 298

use case, 21

viewing, 138

Association qualifier,

creating, 138

Associations,

viewing, 90

Attribute,

autocompletion window, 748

coloring, 435

show / hide, 430

Autocomplete,

function, 30

Autocompletion,

window on class editing, 748

Autocompletion of data types,

disabling, 133

triggering, 133

Autogenerate,

Index

© 2018-2024 Altova GmbH

1356

Autogenerate,

reply message, 403

Automatially add operation, 359

Azure SQL, 598

B
Ball and socket,

interface notation, 430

Base,

class, 39

Base class,

expand, collapse compartments, 430

multiple instances on diagram, 430

overriding, 430

Batch mode,

creating projects, 105

loading projects, 105

saving projects, 105

Behavioral,

diagrams, 340

Binary files,

import into model, 212

Binding,

template, 298

BPMN, 484

artifacts, 497

association, 494

convert 1.0 to 2.0, 484

BPMN 2.0,

events, 485

flow objects, 485

tasks, 485

Branch,

create in Activity, 344

Business Process Modeling Notation, 484

icons, 718

C
C#,

auto-implemented properties, 176

code generation options, 174

code import options, 199

error handling, 832

generate code, 176

generating code, 169

import attributes, 213

import binary files, 212, 217

importing source code, 196

C# model,

convert to Java, 312

C++,

error handling, 832

generating code, 190

importing source code, 198

reverse engineering, 198

Call,

message, 403

Call message,

go to operation, 403

CallBehavior,

insert, 341

CallOperation,

insert, 341

Catalog,

file - XMLSpy Catalog file, 748

Change provider,

source control, 693

Check In, 683

Check Out, 681

Class,

abstract and concrete, 30

add new, 30

add operations, 30

add properties, 30

associations, 30

base, 39

derived, 39

diagrams, 30

enable autocompletion window, 748

icons, 703

in component diagram, 52

name changes - synchronization, 228

synchronization, 225

syntax coloring, 435

Class diagram, 430

Class name changing,

effect on code file name, 228

Classifier,

constraining, 296

new, 226

© 2018-2024 Altova GmbH

Index 1357

Classifier,

renaming, 226

Code, 228

adding code to sequence diagram, 418

default, 748

generate from sequence diagram, 415

generate sequence diagram from, 822

generate sequence diagram manually, 823

generating sequence diagrams from, 409

Java code and class file names, 228

refactoring, 228

SPL, 1333

synchronization, 225

Code engineering,

errors, 95

from code to model, 72

from model to code, 63

generate ComponentRealizations, 226

information messages, 95

move project file to new location, 152

resolving associatons, 141

tutorial samples, 17

warnings, 95

Collaboration,

Composite Structre diagram, 445

Collapse,

class compartments, 430

Collapsed,

sub process, 493

Collection Association,

creating, 141

prerequisites, 141

resolving to collection templates, 141

Color,

syntax coloring - enable/disable, 435

COM API,

in Scripting Editor, 779

Combined fragment, 399

Command,

add to toolbar/menu, 739

Command line,

creating projects, 105

Generating program code, 100

Importing binary types, 100

Importing source code, 100

loading projects, 105

Reference, 100

saving projects, 105

Synchronizing code and model, 100

Communication,

icons, 704

Communication diagram, 385

generate from Sequence diagram, 386

Compare source files, 691

Compartment,

expand single / multiple, 430

Compatibility,

updating projects, 225

Component,

diagram, 52

icons, 706

insert class, 52

realization, 52

Component diagram, 447

Component view,

as package, 111

ComponentRealizations,

autogeneration, 226

Composite state, 366

add region, 366

Composite Structure,

icons, 705

insert elements, 445

Composite Structure diagram, 444

Composition,

association - create, 30

Concrete,

class, 30

Conditional flow, 494

Connecting objects, 494

Constraining,

classifiers, 296

Containment,

drawing in a diagram, 144

Continuous flow,

modeling / streaming SysML Activity, 524

Convert,

BPMN 1.0 to 2.0, 484

Copyright information, 1350

CR/LF,

for ump file on save, 152

Create,

getter / setter methods, 430

Customize,

actor, 21

toolbar/menu commands, 739

Index

© 2018-2024 Altova GmbH

1358

D
Data object,

BPMN, 497

Database,

configuring for round-trip engineering, 543

importing into UModel, 529, 531

modeling with UModel, 530

updating from the model, 544

Database connection,

setting up, 550

setup examples, 577

starting the wizard, 551

Database drivers,

overview, 553

Database model,

convert to a different database kind, 318

Default,

project code, 748

SPL templates, 225

Default flow, 494

Delete,

command from toolbar, 739

icon from toolbar, 739

toolbar, 740

Dependencies,

viewing, 90

Dependency,

include, 21

usage, 52

Deployment,

diagram, 58

icons, 707

Deployment diagram, 447

Derived,

class, 39

Diagram, 448

- Activity, 340

- BMPN, 484

- Communication, 385

- Component, 447

- Composite structure, 444

- Deployment, 447

- Interaction Overview, 389

- Object, 448

- Package, 448

- Sequence, 394

- State machine, 357

- Timing, 421

- Use Case, 385

Add activity to transition, 359

add to Favorites, 87

adding code to sequence diagram, 418

Additional - XML schema, 467

Class, 430

database - importing, 529

finding unused elements, 115

generate code from sequence diagram, 415

generate Package dependency diagram, 448

icon reference, 82

icons, 700

ignore elem. from inluded files, 748

inserting elements into, 109

multiple instances of class, 430

quick scroll, 92

save as png, 723

save open diagrams with project, 748

Sequence diagrams SysML, 525

State Machine SysML, 526

styles, 89

Use case SysML, 527

viewing an outline of, 92

XML Schema, 467

Diagram - sequence,

generate from code, 822

generate manually from code, 823

generate sequence diagram from code, 823

Diagram Tree window, 86

Diagram type,

identifying, 97

Diagrams, 339

adding layers to, 131

behavioral, 340

changing the appearance of, 127

changing the size of, 127

creating, 97, 123

deleting from project, 127

fit into window, 134

generating, 124

generating from Hierarchy window, 90

opening, 126

structural, 430

viewing inside a project, 86

© 2018-2024 Altova GmbH

Index 1359

Diagrams, 339

zoom in/out, 134

Directory,

change project location, 152

ignoring on merge, 748

Disable source control, 678

Distribution,

of Altova's software products, 1350, 1351

Documentation,

adding to elements, 120

generate from UML project, 328

generating source code with, 120

importing from source code, 120

Documentation window, 93

Download source control project, 675

Drid,

snap lines while dragging, 21

DurationConstraint,

Timing diagram, 427

E
Edit menu,

commands, 725

Element,

add to Favorites, 87

styles, 89

ElementImport,

viewing, 90

Elements,

adding to a diagram, 109

adding to the model, 82, 108

aligning within a diagram, 129

applying custom images to, 121

autolayout, 129

changing properties of, 88

changing the appearance of, 121

constraining, 116

copying, 111

deleting from diagram, 112

deleting from project, 112

documenting, 93, 120

finding, 113

finding in a diagram, 115

hyperlinking, 117

ignore from include files, 748

insert State Machine, 358

moving, 111

moving between layers, 131

renaming, 111

replacing, 113

resizing, 129

Enable source control, 678

End User License Agreement, 1350, 1354

Enhance,

performance, 168

Entry point,

add to submachine, 366

Error handling,

general description, 832

Errors,

during code engineering, 95

Evaluation period,

of Altova's software products, 1350, 1351

Event,

BPMN, 485

Event/Stimulus,

Timing diagram, 426

Exception,

Adding raised exception, 430

Execution specification,

lifeline, 397

Exit point,

add to submachine, 366

Expand,

all class compartments, 430

Expanded,

sub process, 491

Export,

UModel projects to XMI, 631

External applications,

opening from UModel, 741

F
Favorites window,

adding to, 87

removing from, 87

Fetch file,

source control, 679

File,

merging project files, 291

Index

© 2018-2024 Altova GmbH

1360

File,

open from URL, 723

ump, 152

File DSN,

setting up, 568

File menu,

commands, 723

Find,

diagrams, 113

elements, 113

text, 113

Firebird,

Connecting through JDBC, 577

Connecting through ODBC, 579

Flow, 494

conditional, 494

default, 494

message, 494

sequence, 494

Flow objects, 485

Folders,

get in source control, 680

Forward engineering, 63

G
Gate,

sequence diagram, 402

Gateways,

BPMN 2.0, 485

Complex Gateway (Decision/Merge), 485

Data Based Exclusive Gateway (XOR), 485

Event Based Exclusive Gateway (XOR), 485

Inclusive Gateway (OR), 485

Parallel Gateway (AND), 485

General Value lifeline,

Timing diagram, 422

Generalization,

as relationship, 109, 135

creating, 135

Generalizations,

viewing, 90

Generalize,

specialize, 39

Generate,

ComponentRealizations automatically, 226

reply message automatically, 403

Sequence dia from Communication, 386

sequence diagram from code, 822

UML project documentation, 328

Generate manually,

sequence diagram from code, 823

Generated documentation,

options, 332

Get,

getter / setter methods, 430

Get file,

source control, 679

Get folders,

source control, 680

Get latest version, 679

Goto,

lifeline, 397

Grid,

snap lines, 748

Group,

BPMN, 497

H
Help menu,

commands, 763

Hide,

show - slot, 430

Hierarchy diagram,

levels shown in documentation, 328

Hierarchy window, 90

History,

show, 689

Hotkeys,

assigning, 745

deleting, 745

HRESULT,

and error handling, 832

Hyperlinks,

in documentation text, 120

I
IBM DB2,

© 2018-2024 Altova GmbH

Index 1361

IBM DB2,

connecting through JDBC, 581

connecting through ODBC, 583

IBM DB2 for i,

connecting through JDBC, 589

connecting through ODBC, 590

IBM Informix,

connecting through JDBC, 592

Icon,

Activity, 701

add to toolbar/menu, 739

Business Process Modeling Notation, 718

class, 703

Communication, 704

component, 706

Composite Stucture, 705

deployment, 707

Interaction Overview, 708

object, 709

Package, 710

Sequence, 713

show large, 747

State machine, 714

Timing, 715

use case, 716

XML Schema, 717

Icons,

visibility, 430

Ignore,

directories, 748

elements in list, 748

Images,

using as element background, 121

Import,

SQL database, 529

XMI to UModel, 631

Include,

.NET Framework, 163

dependency, 21

UModel project, 163

Insert, 341

action (CallBehavior), 341

action (CallOperation), 341

Composite Stucture elements, 445

Interaction Overview elements, 390

Package diagram elements, 450

simple state, 359

Timing diagram elements, 422

Instance,

diagram, 45

multiple class, and display of, 430

object, 45

Intelligent,

autocomplete, 30

Interaction operand, 399

multi-line, 399

Interaction operator,

defining, 399

Interaction Overview,

icons, 708

inserting elements, 390

Interaction Overview diagram, 389

Interaction use, 402

J
Java,

code and class file names, 228

code generation options, 174

code import options, 199

generating code, 169, 181

import annotations, 213

import binary files, 219

importing source code, 196

Java model,

convert to C++, 305

JavaScript,

error handling, 832

JDBC,

as data connection interface, 550

connect to Teradata, 624

setting up a connection (Windows), 571

JScript,

scripting with UModel, 770

L
Layer window, 94

Layers,

adding to diagrams, 131

deleting, 131

hiding, 131

Index

© 2018-2024 Altova GmbH

1362

Layers,

locking, 131

showing, 131

Layout menu,

commands, 730

Legal information, 1350

License, 1354

information about, 1350

License metering,

in Altova products, 1352

Lifeline, 397

attributes, 397

General Value, 422

typed property as, 397

Lifelline,

goto, 397

Line,

orthogonal, 52

Line break,

in actor text, 21

Lines,

changing the style of, 136

custom, 136

direct, 136

formatting, 45

moving, 136

orthogonal, 136

snap lines, 748

Links,

in generated documentation, 332

Local project, 675

Location,

move project, 152

M
Macros,

developing, 770, 776

enabling, 782, 793

running, 794

Mail,

send project, 723

Manifest,

artifact, 58

MariaDB,

connect through ODBC, 594

connecting natively, 576

Menu,

add/delete command, 739

Merge,

3-way manual project merge, 293

3-way project merge, 291

create in Activity, 344

ignore directory, 748

projects, 291

Message, 403

arrows, 403

call, 403

create object, 403

go to operation, 403

inserting, 403

moving, 403

numbering, 403

Timing diagram, 428

Message flow, 494

Messages window,

reference, 95

Method,

Add raised exception, 430

Methods,

getter / setter, 430

Microsoft Access,

connecting through ADO, 556, 596

Microsoft Azure SQL, 598

Microsoft SQL Server,

connecting through ADO, 599

connecting through ODBC, 601

Model,

adding elements to, 82, 108

changing class name - effect in Java, 228

transform to another language, 300

Model Tree window,

expanding or collapsing items, 82

exploring the project from, 82

icon reference, 82

showing or hiding items, 82

sorting items, 82

Modeling,

enhance performance, 168

Move,

project, 152

Moving message arrows, 403

Multiline, 21

Multi-line,

© 2018-2024 Altova GmbH

Index 1363

Multi-line,

actor text, 21

interactionOperand, 399

use case, 21

MySQL,

connecting natively, 576

connecting through ODBC, 607

N
Name,

region names - hide / show, 366

Native connections, 576

New,

classifier, 226

New line,

in Lifeline, 386

ineractionOperand, 399

Node,

add, 58

add artifact, 58

styles, 89

Numbering,

messages, 403

O
Object,

create message, 403

diagram, 45

icons, 709

links - associations, 45

Object diagram, 448

Object model,

overview, 816

ODBC,

as data connection interface, 550

connect to MariaDB, 594

connect to Teradata, 626

setting up a connection, 568

ODBC Drivers,

checking availability of, 568

OLE DB,

as data connection interface, 550

Open Project,

source control, 675

OpenJDK,

as Java Virtual Machine, 571

importing binaries, 213

Operand,

interaction, 399

Operation,

autocompletion window, 748

Automatically add on Activity, 359

coloring, 435

goto from call message, 403

overriding, 430

reusing, 39

show / hide, 430

template, 298

Operations,

adding, 30

Operator,

interaction, 399

Options,

source control, 748

tools, 748

when generating documentation, 332

Oracle database,

connecting through JDBC, 609

connecting through ODBC, 611

Orthogonal,

line, 52

state, 366

Override,

class operations, 430

default SPL templates, 225

Overview window,

scrolling, 92

P
Package,

default packages, 82

icon reference, 82

icons, 710

Package diagram, 448

generating dependency diagram, 448

insert elements, 450

SysML, 521

Index

© 2018-2024 Altova GmbH

1364

PackageImport, 450

viewing, 90

PackageMerge, 450

viewing, 90

Parameter,

template, 298

Path,

change project location, 152

SPL template path, 1335

Performance,

enhancement, 168

Pool,

swimlane, 496

PostgreSQL,

connecting natively, 576

connecting through ODBC, 615

Pretty print,

in exported XMI files, 631

project on save, 152

Print preview,

options, 723

Process,

collapsed sub process, 493

expanded sub process, 491

Profiles,

applying to a package, 159, 455

built-in, 455

creating, 455

definition, 454

Progress OpenEdge database,

connecting through JDBC, 618

connecting through ODBC, 619

Project, 152

3-way manual merge, 293

3-way merge, 291

add or remove items, 82

add to source control, 685

create, 152

default code, 748

exploring, 82

file - updating, 225

generating documentation, 328

include UModel project, 163

insert package, 152

Merge, 291

modularize, 160

move, 152

open last on start, 748

remove from source control, 687

save - pretty print, 152

save open diagrams, 748

send by mail, 723

split into subprojects, 160

styles, 89

workflow, 152

Project menu,

commands, 727

Project open,

source control, 675

Project syntax,

checking, 95

Properties,

adding, 30

source control, 692

Properties window,

adding custom properties, 88

Property,

coloring, 435

reusing, 39

typed - show, 298

typed as lifeline, 397

Provider,

select, 675

R
Raised exception,

Adding, 430

Realization,

component, 52

generate ComponentRealizations, 226

Refactoring code,

class names - synchronization, 228

Reference, 722

Refresh status,

source control, 693

Region,

add to composite state, 366

Region name,

show / hide, 366

Reject source edits, 683

Relationships,

aggregation, 135

association, 109, 135

© 2018-2024 Altova GmbH

Index 1365

Relationships,

changing the style of, 136

composition, 135

dependency, 135

generalization, 109, 135

realization, 135

viewing, 138

Remove,

from source control, 687

Rename,

classifier, 226

Reply,

message - autogenerate, 403

Requirement diagram,

SysML, 523

Reset,

toolbar & menu commands, 740

Restore,

toolbars and windows, 732

Reverse engineering, 72

C++, 198

Root,

as package, 111

catalog - XMLSpy, 748

package/class synchronization, 225

Run native interface, 693

S
Save,

diagram as image, 723

SC,

syntax coloring, 435

Scripting Editor,

overview, 770, 772

Search,

diagrams, 113

elements, 113

text, 113

Send by mail,

project, 723

Sequence,

diagram SysML, 525

icons, 713

Sequence diagram, 394

adding code to, 418

combined fragment, 399

gate, 402

generate code from, 415

generate from code, 822

generate from Communication diag., 386

generate manually from code, 823

inserting elements, 395

interaction use, 402

lifeline, 397

messages, 403

state invariant, 403

Sequence diagrams,

generating from getters/setters, 414

generating from source code, 409

generating multiple, 414

Sequence flow, 494

Set,

getter / setter methods, 430

Setting,

synchronization, 225

Settings,

source control, 748

Share,

from source control, 688

Shortcut,

show in tooltip, 747

Shortcuts,

assigning, 745

deleting, 745

Show,

hide - slot, 430

hide- region name, 366

property as association, 298

Show differences, 691

Show history, 689

Show/hide,

attributes, operations, 430

Signature,

template, 296, 297

Slot,

show / hide, 430

Snap,

line - when dragging, 748

Snap lines, 21

Socket,

Ball and socket, 430

Software product license, 1354

Source control,

Index

© 2018-2024 Altova GmbH

1366

Source control,

add to source control, 685

change provider, 693

Check In, 683

Check Out, 681

commands, 675

enable / disable, 678

get file, 679

get latest version, 679

installing a source-control plug-in, 670

open project, 675

options / settings, 748

properties, 692

refresh status, 693

remove from, 687

run native interface, 693

show differences, 691

show history, 689

Undo Check out, 683

Specialize,

generalize, 39

Speed,

enhancememt, 168

Spelling,

checking, 93

SPL, 1333

code blocks, 1334

conditions, 1345

foreach, 1346

subroutines, 1348

templates user-defined, 225

SPL templates,

template path, 1335

SQL,

importing into UModel, 529

SQL Azure, 598

SQL Server,

connecting through ADO, 556

connecting through ADO.NET, 561

connecting via JDBC, 571

SQLite,

connecting natively, 576

Start,

with previous project, 748

State, 366

add activity, 359

composite, 366

define transition between, 359

insert simple, 359

orthogonal, 366

submachine state, 366

State changes,

defining on a timeline, 422

State invariant, 403

State machine,

composite states, regions, 366

diagram elements, 378

diagram SysML, 526

icons, 714

insert elements, 358

states, activities, transitions, 359

State Machine Diagram, 357

Stereotypes,

adding custom icons to, 464

adding custom styles to, 464

adding to the Properties window, 88

applying to elements, 147, 459

creating, 456, 459

definition, 145

example, 459

examples, 145, 454

STL data types,

adding to diagram, 190

Structural,

diagrams, 430

Styles,

applying to diagrams, 127

applying to elements, 121

applying to lines, 136

cascading, 121, 127, 136

precedence, 121, 127, 136

Styles window, 89

StyleVision,

customize generated documentation with, 337

customizing generated documentation with, 328

Sub Process,

collapsed, 493

expanded, 491

Submachine state,

add entry/exit point, 366

Subproject,

create from main project, 160

reintegrate into main project, 160

Swimlane,

pool, 496

Sybase,

© 2018-2024 Altova GmbH

Index 1367

Sybase,

connecting through JDBC, 622

Symbols,

visibillity icons, 430

Synchronization, 228

class and code file name, 228

class name changes, 228

settings, 225

Synchronize,

root/package/class, 225

to new location, 152

Syntax coloring, 435

SysML,

activity diagram, 524

Block Definition Diagram, 512

creating diagrams, 511

Internal Block Diagram, 515

introduction, 511

package diagram, 521

Parametric diagram, 520

Requirement diagram, 523

Sequence diagram, 525

State Machine diagram, 526

Use Case diagram, 527

System DSN,

setting up, 568

System hierarchy,

Package diagram SysML, 521

T
Tagged values,

as enumerations, 456, 459

creating, 147, 456

definition, 146

example, 459

examples, 146

showing or hiding, 149

Template,

binding, 298

operation/parameter, 298

signature, 296, 297

Templates,

SPL templates, 1335

user-defined SPL, 225

Teradata,

connect through JDBC, 624

connect through ODBC, 626

Text annotation,

BPMN, 497

Tick mark,

Timing diagram, 425

TimeConstraint,

Timing diagram, 428

Timeline,

defining state changes, 422

Timing,

icons, 715

Timing diagram, 421, 422

DurationConstraint, 427

Event/Stimuls, 426

General Value lifeline, 422

inserting elements, 422

Lifeline, 422

Message, 428

switch between types, 422

Tick mark, 425

TimeConstraint, 428

Timeline, 422

Toolbar,

activate/deactivate, 740

add command to, 739

create new, 740

reset toolbar & menu commands, 740

show large icons, 747

Toolbars,

restore to default, 732

Tools,

options, 748

Tools menu,

adding custom commands to, 741

Tooltip,

show, 747

show shortcuts in, 747

Transformation,

settings, 303

Transition,

Add Activity diagram to, 359

define between states, 359

define trigger, 359

Trigger,

define transition trigger, 359

Tutorial,

sample files, 17

Index

© 2018-2024 Altova GmbH

1368

Type,

property - show, 298

Typed,

property - as lifeline, 397

U
UML,

Diagrams, 339

templates, 296

variables, 1335

visibility icons, 430

UModel,

Introduction, 13

Main features, 13

UModel API,

overview of, 815

UModel diagram icons, 700

UModel Plug-In,

creating with Visual Studio, 796

UModel Plug-in for Visual Studio,

installing, 635

UModel Plug-In Library,

adding reference to, 797

UModel projects,

opening, saving, creating, 18

UModel Type Library,

adding reference to, 799, 834

UMP, 152

change project location, 152

file extension, 152

Undo Check out, 683

Update,

project file, 225

URL,

open file from, 723

Usage,

dependency, 52

Use case,

adding, 21

association, 21

compartments, 21

diagram SysML, 527

icons, 716

multi-line, 21

Use Case diagram, 385

User defined,

actor, 21

User DSN,

setting up, 568

User interface,

configure using plug-in, 807

User-defined,

SPL templates, 225

V
Variables,

UML, 1335

VB.NET,

code generation options, 174

code import options, 199

generating code, 169

import binary files, 212

importing source code, 196

VBScript,

scripting with UModel, 770

Version control,

commands, 675

View,

to multiple instances of element, 430

View menu,

commands, 731

Viewpoints,

Package diagram SysML, 521

Visibility,

icons - selecting, 430

Visual Basic,

error handling, 832

Visual Studio,

addin UModel support to solutions, 636

automatic synchronization of code and model, 641

creating a UModel Plug-In, 796

Integrating UModel as a plug-in, 633

loading/unloading UModel projects, 640

synchronizing code with model, 641

W
Warnings,

© 2018-2024 Altova GmbH

Index 1369

Warnings,

during code engineering, 95

Windows,

restore to default, 732

Workflow,

project, 152

Working directory,

source control, 675

X
XMI,

import and export, 631

XML Schema,

creating diagrams, 473

declare namespace, 473

diagrams, 467

generating from model, 475

icons, 717

importing into a model, 468

modeling, 473, 475

	Altova UModel 2024 Enterprise Edition User Manual
	Table of Contents
	Introduction
	Support Notes
	Database Support

	UModel Tutorial
	Getting Started
	Use Cases
	Class Diagrams
	Creating Derived Classes

	Object Diagrams
	Component Diagrams
	Deployment Diagrams
	Forward Engineering (from Model to Code)
	Reverse Engineering (from Code to Model)

	UModel Graphical User Interface
	Model Tree Window
	Diagram Tree Window
	Favorites Window
	Properties Window
	Styles Window
	Hierarchy Window
	Overview Window
	Documentation Window
	Layer Window
	Messages Window
	Diagram Window
	Diagram Pane

	UModel Command Line Interface
	Creating, Loading, and Saving Projects in Batch Mode

	How to Model...
	Elements
	Creating Elements
	Inserting Elements from the Model into a Diagram
	Renaming, Moving, and Copying Elements
	Deleting Elements
	Converting Elements
	Finding and Replacing Text
	Checking Where and If Elements Are Used
	Constraining Elements
	Hyperlinking Elements
	Documenting Elements
	Changing the Style of Elements

	Diagrams
	Creating Diagrams
	Generating Diagrams
	Opening Diagrams
	Deleting Diagrams
	Changing the Style of Diagrams
	Aligning and Resizing Modeling Elements
	Adding Layers to Diagrams
	Type Autocompletion in Classes
	Zooming into/out of Diagrams

	Relationships
	Creating Relationships
	Changing the Style of Lines and Relationships
	Viewing Element Relationships
	Associations
	Collection Associations
	Containment

	Stereotypes and Tagged Values
	Tagged Values
	Applying Stereotypes
	Showing or Hiding Tagged Values

	Projects and Code Engineering
	Managing UModel Projects
	Creating, Opening, and Saving Projects
	Opening Projects from a URL
	Moving Projects to a New Directory
	Applying UModel Profiles
	Splitting UModel Projects
	Including Subprojects
	Sharing Packages and Diagrams
	Tips for Enhancing Performance

	Generating Program Code
	Setting a Package as Namespace Root
	Adding a Code Engineering Component
	Checking Project Syntax
	Code Generation Options
	Example: Generate C# Code
	Example: Generate Java Code
	Example: Generate C++ Code
	SPL Templates

	Importing Source Code
	Reverse Engineering C++ Code
	Code Import Options
	Example: Import a C# Project

	Importing Java, C# and VB.NET Binaries
	Adding Custom Java Runtimes
	Import Binary Options
	Example: Import .NET Assemblies
	Example: Import Java .class Files

	Synchronizing the Model and Source Code
	Synchronization Tips
	Refactoring Code and Synchronization
	Code Synchronization Settings

	UModel Element Mappings
	C++ Mappings
	C# Mappings
	VB.NET Mappings
	Java Mappings
	XML Schema Mappings
	Database Mappings

	Merging UModel Projects
	3-Way Project Merge
	Example: Manual 3-Way Project Merge

	UML Templates
	Template Signatures
	Template Binding
	Template Usage in Operations and Properties

	Transforming UML Models
	Transformation Settings Reference
	Example: Transform Java to C++
	Example: Transform C# to Java
	Example: Transform Access Database to SQLite

	Generating UML Documentation
	Documentation Generation Options
	Customizing Output with StyleVision

	UML Diagrams
	Behavioral Diagrams
	Activity Diagram
	Inserting Activity Diagram elements
	Creating branches and merges
	Activity Diagram elements

	State Machine Diagram
	Inserting state machine diagram elements
	Creating states, activities and transitions
	Composite states
	Generating code from State Machine diagrams
	Working with state machine code
	State Machine Diagram elements

	Protocol State Machine
	Inserting Protocol State Machine elements
	Protocol State Machine Diagram elements

	Use Case Diagram
	Communication Diagram
	Inserting Communication Diagam elements

	Interaction Overview Diagram
	Inserting Interaction Overview elements

	Sequence Diagram
	Inserting Sequence Diagram Elements
	Lifeline
	Combined Fragment
	Interaction Use
	Gate
	State Invariant
	Messages

	Generate Sequence Diagrams from Source Code
	Generate Multiple Sequence Diagrams
	Generate Sequence Diagrams from Getters/Setters

	Generate Code from Sequence Diagram
	Adding code to sequence diagrams

	Timing Diagram
	Inserting Timing Diagram elements
	Lifeline
	Tick Mark
	Event/Stimulus
	DurationConstraint
	TimeConstraint
	Message

	Structural Diagrams
	Class Diagram
	Customizing Class Diagrams
	Overriding Base Class Operations and Implementing Interface Operations
	Creating Getter and Setter Methods
	Ball and Socket Notation
	Adding Raised Exceptions to Methods of a Class
	Adding Receptions to a Class
	Generating Class Diagrams

	Composite Structure Diagram
	Inserting Composite Structure Diagram elements

	Component Diagram
	Deployment Diagram
	Object Diagram
	Package Diagram
	Inserting Package Diagram elements
	Generating Package Diagrams

	Profile Diagram
	Creating and Applying Custom Profiles
	Creating Stereotypes
	Example: Creating and Applying Stereotypes
	Example: Customizing Icons and Styles

	Additional Diagrams
	XML Schema Diagrams
	Importing XML Schemas
	Modeling XML Schemas
	Example: Create and Generate an XML Schema

	Business Process Modeling Notation 1.0 / 2.0
	Flow objects
	Expanded Sub Processes
	Collapsed Sub Processes

	Connecting objects
	Pools / Swimlanes
	Artifacts
	Choreography diagram
	Choreography Tasks
	Tasks and Subprocesses
	Data Objects

	Collaboration diagram
	Conversations
	Tasks and Subprocesses
	Data Objects

	Standard Business Process diagram BPMN 2.0
	Tasks and Subprocesses
	Data Objects

	SysML Diagrams
	Block Definition Diagram
	Internal Block Diagram
	Parametric Diagram
	Package Diagram
	Requirement Diagram
	Activity Diagram
	Sequence Diagram
	State Machine Diagram
	Use Case Diagram

	UModel and Databases
	Modeling Databases in UModel
	Importing SQL Databases into UModel
	Designing Database Objects
	Configuring Round-Trip Engineering for Databases
	Example: Update a Database from the Model

	Connecting to a Data Source
	Start Database Connection Wizard
	Database Drivers Overview
	ADO Connection
	Connecting to an Existing Microsoft Access Database
	Setting up the SQL Server Data Link Properties
	Setting up the Microsoft Access Data Link Properties

	ADO.NET Connection
	Creating a Connection String in Visual Studio
	Sample ADO.NET Connection Strings
	ADO.NET Support Notes

	ODBC Connection
	Available ODBC Drivers

	JDBC Connection
	Configuring the CLASSPATH

	SQLite Connection
	Connect to an Existing SQLite Database

	Native Connection
	Database Connection Examples
	Firebird (JDBC)
	Firebird (ODBC)
	IBM DB2 (JDBC)
	IBM DB2 (ODBC)
	IBM DB2 for i (JDBC)
	IBM DB2 for i (ODBC)
	IBM Informix (JDBC)
	MariaDB (ODBC)
	Microsoft Access (ADO)
	Microsoft Azure SQL (ODBC)
	Microsoft SQL Server (ADO)
	Microsoft SQL Server (ODBC)
	MySQL (ODBC)
	Oracle (JDBC)
	Oracle (ODBC)
	PostgreSQL (ODBC)
	Progress OpenEdge (JDBC)
	Progress OpenEdge (ODBC)
	Sybase (JDBC)
	Teradata (JDBC)
	Teradata (ODBC)

	XMI - XML Metadata Interchange
	UModel Plug-in for Visual Studio
	Installing the UModel Plug-in for Visual Studio
	Adding UModel Support to Visual Studio Projects
	Loading/Unloading UModel Projects
	Synchronizing the Model and Code

	UModel Plug-in for Eclipse
	Installing the UModel Plug-in for Eclipse
	The UModel Perspective
	Adding UModel Support to Eclipse Projects
	Importing Existing UModel Projects
	Loading/Unloading UModel Projects
	How Automatic Synchronization Works
	Example: Setting up Automatic Synchronization

	Source Control
	Setting Up Source Control
	Supported Source Control Systems
	Source Control Commands
	Open from Source Control
	Enable Source Control
	Get Latest Version
	Get
	Get Folder(s)
	Check Out
	Check In
	Undo Check Out...
	Add to Source Control
	Remove from Source Control
	Share from Source Control
	Show History
	Show Differences
	Show Properties
	Refresh Status
	Source Control Manager
	Change Source Control

	Source Control with Git
	Enabling Git Source Control with GIT SCC Plug-in
	Adding a Project to Git Source Control
	Cloning a Project from Git Source Control

	UModel Diagram icons
	Activity Diagram
	Class Diagram
	Communication diagram
	Composite Structure Diagram
	Component Diagram
	Deployment Diagram
	Interaction Overview diagram
	Object Diagram
	Package diagram
	Profile Diagram
	Protocol State Machine
	Sequence Diagram
	State Machine Diagram
	Timing Diagram
	Use Case diagram
	XML Schema diagram
	Business Process Modeling Notation
	Business Process Modeling Notation 2.0
	Database Modeling

	Menu Reference
	File
	Edit
	Project
	Layout
	View
	Tools
	Spelling
	Spelling Options
	Scripting Editor
	Macros
	User-defined Tools
	Customize
	Commands
	Toolbars
	Tools
	Keyboard
	Menu
	Macros
	Plug-Ins
	Options

	Restore Toolbars and Windows
	Options
	Java Virtual Machine Settings
	Network Proxy Settings

	Window
	Help

	UModel Programmer's Reference
	Scripting Editor
	Creating a Scripting Project
	Overview of the Environment
	Global Declarations
	Macros
	Forms
	Events
	JScript Programming Tips
	Example Scripting Project

	Built-in Commands
	alert
	confirm
	CLR.Create
	CLR.Import
	CLR.LoadAssembly
	CLR.ShowImports
	CLR.ShowLoadedAssemblies
	CLR.Static
	CreateForm
	doevents
	lastform
	prompt
	ShowForm
	watchdog

	Enabling Scripts and Macros
	Running Macros

	UModel IDE Plug-Ins
	How to Create a UModel IDE Plug-In
	Add Reference to UModel Plug-In Library
	Add Reference to UModel Type Library
	Make the Assembly COM-visible
	Expose the COM Wrapper
	Sign the Plug-In With a Strong Name (Optional)
	Implement IUModelPlugIn Interface
	Build and Run the Plug-In

	Deployment of UModel IDE Plug-Ins
	Configuration XML
	Plug-Ins as ActiveX Controls
	IUModelPlugIn Interface

	The UModel API
	Accessing the API
	Object Model
	Object Model UMLData
	Object Model UMLData Styles
	Graphical Objects

	How to...
	How to Create Sequence Diagrams
	How to Generate Sequence Diagrams from Code
	How to Create Sequence Diagrams Manually

	Undo / Redo and UMLData Transaction Handling
	How to Use Predefined UModel Elements
	How to Work with Stereotypes and Tagged Values
	How to Use UMLData Events and Event Filters
	How to Create and Use Hyperlinks
	Handle Errors

	C# API Examples
	How to Reference the UModel Type Library
	Importing Binary Types Programmatically
	"Set Styles" Sample
	"C# Delegate" Sample
	"Set Prefix" Sample
	"Statistics" Sample

	Java API Example
	JScript Examples
	Start application
	Document Access
	Generate Documentation
	Generate Code
	Update Documentation

	UModel API Reference
	UModel Plug-Ins
	UModelAPI - IUModelPlugIn
	UModelAPI - UModelUpdateAction

	UModel API Interfaces
	UModelAPI - IApplication
	UModelAPI - IBinaryTypeEntries
	UModelAPI - IBinaryTypeEntry
	UModelAPI - ICollectionTemplate
	UModelAPI - ICollectionTemplates
	UModelAPI - IDiagramWindow
	UModelAPI - IDiagramWindows
	UModelAPI - IDialog
	UModelAPI - IDialogs
	UModelAPI - IDocument
	UModelAPI - IExportXMIFileDlg
	UModelAPI - IFocusedUMLDataNotifier
	UModelAPI - IGenerateDocumentationDlg
	UModelAPI - IGenerateSequenceDiagramDlg
	UModelAPI - IGenerateStateMachineCodeDlg
	UModelAPI - IImportBinaryTypesDlg
	UModelAPI - IImportDatabaseDlg
	UModelAPI - IImportSourceDirectoryDlg
	UModelAPI - IImportSourceDlg
	UModelAPI - IImportSourceProjectDlg
	UModelAPI - IImportXMLSchemaDirectoryDlg
	UModelAPI - IImportXMLSchemaFileDlg
	UModelAPI - IIncludeSubprojectDlg
	UModelAPI - IKindSelection
	UModelAPI - IKindSelectionList
	UModelAPI - ILocalOptions
	UModelAPI - ILocalOptionsCodeEngineering
	UModelAPI - ILocalOptionsDiagramEditing
	UModelAPI - ILocalOptionsEditing
	UModelAPI - ILocalOptionsFile
	UModelAPI - ILocalOptionsView
	UModelAPI - IMatchRenamedDlg
	UModelAPI - IMatchRenamedEntries
	UModelAPI - IMatchRenamedEntry
	UModelAPI - IModelTransformationDlg
	UModelAPI - IModelTransformationTypeMapping
	UModelAPI - IModelTransformationTypeMappings
	UModelAPI - IProjectSettingsDlg
	UModelAPI - ISaveAllDiagramsAsImagesDlg
	UModelAPI - ISynchronizationSettingsDlg
	UModelAPI - ITransactionNotifier
	UModelAPI - IURLDlg
	Events
	UModelAPI - _IApplicationEvents
	UModelAPI - _IDiagramWindowEvents
	UModelAPI - _IDocumentEvents
	UModelAPI - _IFocusedUMLDataEvents
	UModelAPI - _ISynchronizationEvents
	UModelAPI - _ITransactionEvents

	Enumerations
	UModelAPI - ENUMApplicationFrameTitle
	UModelAPI - ENUMApplicationStatus
	UModelAPI - ENUMAutolayoutGrowDirectionKind
	UModelAPI - ENUMCodeLang
	UModelAPI - ENUMCodeLangVersion
	UModelAPI - ENUMDiagramLayoutKind
	UModelAPI - ENUMDocumentationFilePathKind
	UModelAPI - ENUMDocumentationFontSetting
	UModelAPI - ENUMDocumentationOutputFormat
	UModelAPI - ENUMExportXMIType
	UModelAPI - ENUMOpenMessageWindow
	UModelAPI - ENUMOutputImageFormat
	UModelAPI - ENUMSynchronizationDeleteKind
	UModelAPI - ENUMSynchronizationKind
	UModelAPI - ENUMSyntaxCheckKind

	UMLData Interfaces
	UModelAPI - IUMLData
	UModelAPI - IUMLDataList
	UModelAPI - IUMLDataAll
	UModelAPI - UMLData
	IUMLElement
	UModelAPI - IUMLAbstraction
	UModelAPI - IUMLAcceptEventAction
	UModelAPI - IUMLAction
	UModelAPI - IUMLActionExecutionSpecification
	UModelAPI - IUMLActionInputPin
	UModelAPI - IUMLActivity
	UModelAPI - IUMLActivityEdge
	UModelAPI - IUMLActivityFinalNode
	UModelAPI - IUMLActivityGroup
	UModelAPI - IUMLActivityNode
	UModelAPI - IUMLActivityParameterNode
	UModelAPI - IUMLActivityPartition
	UModelAPI - IUMLActor
	UModelAPI - IUMLAnyReceiveEvent
	UModelAPI - IUMLArtifact
	UModelAPI - IUMLAssociation
	UModelAPI - IUMLAssociationClass
	UModelAPI - IUMLBehavior
	UModelAPI - IUMLBehavioralFeature
	UModelAPI - IUMLBehavioredClassifier
	UModelAPI - IUMLBehaviorExecutionSpecification
	UModelAPI - IUMLCallAction
	UModelAPI - IUMLCallBehaviorAction
	UModelAPI - IUMLCallEvent
	UModelAPI - IUMLCallOperationAction
	UModelAPI - IUMLCentralBufferNode
	UModelAPI - IUMLChangeEvent
	UModelAPI - IUMLClass
	UModelAPI - IUMLClassifier
	UModelAPI - IUMLClassifierTemplateParameter
	UModelAPI - IUMLCollaboration
	UModelAPI - IUMLCollaborationUse
	UModelAPI - IUMLCombinedFragment
	UModelAPI - IUMLComment
	UModelAPI - IUMLCommentTextHyperlink
	UModelAPI - IUMLComponent
	UModelAPI - IUMLComponentRealization
	UModelAPI - IUMLConnectableElement
	UModelAPI - IUMLConnectionPointReference
	UModelAPI - IUMLConnector
	UModelAPI - IUMLConnectorEnd
	UModelAPI - IUMLConstraint
	UModelAPI - IUMLControlFlow
	UModelAPI - IUMLControlNode
	UModelAPI - IUMLDataStoreNode
	UModelAPI - IUMLDataType
	UModelAPI - IUMLDecisionNode
	UModelAPI - IUMLDependency
	UModelAPI - IUMLDeployedArtifact
	UModelAPI - IUMLDeployment
	UModelAPI - IUMLDeploymentTarget
	UModelAPI - IUMLDevice
	UModelAPI - IUMLDirectedRelationship
	UModelAPI - IUMLDuration
	UModelAPI - IUMLDurationConstraint
	UModelAPI - IUMLDurationInterval
	UModelAPI - IUMLDurationObservation
	UModelAPI - IUMLElement
	UModelAPI - IUMLElementImport
	UModelAPI - IUMLEncapsulatedClassifier
	UModelAPI - IUMLEnumeration
	UModelAPI - IUMLEnumerationLiteral
	UModelAPI - IUMLEvent
	UModelAPI - IUMLExceptionHandler
	UModelAPI - IUMLExecutableNode
	UModelAPI - IUMLExecutionEnvironment
	UModelAPI - IUMLExecutionSpecification
	UModelAPI - IUMLExpansionNode
	UModelAPI - IUMLExpansionRegion
	UModelAPI - IUMLExpression
	UModelAPI - IUMLExtend
	UModelAPI - IUMLExtensionPoint
	UModelAPI - IUMLFeature
	UModelAPI - IUMLFinalNode
	UModelAPI - IUMLFinalState
	UModelAPI - IUMLFlowFinalNode
	UModelAPI - IUMLForkNode
	UModelAPI - IUMLFunctionBehavior
	UModelAPI - IUMLGate
	UModelAPI - IUMLGeneralization
	UModelAPI - IUMLHyperlink
	UModelAPI - IUMLHyperlink2File
	UModelAPI - IUMLHyperlink2GuiElement
	UModelAPI - IUMLHyperlink2Model
	UModelAPI - IUMLInclude
	UModelAPI - IUMLInformationFlow
	UModelAPI - IUMLInitialNode
	UModelAPI - IUMLInputPin
	UModelAPI - IUMLInstanceSpecification
	UModelAPI - IUMLInstanceValue
	UModelAPI - IUMLInteraction
	UModelAPI - IUMLInteractionConstraint
	UModelAPI - IUMLInteractionFragment
	UModelAPI - IUMLInteractionOperand
	UModelAPI - IUMLInteractionUse
	UModelAPI - IUMLInterface
	UModelAPI - IUMLInterfaceRealization
	UModelAPI - IUMLInterruptibleActivityRegion
	UModelAPI - IUMLInterval
	UModelAPI - IUMLIntervalConstraint
	UModelAPI - IUMLInvocationAction
	UModelAPI - IUMLJoinNode
	UModelAPI - IUMLLifeline
	UModelAPI - IUMLLiteralBoolean
	UModelAPI - IUMLLiteralInteger
	UModelAPI - IUMLLiteralNull
	UModelAPI - IUMLLiteralSpecification
	UModelAPI - IUMLLiteralString
	UModelAPI - IUMLLiteralUnlimitedNatural
	UModelAPI - IUMLManifestation
	UModelAPI - IUMLMergeNode
	UModelAPI - IUMLMessage
	UModelAPI - IUMLMessageEnd
	UModelAPI - IUMLMessageEvent
	UModelAPI - IUMLMessageOccurrenceSpecification
	UModelAPI - IUMLModel
	UModelAPI - IUMLMultiplicityElement
	UModelAPI - IUMLNamedElement
	UModelAPI - IUMLNamespace
	UModelAPI - IUMLNode
	UModelAPI - IUMLObjectFlow
	UModelAPI - IUMLObjectNode
	UModelAPI - IUMLObservation
	UModelAPI - IUMLOccurrenceSpecification
	UModelAPI - IUMLOpaqueAction
	UModelAPI - IUMLOpaqueBehavior
	UModelAPI - IUMLOpaqueExpression
	UModelAPI - IUMLOperation
	UModelAPI - IUMLOutputPin
	UModelAPI - IUMLPackage
	UModelAPI - IUMLPackageableElement
	UModelAPI - IUMLPackageImport
	UModelAPI - IUMLPackageMerge
	UModelAPI - IUMLParameter
	UModelAPI - IUMLParameterableElement
	UModelAPI - IUMLPin
	UModelAPI - IUMLPort
	UModelAPI - IUMLPrimitiveType
	UModelAPI - IUMLProfile
	UModelAPI - IUMLProfileApplication
	UModelAPI - IUMLProperty
	UModelAPI - IUMLProtocolStateMachine
	UModelAPI - IUMLProtocolTransition
	UModelAPI - IUMLPseudostate
	UModelAPI - IUMLRealization
	UModelAPI - IUMLReception
	UModelAPI - IUMLRedefinableElement
	UModelAPI - IUMLRedefinableTemplateSignature
	UModelAPI - IUMLRegion
	UModelAPI - IUMLRelationship
	UModelAPI - IUMLSendSignalAction
	UModelAPI - IUMLSignal
	UModelAPI - IUMLSignalEvent
	UModelAPI - IUMLSlot
	UModelAPI - IUMLState
	UModelAPI - IUMLStateInvariant
	UModelAPI - IUMLStateMachine
	UModelAPI - IUMLStereotype
	UModelAPI - IUMLStereotypeApplication
	UModelAPI - IUMLStructuralFeature
	UModelAPI - IUMLStructuredActivityNode
	UModelAPI - IUMLStructuredClassifier
	UModelAPI - IUMLTemplateableElement
	UModelAPI - IUMLTemplateBinding
	UModelAPI - IUMLTemplateParameter
	UModelAPI - IUMLTemplateParameterSubstitution
	UModelAPI - IUMLTemplateSignature
	UModelAPI - IUMLTimeConstraint
	UModelAPI - IUMLTimeEvent
	UModelAPI - IUMLTimeExpression
	UModelAPI - IUMLTimeInterval
	UModelAPI - IUMLTimeObservation
	UModelAPI - IUMLTransition
	UModelAPI - IUMLTrigger
	UModelAPI - IUMLType
	UModelAPI - IUMLTypedElement
	UModelAPI - IUMLUsage
	UModelAPI - IUMLUseCase
	UModelAPI - IUMLValuePin
	UModelAPI - IUMLValueSpecification
	UModelAPI - IUMLValueSpecificationAction
	UModelAPI - IUMLVertex

	IUMLGuiElement
	UModelAPI - IUMLGuiActivityDiagram
	UModelAPI - IUMLGuiAttachedNode
	UModelAPI - IUMLGuiBehaviorDiagram
	UModelAPI - IUMLGuiBPMN2ChoreographyDiagram
	UModelAPI - IUMLGuiBPMN2CollaborationDiagram
	UModelAPI - IUMLGuiBPMN2Diagram
	UModelAPI - IUMLGuiBPMNDiagram
	UModelAPI - IUMLGuiClassDiagram
	UModelAPI - IUMLGuiCommunicationDiagram
	UModelAPI - IUMLGuiCommunicationLink
	UModelAPI - IUMLGuiComponentDiagram
	UModelAPI - IUMLGuiCompositeStructureDiagram
	UModelAPI - IUMLGuiConstrainedNode
	UModelAPI - IUMLGuiContainmentLink
	UModelAPI - IUMLGuiDeploymentDiagram
	UModelAPI - IUMLGuiDiagram
	UModelAPI - IUMLGuiDiagramLayer
	UModelAPI - IUMLGuiElement
	UModelAPI - IUMLGuiEndWaypoint
	UModelAPI - IUMLGuiExtensionDiagram
	UModelAPI - IUMLGuiInteractionDiagram
	UModelAPI - IUMLGuiInteractionOverviewDiagram
	UModelAPI - IUMLGuiLabeledRelativeNodeLink
	UModelAPI - IUMLGuiLineConnectionWaypoint
	UModelAPI - IUMLGuiLineLink
	UModelAPI - IUMLGuiLink
	UModelAPI - IUMLGuiMiddleWaypoint
	UModelAPI - IUMLGuiNodeLink
	UModelAPI - IUMLGuiNote
	UModelAPI - IUMLGuiNoteLink
	UModelAPI - IUMLGuiObjectDiagram
	UModelAPI - IUMLGuiPackageDiagram
	UModelAPI - IUMLGuiProfileDiagram
	UModelAPI - IUMLGuiProtocolStateMachineDiagram
	UModelAPI - IUMLGuiRelativeNodeLink
	UModelAPI - IUMLGuiRootElement
	UModelAPI - IUMLGuiSeparatedNodeLink
	UModelAPI - IUMLGuiSeparatedNodeLink2D
	UModelAPI - IUMLGuiSequenceDiagram
	UModelAPI - IUMLGuiStateMachineDiagram
	UModelAPI - IUMLGuiStructureDiagram
	UModelAPI - IUMLGuiStyle
	UModelAPI - IUMLGuiStyles
	UModelAPI - IUMLGuiSubDiagramNode
	UModelAPI - IUMLGuiSysMLActivityDiagram
	UModelAPI - IUMLGuiSysMLBlockDefinitionDiagram
	UModelAPI - IUMLGuiSysMLInternalBlockDiagram
	UModelAPI - IUMLGuiSysMLPackageDiagram
	UModelAPI - IUMLGuiSysMLParametricDiagram
	UModelAPI - IUMLGuiSysMLRequirementDiagram
	UModelAPI - IUMLGuiSysMLSequenceDiagram
	UModelAPI - IUMLGuiSysMLStateMachineDiagram
	UModelAPI - IUMLGuiSysMLUseCaseDiagram
	UModelAPI - IUMLGuiTextHyperlink
	UModelAPI - IUMLGuiTextLabel
	UModelAPI - IUMLGuiTextLabelWaypoint
	UModelAPI - IUMLGuiTickMark
	UModelAPI - IUMLGuiTimingDiagram
	UModelAPI - IUMLGuiTimingDiagramLifeline
	UModelAPI - IUMLGuiTimingDiagramMessage
	UModelAPI - IUMLGuiUseCaseDiagram
	UModelAPI - IUMLGuiVisibleElement
	UModelAPI - IUMLGuiWaypoint
	UModelAPI - IUMLGuiXMLSchemaDiagram

	Events
	UModelAPI - _IUMLDataEvents

	Enumerations
	UModelAPI - ENUMUMLAggregationKind
	UModelAPI - ENUMUMLCallConcurrencyKind
	UModelAPI - ENUMUMLConnectorKind
	UModelAPI - ENUMUMLDataEventFilter
	UModelAPI - ENUMUMLDBDataSourceMethod
	UModelAPI - ENUMUMLExpansionKind
	UModelAPI - ENUMUMLGuiStyleKind
	UModelAPI - ENUMUMLGuiTextLabelKind
	UModelAPI - ENUMUMLInteractionOperatorKind
	UModelAPI - ENUMUMLMessageKind
	UModelAPI - ENUMUMLMessageSort
	UModelAPI - ENUMUMLObjectNodeOrderingKind
	UModelAPI - ENUMUMLParameterDirectionKind
	UModelAPI - ENUMUMLPredefinedElement
	UModelAPI - ENUMUMLPseudostateKind
	UModelAPI - ENUMUMLTransitionKind
	UModelAPI - ENUMUMLVisibilityKind

	SPL Reference
	Basic SPL structure
	Variables
	Operators
	Conditions
	Collections and foreach
	Subroutines
	Subroutine declaration
	Subroutine invocation

	License Information
	Electronic Software Distribution
	Software Activation and License Metering
	Altova End-User License Agreement

	Index

